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Abstract

This paper proposes a novel approach to incorporate covariates in regression discontinuity (RD) de-

signs. We represent the covariate balance condition as over-identifying moment restrictions. The empirical

likelihood (EL) RD estimator efficiently incorporates the information from covariate balance and thus has

an asymptotic variance no larger than that of the standard estimator without covariates. It achieves effi-

ciency gain under weak conditions. We resolve the indeterminacy raised by Calonico, Cattaneo, Farrell,

and Titiunik (2019, Page 448) regarding the asymptotic efficiency gain from incorporating covariates to

RD estimator, as their estimator has the same asymptotic variance as ours. We then propose a robust

corrected EL (RCEL) confidence set which achieves the fast n−1 coverage error decay rate even though

the point estimator converges at a nonparametric rate. In addition, the coverage accuracy of the RCEL

confidence set is automatically robust against slight perturbation to the covariate balance condition, which

may happen in cases such as data contamination and misspecified “unaffected” outcomes used as covari-

ates. We also show a uniform-in-bandwidth Wilks theorem, which is useful in sensitivity analysis for the

proposed RCEL confidence set in the sense of Armstrong and Kolesár (2018). We conduct Monte Carlo

simulations to assess the finite-sample performance of our method and also apply it to a real dataset.
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1 Introduction

The RD design resembles a randomized experiment conducted near the cut-off of the score (forcing variable)

and exploits the discontinuous variation in the probability of treatment to nonparametrically identify the

LATE at the cut-off under mild continuity assumptions on the latent variables.1 The transparent close-form

identification (Hahn et al., 2001) of the RD LATE calls for nonparametric estimation and inference methods

as they avoid functional form assumptions. See Cattaneo et al. (2019) for a recent review of RD. In practical

implementations, information from pre-treatment covariates (i.e., variables that have already been determined

before the assignment of the treatment) is incorporated to enhance efficiency and compensate for low accuracy

of nonparametric methods. A widely-used procedure is augmented local polynomial (LP) regression where

the covariates enter linearly. Calonico et al. (2019, CCFT, hereafter) formalizes this augmented regression

approach and derives its (first-order) asymptotic properties. CCFT shows that augmented LP regression

estimator consistently estimates the RD local average treatment effect (LATE) under the covariate balance

condition, i.e., the expectations of covariates coincide at both sides of the cut-off. Apart from CCFT,

covariate adjustment for RD receives much attention in recent literature. See Frölich and Huber (2019)

for an alternative approach which requires smoothing over covariates but allows for potential failure of

covariate balance. Arai et al. (2021) and Kreiß and Rothe (2021) extend CCFT’s approach to control for a

high-dimensional covariate vector by regularization. Noack et al. (2021) extends CCFT’s linear regression

adjustment to nonparametric adjustment with machine learning methods. See Cattaneo et al. (2021) for a

recent review of covariate adjustment for RD.

This paper studies a novel approach to incorporate covariates in a generalized method of moments (GMM)

framework with local smoothing. We formulate the close-form identification of (sharp or fuzzy) RD treat-

ment effect as LP moment conditions. Then covariate balance is characterized by a set of over-identifying LP

moment conditions and used as “side information”. The LP moment conditions are derived from a population-

level minimum contrast problem (see Bickel and Doksum, 2015, Chapter 11.3 and Jiang and Doksum, 2003).

CCFT treats covariate balance as a maintained assumption and our approach is not more restrictive in this

regard. Our framework naturally calls for (efficient) GMM estimation. EL and generalized EL (Newey and

Smith, 2004) are popular alternatives to GMM which do not require first-step estimation of the efficient

weighting matrix.2 We show in Theorem 1 and Remark 1 that the asymptotic variance of the EL RD es-

timator with the covariate-balancing-induced over-identifying moment conditions included is no larger than
1In a recent study, Hyytinen et al. (2018) confirmed that RD produces estimates that are in line with the results from a

comparable experiment if inference is implemented with the method of Calonico et al. (2014).
2See, e.g., Kitamura (2006) for a comprehensive review of EL and generalized EL. See, e.g., Chen and Qin (2000); Otsu et al.

(2013, 2015); Ma et al. (2019) for EL inference in the context of non-parametric curves. It was shown that EL has favorable
properties relative to GMM. See, e.g., Chen and Cui (2007); Kitamura (2001); Matsushita and Otsu (2013); Newey and Smith
(2004); Otsu (2010); Ma (2017) among many others.
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the standard LP regression RD estimator without covariates. In addition, we show that the EL estimator

is first-order equivalent to the regression estimator of CCFT. The first contribution of this paper is that we

provide new insights into CCFT’s method and resolve the indeterminacy raised on Page 448 of CCFT re-

garding asymptotic efficiency. We show that CCFT’s estimator weakly dominates the standard LP regression

estimator without covariates and achieves efficiency gain as long as the true projection coefficients of some

covariates are nonzero. See Remarks 1, 2 and 3. We explain such an asymptotic efficiency ranking from the

perspective of local randomization and provide a GMM interpretation of CCFT’s estimator: its potential

efficiency gain can be attributed to efficient inclusion of covariate balance as side information. Our result

also provides a simple characterization of “irrelevant” covariates (Remark 3).

Then we show that inference using the EL ratio has several favorable theoretical advantages. EL infer-

ence does not require calculation of standard errors and explicit studentization. Theorem 2 shows a new

uniform-in-bandwidth extension of the standard Wilks theorem (i.e., the EL ratio statistic is asymptotically

χ2). Our uniform-in-bandwidth version adjusts for specification search over multiple bandwidths known as

bandwidth snooping (Armstrong and Kolesár, 2018, AK, hereafter) and takes into account the effects from

data-dependent bandwidths in a robust manner (Remarks 4 and 6). It also provides a powerful tool for

sensitivity analysis in the sense of AK (Remark 5). By deriving distributional expansions, Calonico et al.

(2018) shows that proper studentization for Wald-type inference is crucial for having desirable coverage prop-

erties. We follow the same approach and show that implicit studentization of EL achieves favorable coverage

properties. Theorem 3 characterizes the leading coverage error (i.e., the discrepancy between the nominal

and finite-sample coverage probabilities, see, e.g., Calonico et al. (2020)) term in the distributional expansion

of the EL ratio statistic. The coverage expansion for the EL confidence set for the RD LATE is strikingly as

simple as the asymptotic mean square error (AMSE) for the point estimator. The coverage optimal band-

width, which is defined as the minimizer of this leading coverage error in the spirit of Calonico et al. (2020),

has a simple close form (Remark 9). Theorem 3 constructs a simple data-driven robust corrected EL (RCEL)

confidence set with favorable robustness properties, which is the second contribution of this paper. This

method does not require resampling and is thus computationally inexpensive. It complements the Wald-type

inference method of CCFT and addresses common concerns in empirical applications. In particular, Theorem

3 shows that the EL confidence set admits partial Bartlett correction (Chen, 1996), i.e., rescaling the EL ratio

for improving the coverage accuracy, which can also be combined with internalized bias removal (Calonico

et al., 2014).3 In the context of EL inference on nonparametric curves, partial Bartlett correctability is a
3Compared with the expressions of correction factors for EL in other contexts (e.g., Chen and Cui, 2007; Matsushita and Otsu,

2013; Ma, 2017), our correction factor is very simple and thus can be estimated with good accuracy in finite samples, thanks to
a special property of the moment conditions under consideration (i.e., asymptotic uncorrelatedness between the conditions and
their derivatives).
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stronger property than Bartlett correctability in the conventional sense (Remarks 10 and 11). We show that

our RCEL confidence set achieves a coverage error decay rate of n−1 (n ∈ N denotes the sample size) under

minimal smoothness assumptions and also the covariate balance condition. Note that n−1 is the coverage

error decay rate of standard two-sided confidence intervals for parameters that can be estimated at the n−1/2

parametric rate (see, e.g., Hall, 1991). The RCEL confidence set achieves the same rate even though the

EL point estimator converges at a slower nonparametric rate. Therefore, our method is particularly useful

when the researcher is faced with a small sample but the researcher wishes to have the coverage error under

control.

Theorem 4 considers deviation from covariate balance and shows that the coverage accuracy of the RCEL

confidence set for our parameter of interest is highly insensitive to mild deviation (Remark 15), which we

refer to as local imbalance in this paper. Failure of the covariate balance assumption may happen in at least

two realistic situations. In real applications (see, e.g., Cattaneo et al., 2019), the researcher may have access

to observations on outcomes which are determined after treatment but are considered unaffected by the

treatment (“unaffected” outcomes). Covariate balance should also hold for “unaffected” outcomes. However,

specification of the “unaffected” outcomes is based on prior knowledge or empirical evidence, which might

be mistaken. Another concern is that the balance condition holds for pre-treatment covariates in theory

but our sample observations on these covariates are contaminated (possibly due to measurement errors that

occur after treatment) so that they are drawn from a perturbed population (Kitamura et al., 2013) that

slightly violates the balance condition. When covariate balance does not hold exactly, the coverage accuracy

of our RCEL confidence set stays relatively unaffected , while other inference methods may exhibit severe

undercoverage (Remark 16). To the best of our knowledge, these robustness properties are novel in the

literature. We are unaware of any other inference method that has similar properties. These properties

result from the intrinsic second-order properties of EL and the fact that the LP moment conditions for

RD are asymptotically uncorrelated with their derivatives. Combination of RCEL and AK-type correction

is straightforward (Remark 14) and provides a more accurate uniform confidence band that is useful for

sensitivity analysis and robust inference.

In relation to the literature, Otsu et al. (2015) proposed EL inference for RD without covariates. Their

method was based on first-order conditions from standard local linear regression. This paper focuses on

covariate adjustment and uses different moment conditions. In another related paper, Ma et al. (2019)

studied EL inference for the parameter of interest in the density discontinuity design (Jales and Yu, 2016).

The scope of this paper is different from Ma et al. (2019) but the LP moment conditions in both papers are

from population-level LP fitting (minimum contrast problem) in Bickel and Doksum (2015). Our paper uses

4



a similar approach to covariate adjustment as Wu and Ying (2011); Zhang (2018) who formulated covariate

balance in randomized experiments as moment conditions and proposed EL-type methods. We formulate

local imbalance and study the impact of it on the coverage accuracy by using standard local asymptotic

analysis (e.g., the Pitman approach to local power analysis). Local imbalance can be also viewed as a special

case of local misspecification of the moment conditions in the GMM framework (see, e.g., Armstrong and

Kolesár, 2021 and references therein). But the approach we take differs from those employed by papers

in this strand of literature. Our approach follows Bravo (2003) and is based on second-order asymptotic

expansion of the coverage probability under drifting alternative hypotheses (i.e., local imbalance). Lastly

we note that our approach is potentially more flexible than the augmented regression approach of CCFT.

In the literature, nonlinear estimators are proposed for RD with limited outcome variables (e.g., Xu, 2017,

2018). To the best of our knowledge, covariate adjustment to nonlinear estimation for RD has not been

studied. Extension of CCFT’s linear regression approach in these contexts is not straightforward and the

desired properties (consistency and potential efficiency gain) may no longer hold. Incorporating covariates

by the EL probabilities (see, e.g., Brown and Newey, 2002) derived in this paper seems a simple solution and

is able to deliver efficiency gain under covariate balance. Such extensions are beyond the scope of this paper.

Section 2 quickly reviews the RD design. Section 3 introduces our EL method for RD with covariates.

Section 4 provides results on its first-order asymptotic properties. Section 5 is devoted to second-order

properties. Sections 6 and 7 present results from simulation and empirical exercises. Section 8 concludes.

Proofs of the theorems are collected in the appendix. Proofs of the lemmas are relegated to a supplement

available at ruc-econ.github.io/supplement_RD.pdf.

2 Regression discontinuity designs

Let X ∈ R be a continuous score supported on [x, x]. Let fX denote its density function. We normalize

the cutoff point to zero (so that 0 ∈ [x, x] without loss of generality) for notational brevity. For any k-times

differentiable univariate function f , let f (k) denote the k−th order derivative. In this paper, “a := b” means

that a is defined by b and “a =: b” means that b is defined by a. Denote ϕ := fX (0) and ϕ(k) := f
(k)
X (0) for

simplicity. For a random vector (or matrix) V , denote gV (x) := E [V | X = x] and mV (x) := gV (x) fX (x).

Denote µ(k)
V,− := limx↑0g

(k)
V (x) and ψ

(k)
V,− := limx↑0m

(k)
V (x).

(
µ

(k)
V,+, ψ

(k)
V,+

)
are defined similarly with limx↑0

replaced by limx↓0. For simplicity, also denote µV,s := µ
(0)
V,s, ψV,s := ψ

(0)
V,s (s ∈ {−,+}) and µV,± := µV,++µV,−.

Let a> denote the transpose of a. For random vectors (V,U), denote ΣV U>,s = µV U>,s − µV,sµU>,s (s ∈

{−,+}) and ΣV U>,± := ΣV U>,+ + ΣV U>,−.
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Let Y ∈ R denote the outcome variable, D ∈ {0, 1} be the binary treatment and Z ∈ Rdz be pre-

treatment covariates or “unaffected” outcomes. Variables in Z can be continuous, discrete or mixed. We

observe (Y,D,Z) and the score X. Let 1 (·) denote the indicator function. In an RD model, incentive is

assigned if X ≥ 0. In a sharp RD case D = I := 1 (X ≥ 0) (i.e., perfect compliance). In the electoral

RD model (see Lee, 2008; Hyytinen et al., 2018), (X,D, Y ) correspond to the vote share margin in the last

election, results of the last election (win or lose) and this election. Researchers almost always have access to

some pre-treatment covariates. In the electoral RD case, commonly observed covariates such as candidates’

age, gender and the incumbency status are determined prior to the election considered. The more general

fuzzy RD model assumes D 6= I but gD has a jump discontinuity at x = 0 (µD,+ 6= µD,−) due to the incentive.

This is known as limited compliance in the literature.

The RD model can be embedded in the potential outcome and treatment framework. Let (Y (1) , Y (0))

be potential outcomes with or without treatment. Let (D+, D−) denote the potential treatments with

or without incentives. The observed outcome Y and treatment D are determined by Y = DY (1) +

(1−D)Y (0) and D = ID+ + (1− I)D− respectively. The complier group is defined to be individ-

uals with D+ > D− (i.e., (D+, D−) = (1, 0)).4 Following CCFT, we let (Z (1) , Z (0)) denote poten-

tial covariates and then Z = DZ (1) + (1−D)Z (0). Let V (k) := (Y (k) , Z (k)), ∀k ∈ {0, 1}. De-

note gdd′ (x) := Pr [D+ = d,D− = d′ | X = x] and gV(k)|dd′ (x) := E [V (k) | D+ = d,D− = d′, X = x]. Sim-

ilarly, let V := (Y, Z) and gV|dd′ (x) := E [V | D+ = d,D− = d′, X = x]. By the law of iterated expec-

tations (LIE), gV =
∑

(d,d′)∈{0,1}2 gdd′gV|dd′ . Let TY := E [Y (1)− Y (0) | X = 0, D+ > D−] be the RD

LATE (the average treatment effect for individuals with zero score in the complier group) and similarly,

TZ := E [Z (1)− Z (0) | X = 0, D+ > D−] denotes the RD LATE on Z. The following assumption is implicit

in CCFT.

Assumption 1. (a) gV(k)|dd′ and gdd′ are continuous at 0, ∀ (k, d, d′) ∈ {0, 1}3; (b) Pr [D− ≤ D+ | X = 0] =

1; (c) Pr [D+ > D− | X = 0] 6= 0; (d) TZ = 0.

The RD model imposes only a few weak identifying assumptions. In Assumption 1, (a), (b) and (c) are

local versions of the LATE assumptions: (a) and (b) impose local continuity and monotonicity assumptions

respectively and (c) imposes existence of the local complier group. These are key identifying assumptions

for the RD model (see Dong, 2018). Under (a), (µY,+, µD,+, µZ,+) and (µY,−, µD,−, µZ,−) exist. (c) implies

that µD,+ > µD,−. These assumptions have testable implications (Arai et al., 2021). It can be shown that

under these assumptions, TY is nonparametrically identified: TY = ϑ0 := (µY,+ − µY,−) / (µD,+ − µD,−)

4RD can be represented by a triangular model. See Dong (2018). (Y,D) are assumed to be generated by a triangular model
Y = g (D,X,Z, ε) and D = 1 (X ≥ 0)h+ (X,Z, η) + 1 (X < 0)h− (X,Z, η), where (g, h+, h−) are unknown functions and (ε, η)
are (potentially correlated) unobserved disturbances of unrestricted dimensionality. Then the potential outcomes and treatments
are given by Y (1) = g (1, X, Z, ε), Y (0) = g (0, X, Z, ε), D+ = h+ (X,Z, η) and D− = h− (X,Z, η).
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(see Hahn et al., 2001; Dong, 2018), where ϑ0 is an observable population feature.5 Similarly, under (a),

(b) and (c), TZ = (µZ,+ − µZ,−) / (µD,+ − µD,−). Following CCFT, we impose (d), which means that

there is no RD treatment effect on Z. If Z includes only pre-treatment variables, this assumption holds by

definition. Under (a), (b) and (c), (d) is equivalent to the covariate balance condition µZ,+ = µZ,−, which

is a testable restriction on the population of the observed variables. Indeed, it is the null hypothesis of a

popular falsification or placebo test for the RD model.6 See, e.g., Lee (2008); Canay and Kamat (2017).

µZ,+ = µZ,− is satisfied if the conditional distribution of Z given X = x is continuous at x = 0. Evidence

against µZ,+ = µZ,− in the data (so that a hypothesis test of µZ,+ = µZ,− is rejected) casts doubts on the

validity of the continuity assumption (a). We can also augment the list of potential covariates to include

outcomes that are determined after the assignment but unaffected by the treatment. “Unaffected” outcomes

can be found in many applications. See, e.g., Cattaneo and Titiunik (2022, Section 4.1) for discussion.

Unlike pre-treatment variables, the assumption that the “unaffected” outcomes satisfy (d) is based on our

prior knowledge or evidence.

3 Covariate balance as moment restrictions

This section introduces a GMM framework that formulates the RD estimand and the covariate balance

condition as a set of over-identifying moment restrictions. First, we show that the RD estimand ϑ0, which has

causal interpretation under the identifying assumptions of the RD model, can be approximately identified by

two just-identified LP moment conditions. Let K denote the kernel function and let h denote the bandwidth.

Denote Kh (t) := h−1K (t/h). Let M := Y − ϑ0D and note that

lim
x↓0

E [Y − θ0D | X = x] = lim
x↑0

E [Y − θ0D | X = x] if and only if θ0 = ϑ0.

Denote ϑ1 := µM,+ = µM,−. Let p ≥ 1 be the integer-valued LP order. Denote rp (t) := (1, t, . . . , tp)
>.

According to Jiang and Doksum (2003), p-th order LP approximation of (ψM,−, ψM,+) can be derived from

solving the following minimum contrast problem. Let ek,s denote the s-th unit vector in Rk. Let

ψ− := e>p+1,1argmin
z∈Rp+1

∫ 0

x

{
mM (x)− z>rp (x)

}2
Kh (x) dx (1)

5In the sharp RD model (µD,+ = 1 and µD,− = 0 in this case) or under a stronger conditional independence assumption
(Hahn et al., 2001), a causal parameter that corresponds to a broader subpopulation (conditional average treatment effect) is
identified by the same ratio: E [Y (1)− Y (0) | X = 0] = ϑ0 .

6While most empirical works conduct the balance test separately for each covariate, some researchers have noted that the
problem of multiple testing may generate statistical imbalance of some covariates by chance. See, e.g., Hyytinen et al. (2018).
In a separate paper, we propose a joint EL test for the smoothness of multiple covariates at the cut-off.
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and ψ+ be defined by the minimizer on the right hand side with the integral range [x, 0] replaced by [0, x].

Denote Vp;− :=
∫ 0

−1
rp (t) rp (t)

>
K (t) dt and Kp;− (t) := e>p+1,1V−1

p;−rp (t)K (t). Let (Vp;+,Kp;+) be defined

by the same equations with the integral range [−1, 0] replaced by [0, 1].7 Let the data {(Yi, Di, Xi, Zi)}ni=1

be i.i.d. copies of (Y,D,X,Z). Then, let Wp;−,i := 1 (Xi < 0)Kp;− (Xi/h), Wp;+,i := 1 (Xi > 0)Kp;+ (Xi/h)

and Wp,i := (Wp;+,i,Wp;−,i)
>. (Wp;−,Wp;+,Wp) are defined by the same formulae with Xi replaced by X.

Then, by solving the first-order conditions of (1), we have ψs = E
[
h−1Wp;sgM (X)

]
= E

[
h−1Wp;sM

]
. By

Taylor expansion (see Jiang and Doksum, 2003), ψs = ψM,s+O
(
hp+1

)
under suitable smoothness assumptions

imposed on gM . From (1) withmM (x) replaced by fX (x), we have E
[
h−1Wp;s

]
= ϕ+O

(
hp+1

)
, ∀s ∈ {−,+}.

Therefore,

E [Wp;s (Y − ϑ0D − ϑ1)] = O
(
hp+2

)
,∀s ∈ {−,+} , (2)

which are the two LP moment conditions that (approximately) identify (ϑ0, ϑ1).

Next, we incorporate the information from the covariates by directly formulating the covariate balance

condition as over-identifying moment restrictions. This differs from CCFT where covariates are included as

additional regressors in the LP regression (see (6)). Let ϑ2 := µZ,+ = µZ,− denote the common value. By

solving (1) with mM replaced by mZ and fX , we have

E [Wp;+ (Z − ϑ2)] = O
(
hp+2

)
and E [Wp;− (Z − ϑ2)] = O

(
hp+2

)
. (3)

We restrict the bandwidths on the left and the right of the cut-off to be the same. It is possible to extend

all of the theorems in this paper to accommodate different bandwidths on different sides. Now combining

restrictions (2) and (3) we have the following over-identified LP moment conditions:

E

Wp ⊗

 Y − ϑ0D − ϑ1

Z − ϑ2


 = O

(
hp+2

)
, (4)

where ⊗ denotes the Kronecker product. Note that we have 2 (1 + dz) LP moment conditions that ap-

proximately identify 2 + dz parameters. ϑ0 = TY is the parameter of interest and (ϑ1, ϑ2) are nuisance

parameters. Denote ϑ := (ϑ0, ϑ1, ϑ2) ∈ Rdϑ (dϑ := 2+dz), ϑ† := (ϑ1, ϑ2) ∈ Rd† (d† := 1+dz), θ := (θ0, θ1, θ2)

and θ† := (θ1, θ2).

We define the EL criterion function:

`p (θ | h) := min
w1,...,wn

− 2
∑
i

log (n · wi)

7(Kp;+,Kp;−) coincide with the “equivalent kernel” of LP regression. See, e.g., Section S2.1 of AK.
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subject to
∑
i

wi Wp,i ⊗

 Yi − θ0Di − θ1

Zi − θ2

 = 0,
∑
i

wi = 1 and wi ≥ 0, ∀i, (5)

where
∑
i is understood as

∑n
i=1. −

∑
i log (n · wi) /n is the Kullback-Leibler divergence from (w1, ..., wn) to

the uniform weights 1/n. Denote Ui (θ) :=
(
Yi − θ0Di − θ1, Z

>
i − θ>2

)>, Ui := Ui (ϑ) for notational simplicity

and du := 1+dz. U (θ) and U are defined by the same formulae with (Yi, Di, Xi, Zi) replaced by (Y,D,X,Z).

The p-th order EL estimator is given by ϑ̂p :=
(
ϑ̂p,0, ϑ̂p,1, ϑ̂p,2

)
:= argminθ∈Θ`p (θ | h), where Θ ⊆ Rdϑ is a

compact parameter space such that ϑ is an interior point of Θ. Also denote the constrained EL estimator:

ϑ̃p (θ0) :=
(
ϑ̃p,1 (θ0) , ϑ̃p,2 (θ0)

)
:= argminθ†∈Θ†

`p (θ0, θ† | h), where Θ† ⊆ Rd† is a compact constrained

parameter space such that ϑ† is in the interior of Θ† and θ0 is some hypothesized value. The EL ratio

statistic is given by LRp (θ0 | h) := `p

(
θ0, ϑ̃p (θ0) | h

)
− `p

(
ϑ̂p | h

)
, which is a function of θ0. It is shown in

the proof of Theorem 3 that `p
(
θ̂p | h

)
= infθ2supλ2

∑
i log

(
1 + λ>Wp,i ⊗ (Zi − θ2)

)
and therefore it suffices

to solve a simpler optimization problem. Let τ ∈ (0, 1) be the significance level. Let Fχ2
1
and fχ2

1
denote the

cumulative distribution function (CDF) and probability density function (PDF) of a χ2
1 (χ2 with one degree

of freedom) random variable respectively. Let cτ := F−1
χ2

1
(1− τ) be the (1− τ) quantile of the χ2

1 distribution.

An EL confidence set for ϑ0 with nominal coverage probability 1 − τ is CSτ (h) := {θ0 : LRp (θ0 | h) ≤ cτ}.

For fuzzy RD, as Noack and Rothe (2019)’s method, the EL confidence set avoids a “delta method” argument

used by the Wald-type inference of CCFT. The EL probabilities (weights) ŵ1, ..., ŵn are those corresponding

to the minimizer of the problem (5) with θ = ϑ̂p (Brown and Newey, 2002). These EL probabilities can

be used for covariate adjustment in nonlinear estimation associated with RD (e.g., Xu, 2017, 2018 among

others), for which extension of CCFT’s approach is involved.8

4 Efficiency gain and uniform-in-bandwidth Wilks theorem

This section provides asymptotic properties of the EL estimator and EL ratio statistic. Theorem 1 shows

asymptotic normality and gives the expression for the AMSE. We then compare it with the asymptotic

result from CCFT. Theorem 2 provides uniform-in-bandwidth large sample approximation to the distri-

bution of the EL ratio with θ0 = ϑ0. For a vector z, let z(j) denote its j-th coordinate. Similarly,

A(jk) denotes the jk-th element of a matrix A. By abuse of notation, for a dv−dimensional random

8It is shown in the proof of Theorem 3 that nŵi =
(

1 + λ̂>p Wp,i ⊗
(
Zi − ϑ̂p,2

))−1
where λ̂p solves

∑
iWp,i ⊗(

Zi − ϑ̂p,2
)
/
(

1 + λ̂>p Wp,i ⊗
(
Zi − ϑ̂p,2

))
= 0. Indeed, it is clear that the EL estimator

(
ϑ̂p,0, ϑ̂p,1

)
is numerically equiv-

alent to the plug-in (method of moments) estimator that solves the sample analogue of the moment conditions (2) with the
empirical distribution replaced by the EL probabilities:

∑
i ŵiWp;s,i

(
Yi − ϑ̂p,0Di − ϑ̂p,1

)
= 0. We conjecture that the same

reweighting adjustment can be extended to the nonlinear cases considered by Xu (2017, 2018).
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vector V , let V 2 denote V ⊗ V with duplicated coordinates removed, i.e., V 2 := vech
(
V V >

)
, where

vech (A) denotes the half vectorization of a matrix A. Similarly, V 3 denotes the vector consisting of

V (1)vech
(
V V >

)
, V (2)vech

((
V (2), ..., V (dv)

)> (
V (2), ..., V (dv)

))
,...,

(
V (dv)

)3
. ‖x‖ denotes the Euclidean norm

of the vector x. We assume the following assumptions hold.

Assumption 2. (a) On a neighborhood around 0, gV(k)|dd′ and gdd′ are (p+ 1)-times continuously differen-

tiable with Lipschitz continuous (p+ 1)-th order derivatives, gV(k)2|dd′ is Lipschitz continuous and g‖V(k)‖12|dd′

is bounded and fX is (p+ 1)-times continuously differentiable with Lipschitz continuous (p+ 1)-th order

derivative; (b) E
[
U (k)U (k)

> | D+ > D−, X = 0
]
is positive definite, ∀k ∈ {0, 1}.

Assumption 3. (a) K is a symmetric continuous PDF supported on [−1, 1]; (b) Kp;+ is differentiable with

bounded first-order derivatives on (−1, 0) and (0, 1).

Assumption 2 is imposed on the latent variables in the RD model and parallels Assumption SA-5 of

CCFT. Since gV =
∑

(d,d′)∈{0,1}2 gdd′gV|dd′ , V = D+V (1) + (1−D+)V (0) if X > 0 and V = D−V (1) +

(1−D−)V (0) if X < 0, Assumption 2(a) guarantees that gV and mV have continuous derivatives up

to (p+ 1)-th order on the left and right neighborhoods of 0. Similarly, gV2 is continuous and g‖V‖12 is

bounded on the left and right neighborhoods of 0, under Assumption 2(a). Denote γadj := Σ−1
ZZ>,±ΣZM,±,

ε := M−Z>γadj and σ2
adj := ΣM2,±−ΣMZ>,±γadj. Existence of these quantities is guaranteed by Assumption

2(a). Under Assumption 1, µε,+ = µε,− =: µε. Assumption 2(a) guarantees that gε and mε admit continuous

derivatives up to (p+ 1)-th order on the left and right neighborhoods of 0 so that the leading bias terms

can be characterized. Denote ζp;s := ωp+1,1
p;s

(
ψ

(p+1)
ε,s − µεϕ(p+1)

)
, s ∈ {−,+}, where ωj,kp;+ :=

∫ 1

0
tjKp;+ (t)

k
dt

and ωj,kp;− :=
∫ 0

−1
tjKp;− (t)

k
dt. Assumption 2(b) guarantees that µUU>,+ and µUU>,− exist and are both

positive definite. Assumption 3(a) is standard and also imposed in CCFT. Assumption 3(b) is also found in

AK. Assumption 3(a) implies that Kp;+ (t) = Kp;− (−t) ∀t ∈ R and therefore (b) also holds for Kp;−. The

following result shows the asymptotic distribution of ϑ̂p,0, the EL estimator of the RD LATE.

Theorem 1. Suppose that Assumptions 1, 2 and 3 hold. Assume that the bandwidth satisfies nh2p+3 = O (1)

and log (n)
2
/ (nh) = o (1). Then,

√
nh
(
ϑ̂p,0 − ϑ0 −BEL

p h
p+1
)
→d N

(
0,V EL

p

)
, where

BEL
p :=

ζp;+ − ζp;−
ϕ (µD,+ − µD,−) (p+ 1)!

and V EL
p :=

ω0,2
p;+σ

2
adj

ϕ (µD,+ − µD,−)
2 .

Remark 1. We consider the special case of sharp RD and p = 1. The local linear estimator ϑ̂LL0 can be

obtained from a single localized regression. CCFT’s approach augments the regression to incorporate pre-

treatment covariates. CCFT’s covariate adjusted estimator ϑ̂CCFT0 is given by the regression coefficient of

10



Ii := 1 (Xi ≥ 0) in

ϑ̂CCFT0 := e>4+dz,3 argmin
(a0,b0,a1,b1,d)∈R4+dz

∑
i

Kh (Xi)
{
Yi − a0 − b0Xi − a1Ii − b1XiIi − Z>i d

}2
. (6)

The covariates enter linearly and kernel smoothing over the covariates is not needed. ϑ̂CCFT0 converges in

probability to the sharp RD estimand, under the covariate balance assumption. ϑ̂LL0 − ϑ0 is approximately

N
(
0,V LL/ (nh)

)
distributed and ϑ̂CCFT0 −ϑ0 is approximately N

(
0,V CCFT/ (nh)

)
, under the undersmoothing

assumption nh5 = o (1). Var|0 and Cov|0 are understood as Var [· | X = 0] and Cov [· | X = 0] and
∑
k is

understood as
∑
k∈{0,1}. We compare the asymptotic variance V EL

1 = ω0,2
1;+σ

2
adj/ϕ with V LL = ω0,2

1;+σ
2
LL/ϕ

and V CCFT = ω0,2
1;+σ

2
CCFT/ϕ, where σ

2
LL :=

∑
k Var|0 [Y (k)] (see, e.g., Imbens and Kalyanaraman, 2011) and

σ2
CCFT :=

∑
k Var|0

[
Y (k)− Z (k)

>
γCCFT

]
with γCCFT :=

(∑
k Var|0 [Z (k)]

)−1 (∑
k Cov|0 [Z (k) , Y (k)]

)
.9 It

is easy to check that in the definition σ2
adj and γadj, ΣM2,± = σ2

LL, ΣMZ>,± =
∑
k Cov|0

[
Y (k) , Z (k)

>
]
and

ΣZZ>,± =
∑
k Var|0 [Z (k)]. To see σ2

adj ≤ σ2
LL, observe that by definition,

σ2
adj := ΣM2,± − ΣMZ>,±γadj

= σ2
LL −

(∑
k

Cov|0

[
Y (k) , Z (k)

>
])(∑

k

Var|0 [Z (k)]

)−1(∑
k

Cov|0 [Z (k) , Y (k)]

)
≤ σ2

LL. (7)

Next, we show that σ2
adj = σ2

CCFT.
10 Observe that γadj = γCCFT and also

Var|0

[
Z (0)

>
γadj

]
+ Var|0

[
Z (1)

>
γadj

]
= γ>adj

(
Var|0 [Z (0)] + Var|0 [Z (1)]

)
γadj

= Cov|0

[
Y (1) , Z (1)

>
γadj

]
+ Cov|0

[
Y (0) , Z (0)

>
γadj

]
= ΣMZ>,±γadj. (8)

Therefore,

σ2
adj = Var|0 [Y (0)] + Var|0 [Y (1)]− Cov|0

[
Y (1) , Z (1)

>
γadj

]
− Cov|0

[
Y (0) , Z (0)

>
γadj

]
= Var|0

[
Y (0)− Z (0)

>
γadj

]
+ Var|0

[
Y (1)− Z (1)

>
γadj

]
= σ2

CCFT,

where the second equality follows from

Var|0

[
Y (k)− Z (k)

>
γadj

]
= Var|0 [Y (k)] + Var|0

[
Z (k)

>
γadj

]
− 2 · Cov|0

[
Y (k) , Z (k)

>
γadj

]
9It is easy to see that the method of moments estimator of ϑ0 based on (2) without using (3) has the same asymptotic

variance V LL as the standard local linear estimator.
10Indeed, it can be shown that the EL and CCFT’s estimators with undersmoothing (i.e., nh5 = o (1)) are first-order equivalent

in a stronger sense: ϑ̂CCFT0 − ϑ̂EL1,0 = op
(

(nh)−1/2
)
.
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and (8). The equivalence result V CCFT = V EL
1 can be generalized to the case of arbitrary p. The equivalence

also holds for fuzzy RD with an arbitrary LP order p.

Remark 2. The conclusion σ2
adj = σ2

CCFT ≤ σ2
LL implies that the asymptotic variance of both EL and CCFT

estimators is smaller or equal to that of the standard local linear estimator without covariates. This asymp-

totic efficiency ranking is achieved without additional assumptions other than covariate balance. At the first

glance, such an asymptotic efficiency ranking seems surprising given that CCFT (on their Page 448) finds no

definite ranking between σ2
CCFT and σ2

LL and interprets the indeterminacy as “in perfect agreement with those

in the literature on analysis of experiments,..., where it is also found that incorporating covariates in ran-

domized controlled trials using linear regression leads to efficiency gains only under particular assumptions”.

As the RD design is often viewed as local randomization, let us reconcile our finding and CCFT’s comment

from the perspective of randomized experiments. In RD designs, continuity of the density of the score X

implies that the shares of units with X being in small neighborhoods to the left and right of the cutoff are

equal (Noack et al., 2021, Section 5.2). Therefore, the RD design is analogous to a randomized experiment

with equal probabilities of being in treatment and control groups. In the literature of randomized experi-

ments, Negi and Wooldridge (2014, Theorem 5.2(iv)) show that when the assignment probability is equal to

1/2, the pooled regression adjustment (see Negi and Wooldridge, 2014 for its definition), whose algorithm

is analogous to that of the CCFT estimator, always leads to a smaller or equal asymptotic variance. The

assignment probability assumption is automatically fulfilled in RD designs. Theorem 1 and the first-order

equivalence between the EL and CCFT estimators explains the asymptotic efficiency ranking from a different

perspective: CCFT’s estimator can be interpreted as being efficiently incorporating the side information

from the covariate balance condition, which will typically reduce the asymptotic variance, and in the worst

scenario, will yield the same asymptotic variance if the side information is irrelevant.11

Remark 3. Theorem 1 also implies that including a covariate will not change the asymptotic variance if

and only if the corresponding element in γadj is zero. Note that the (true) projection coefficients γadj are

the probabilistic limits of the regression coefficients of Zi in the “long” regression (6) including all covariates.

Consider the partition Z =
(
Z>1 , Z

>
2

)> of Z and let γ>adj =
(
γ>adj,1, γ

>
adj,2

)>
be the conformable partition of γadj

such that the dimension of γ>adj,k coincides with that of Zk, k = 1, 2. Using Theorem 1 and the representation

on the right hand side of the second equality of (7), then writing
∑
k Var|0 [Z (k)] as a block matrix and

inverting it, we can easily show that V EL
1 is equal to the asymptotic variance of the CCFT (EL) covariate

adjusted estimator using only Z1 if and only if γadj,2 = 0. In this case, Z2 is irrelevant in the sense that
11Such an argument is analogous to that of Hirano et al. (2003), which explains the puzzling phenomenon that the inverse

probability weighting estimator using the nonparametrically estimated propensity score has a smaller asymptotic variance
relative to that uses the true propensity score. Hirano et al. (2003) shows that the former is equivalent to an EL estimator that
incorporates the side information from knowing the true propensity score efficiently.

12



dropping Z2 has no first-order impact: it neither leads to efficiency loss nor changes the leading asymptotic

bias. In conclusion, if we say that an estimator achieves efficiency gain when its asymptotic variance is

smaller than that of the standard estimator without covariates, then both EL and CCFT estimators achieve

efficiency gain as long as the coefficients of some covariates are nonzero.12

The following theorem establishes uniform-in-bandwidth validity of the EL confidence set. Let `∞ (S)

denote the space of all bounded functions f : S → R endowed with the sup-norm ‖f‖S := sups∈S |f (s)|.

Let H :=
[
h, h

]
be a compact bandwidth set where h = hn > 0 and h = hn > 0 (h < h) are bandwidths

that depend on the sample size. The following theorem parallels the main result of AK and is a substantial

extension of the standard Wilks theorem which states that LRp (ϑ0 | h) →d χ
2
1. Our result incorporates

covariates and accommodates unbounded outcomes. The proof techniques we use differ from those employed

by AK.

Theorem 2. Suppose that Assumptions 1, 2 and 3 hold. Suppose that
(
h, h

)
satisfy nh

2p+3
= o (1) and

n1/12/ (nh)
1/2

+(nh)
−1/6

= o
(

log (n)
−3
)
. There exists a zero-mean Gaussian process

{
ΓG (s) : s ∈

[
1, h/h

]}
which is a tight random element in `∞

([
1, h/h

])
with the covariance structure given by

E [ΓG (s)ΓG (t)] =

√
s

t

∫∞
0
Kp;+ (z)Kp;+ ((s/t) z) dz∫∞

0
Kp;+ (z)

2
dz

. (9)

Then, Pr
[
LRp (ϑ0 | h) ≤ zτ

(
h/h

)2
,∀h ∈ H

]
→ 1− τ , as n ↑ ∞, where zτ

(
h/h

)
denotes the 1− τ quantile

of ‖ΓG‖[1,h/h].

Remark 4. Theorem 2 generalizes the standard Wilks theorem with a single bandwidth. It implies that

when h = h = h, Pr [LRp (ϑ0 | h) ≤ cτ ] = Pr [ϑ0 ∈ CSτ (h)] → 1 − τ . I.e., with a single bandwidth, the EL

confidence set is asymptotically valid. The standard EL confidence set CSτ (h) may undercover if the band-

width is selected after specification search over H. As an example, suppose that ĥ := argmaxh∈HLRp (0 | h) is

selected to maximize the p-value for the two-sided hypothesis test of ϑ0 = 0. AK shows that zτ
(
h/h

)2
> cτ

when h/h > 1 but zτ
(
h/h

)
grows at a logarithmic speed as h/h ↑ ∞. It is clear from Theorem 2 that

Pr
[
ϑ0 ∈ CSτ

(
ĥ
)]
→ 1− τ̃ , where τ̃ > τ solves zτ̃

(
h/h

)2
= cτ if ϑ0 = 0 and the test of ϑ0 = 0 does not have

asymptotically correct size. Theorem 2 justifies a simple correction for bandwidth snooping as AK by replac-

ing the critical value cτ used by CSτ (h) with zτ
(
h/h

)2
. Let CSsc

τ

(
h | h/h

)
:=
{
θ0 : LRp (θ0 | h) ≤ zτ

(
h/h

)2}
be the snooping corrected confidence set. Then, CSsc

τ

(
h | h/h

)
has asymptotically correct coverage no matter

how h is selected from H, i.e., liminfn↑∞Pr
[
ϑ0 ∈ CSsc

τ

(
h | h/h

)]
≥ 1− τ ∀h ∈ H. The critical value zτ

(
h/h

)
12Noack et al. (2021) shows that covariate adjustment for RD in an arbitrary way may not lead to efficiency gain. Their

optimal nonparametric adjustment leads to efficiency gain under an assumption that is more stringent than having nonzero
coefficients.
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can be easily simulated.13

Remark 5. Theorem 4 shows that
{
CSsc

τ

(
h | h/h

)
: h ∈ H

}
is an asymptotically valid confidence band for

the constant function H 3 h 7→ ϑ0. By using it for inference on ϑ0, we take multiple bandwidth choices

into account. Such an inference procedure is therefore more robust and less sensitive to bandwidth choice.

The uniform confidence band can also be used for analysis of the sensitivity of the result from the pointwise

confidence set to bandwidth choice. See AK for detailed discussion. AK’s argument can be extended to our

case. Let hrf denote a reference bandwidth and one computes CSτ (hrf). In case of a statistically insignificant

result (i.e., 0 ∈ CSτ (hrf)), it can be argued that using a smaller (larger) bandwidth is necessary due to

high bias (variance) incurred by hrf . However, the specification search or multiple testing issue undermines

the validity of a significant result (CSτ (h) ⊆ (0,∞) or CSτ (h) ⊆ (−∞, 0)) corresponding to some h 6= hrf .

In such a case, with suitable lower and upper bounds
(
h, h

)
such that h < hrf < h, one may follow AK’s

approach and use the band
{
CSsc

τ

(
h | h/h

)
: h ∈ H

}
. If ∃h ∈ H such that CSsc

τ

(
h | h/h

)
⊆ (0,∞) or

CSsc
τ

(
h | h/h

)
⊆ (−∞, 0), one may conclude that the RD LATE is different from zero and validity of such a

result is guaranteed by Theorem 2. On the other hand, if 0 ∈ CSsc
τ

(
h | h/h

)
∀h ∈ H, we conclude that the

insignificant result is insensitive to bandwidth choice. In case of 0 /∈ CSτ (hrf), it is still necessary to examine

the sensitivity of such a significant result to bandwidth choice (Imbens and Lemieux, 2008). As AK, with

suitable
(
h, h

)
, one may conclude that ϑ0 > 0 in a robust sense if ∃h ∈ H such that CSsc

τ

(
h | h/h

)
⊆ (0,∞)

and ∀h ∈ H, CSsc
τ

(
h | h/h

)
∩ (0,∞) 6= ∅. Compared with AK, our confidence band incorporates information

from covariates and the robust inference based on it is more powerful.

Remark 6. Theorem 2 also provides correction to obtain asymptotic validity under criterion-based data-

driven bandwidth selection. In practical implementation, one may take the bandwidth to be ĥ ∈
[
h, h

]
, where(

h, h
)
are deterministic lower and upper bounds and ĥ is the minimizer of some data-dependent criterion

function defined on
[
h, h

]
. Theorem 2 shows that snooping correction takes all noise in ĥ into account, by

replacing the χ2
1 quantile with z1−τ

(
h/h

)2
. By Theorem 2, asymptotic validity of the robust confidence set

CSsc
τ

(
ĥ | h/h

)
is guaranteed without assuming that ĥ fulfills any property such as the stochastic order of

ĥ/h− 1 is sufficiently small so that the noise in ĥ is negligible, where h is some deterministic bandwidth that

ĥ tries to capture.

Remark 7. As the main result of AK, Theorem 2 assumes deterministic upper and lower bounds. Let

13See the R package BWSnooping from github.com/kolesarm/BWSnooping. If h/h ↑ ∞ as n ↑ ∞, then zτ
(
h/h

)
can be

replaced by its asymptotic counterpart zasyτ
(
h/h

)
, where zasy1−τ

(
h/h

)
= −log (−log (1− τ)) /an + bn with constants (an, bn)

that depend on h/h and the kernel function. zasyτ

(
h/h

)
is not recommended to be used in practice since its justification is

based on the asymptotic theory of suprema of stationary Gaussian processes, which converge at a slow speed. See AK for more
detailed discussion on the critical values.
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(
h∗, h

∗)
denote some deterministic bounds that some data-dependent bounds

(
h, h

)
capture. As argued by

AK, the conclusion of Theorem 2 still holds under data-dependent bounds, if the orders of h/h
∗ − 1 and

h/h∗ − 1 are sufficiently small and
(
h∗, h

∗)
satisfy the assumptions of Theorem 2.

5 Robust corrected empirical likelihood inference

In this section, we investigate the second-order properties of the EL inference method. Theorem 3 provides

the distributional expansion of LRp (ϑ0 | h) and characterizes the leading term. By using this result, we drive

the coverage optimal bandwidth and propose a simple and feasible correction to the EL ratio that leads to

a fast coverage error decay rate. Theorem 4 provides the distributional expansion of the corrected EL ratio

under local perturbation to the covariate balance condition. By this result, we show that the corrected EL

confidence set enjoys a favorable property that its good coverage accuracy is maintained even if covariate

balance assumption is slightly violated. We assume the following assumptions hold.

Assumption 4. On a neighborhood around 0, gV(k)3|dd′ and gV(k)4|dd′ are both Lipschitz continuous and

g‖V(k)‖20|dd′ is bounded, ∀k ∈ {0, 1}.

Assumption 5.
(
1,Kp;+,K2

p;+,K3
p;+

)
are linearly independent as elements in the vector space of continuous

functions.

Assumption 4 is a stronger condition than Assumption 2(a). Assumption 5 is a mild condition which

is satisfied by all commonly-used kernels. Clearly, the same property also holds for
(
1,Kp;−,K2

p;−,K3
p;−
)
.

Assumptions 4 and 5 are used when establishing validity of the Edgeworth expansions in the proofs of

Theorems 3 and 4. Let tr (A) denote the trace of a square matrix A. Denote Ξ1 := µ−1
UU>,±, Ξ2 :=(

µ−1
UU>,+

+ µ−1
UU>,−

)−1

, Ψuw
1 := tr

(
Ξ1µU(u)U(w)UU>,±

)
and Ψuw

2 := tr
(
Ξ1µU(u)UU>,+Ξ1µU(w)UU>,+

)
− 2 ·

tr
(
Ξ1µU(u)UU>,−Ξ1µU(w)UU>,+

)
+ tr

(
Ξ1µU(u)UU>,−Ξ1µU(w)UU>,−

)
. Let

V †p :=
∑

u,w=1,...,du

1

2

ω0,4
p;+

ω0,2
p;+

Ξ
(uw)
1 Ψuw

1 −
1

3

(
ω0,3
p;+

)2

(
ω0,2
p;+

)2 Ξ
(uw)
1 Ψuw

2 +

(
4ω0,3

p;+ − 2
(
ω0,2
p;+

)2
)

tr (Ξ1Ξ2)

 /
(
ω0,2
p;+ϕ

)
.

(10)

Let V ‡p be defined by the same formula with U replaced by Ū := Z−ϑ2 and the range changed to u,w = 1, ..., dz

accordingly. Let V LR
p := V †p − V ‡p . We write an � bn, if an = O (bn) and bn = O (an). The following result

is similar to Calonico et al. (2020, Theorem 3.1) and provides an asymptotic expansion of the coverage

probability Pr [ϑ0 ∈ CSτ (h)] = Pr [LRp (ϑ0 | h) ≤ cτ ]. The proof uses the method of Calonico et al. (2022)

and calculations in Matsushita and Otsu (2013); Ma (2017).

15



Theorem 3. Suppose that Assumptions 1 - 5 hold. Suppose that h satisfies nh2p+3 = o (1) and
(
nh3

)−1
=

O (1). Then, Pr [LRp (ϑ0 | h) ≤ x] = Fχ2
1

(x)−Cp (n, h)xfχ2
1

(x)+o (υ?n), where υ?n := nh2p+3+hp+1+(nh)
−1,

Cp (n, h) := nh2p+3BLR
p + (nh)

−1 V LR
p and BLR

p :=
(
BEL
p

)2
/V EL

p . Let the RCEL ratio be LRrc
p (θ0 | h) :=

LRp+1 (θ0 | h) /
(

1 + (nh)
−1 V LR

p+1

)
. Then, Pr

[
LRrc

p (ϑ0 | h) ≤ x
]

= Fχ2
1

(x) +O
(
n−1

)
, if h � n−1/(p+2).

Remark 8. Theorem 3 shows that the coverage error Pr [ϑ0 ∈ CSτ (h)]− (1− τ) is approximately equal to

−Cp (n, h) cτfχ2
1

(cτ ). In the leading coverage error term, nh2p+3BLR
p is the “bias” term that is brought by

the smoothing bias and (nh)
−1 V LR

p is the “variance term” that stems from the stochastic variability. Note

that typically the distributional expansion corresponding to a nonparametric kernel-based Wald or likelihood

ratio statistic (e.g., Calonico et al., 2020, Theorem 3.1) involves another “bias-variability” interaction term of

order hp+1. In our case, such a term is of order hp+2 and partial Bartlett correctability (Chen, 1996) crucially

relies on this fact. In addition, because the moment conditionsWp⊗
(
Y − θ0D − θ1, Z

> − θ>2
)> (with θ = ϑ)

is asymptotically uncorrelated with the derivatives with respect to (θ1, θ2) at θ = ϑ, the coefficient V LR
p of

the variance term has a simple expression given by the matrix formula (10).

Remark 9. Since h � n−1/(p+2) gives the best coverage error decay rate, we restrict our attention to

bandwidths that satisfy h = H · n−1/(p+2) for some H > 0. Now the leading coverage error is proportional

to −n−(p+1)/(p+2)CEL
1 (H), where CEL

1 (H) := BLR
p H2p+3 + V LR

p H−1.14 Parallel to Calonico et al. (2018),

we define the optimal constant Hco as the minimizer of the absolute value of the leading coverage error:

Hco := argminH>0

∣∣CEL
1 (H)

∣∣, Hence the coverage optimal bandwidth is given by hco = Hcon
−1/(p+2).15 Note

that hco in our EL approach is independent of the nominal coverage probability 1− τ . This property is not

shared by the coverage optimal bandwidth for the Wald-type approach.

Remark 10. It is shown in the proof that if h � n−1/(p+2) the remainder term in the expansion of

Pr [LRp (ϑ0 | h) ≤ x] is O
(
n−1

)
. Let LRbc

p (θ0 | h) := LRp (θ0 | h) / (1 + Cp (n, h)) be the Bartlett corrected

EL ratio. One can show that Bartlett correction removes the leading coverage error: Pr
[
LRbc

p (ϑ0 | h) ≤ x
]

=

Fχ2
1

(x) + o (υ?n). The infeasible Bartlett corrected EL confidence set
{
θ0 : LRbc

p (θ0 | h) ≤ cτ
}
has coverage

accuracy with error rate O
(
n−1

)
. However,

(
BLR
p ,V LR

p

)
depend on unknown parameters. One can replace

these unknown quantities with their consistent nonparametric estimators to get the feasible Bartlett corrected
14The coverage expansion for the EL confidence set takes a much simpler form than its Wald-type counterpart. LetWSp (θ0 | h)

denote a Wald-type statistic using the p-th order LP regression estimator (Calonico et al., 2020). If h = H · n−1/(p+2), which
leads to the best coverage error decay rate, the first-order approximation to the coverage error of the Wald-type confidence set
is of the form C̄ (H,x)n−(p+1)/(p+2), where C̄ (H,x) :=

(
C1 (H)x+ C3 (H)x3 + C5 (H)x5

)
fχ2

1
(x), Ck (H) := ck,1H

2p+3 +

ck,2H
p+1 + ck,3H

−1 and
(
ck,1, ck,2, ck,3

)
are constants. The distributional expansion corresponding to the EL ratio is similar

but much simpler. Its leading error term satisfies C3 (H) = C5 (H) = c1,2 = 0.
15Note that BLR

p > 0. If V LR
p > 0, CEL

1 (H) > 0 and clearly limH↓0C
EL
1 (H) = limH↑∞C

EL
1 (H) = ∞. The unique minimizer

Hco satisfies the first-order condition. An explicit solution is available from solving it: Hco =
(
V LR
p /

(
(2p+ 3) BLR

p

))1/(2p+4).

If V LR
p < 0, it is easy to see that Hco =

(
−V LR

p /BLR
p

)1/(2p+4) and CEL
1 (Hco) = 0. In this case, the first-order coverage error

vanishes at the optimal bandwidth.
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EL confidence set. Note that BLR
p involves higher-order derivatives up to the order p+ 1 while V LR

p depends

only on conditional expectations. Hence the latter can be estimated by a simple plug-in estimator V̂ LR
p that

is based on local linear regression with standard rule-of-thumb (ROT) bandwidths (Hansen, 2021, Chapter

21.6). By standard theory, V̂ LR
p − V LR

p = Op
(
n−2/5

)
. On the other hand, a fully nonparametric estimator

B̂LR
p of BLR

p is highly variable. As a result, the practical performance of the feasible Bartlett corrected EL

confidence set is highly dependent on the estimation error for BLR
p and for this reason, its coverage error

decay rate can be much slower than O
(
n−1

)
.16

Remark 11. To avoid estimating BLR
p , we follow Chen (1996)’s partial Bartlett correction approach. We use

the “partial” rescaling factor 1+(nh)
−1 V̂ LR

p and then choose h optimally to reduce the effects from the smooth-

ing bias on the coverage accuracy. Since the bias-variability term is small in our case, such an approach delivers

a coverage error of smaller order.17 We also use internalized bias removal by increasing the order of LP by one

in the spirit of Calonico et al. (2014) and exhaust the smoothness.18 Note that Assumption 2(a) parallels the

smoothness assumption of Calonico et al. (2020, Theorem 3.1). Under Assumption 2, the smoothing bias is

now of order hp+2. EL automatically accounts for the change in variability by implicit studentization. In the

proof of Theorem 3, we show that Pr [LRp+1 (ϑ0 | h) ≤ x] is equal to the sum of Fχ2
1

(x)−(nh)
−1 V LR

p+1xfχ2
1

(x)

and a remainder term that absorbs effects from the smoothing bias. The leading “variance” term becomes

(nh)
−1 V LR

p+1 and rescaling the EL ratio by
(

1 + (nh)
−1 V LR

p+1

)−1

eliminates it. Essentially this approach

trades bias for variance, as the latter can be estimated with good accuracy. In the proof we show that the

rate optimal bandwidth (h � n−1/(p+2)) balances the terms of order nh2p+5 (bias) and hp+3 (bias-variability

interaction) so that effects from the smoothing bias are made negligible. The remainder is now O
(
n−1

)
.

Let the feasible RCEL ratio be LRfrc
p (θ0 | h) := LRp+1 (θ0 | h) /

(
1 + (nh)

−1 V̂ LR
p+1

)
, where V̂ LR

p+1 is a plug-in

estimator of V LR
p+1. Since V̂ LR

p+1−V LR
p+1 = Op

(
n−2/5

)
, the distributions of LRfrc

p (ϑ0 | h) and LRrc
p (ϑ0 | h) differ

by an error of order o
(
n−1

)
and the second conclusion of Theorem 3 holds for Pr

[
LRfrc

p (ϑ0 | h) ≤ x
]
. Then

it follows that the feasible RCEL confidence set CSfrc
τ (h) :=

{
θ0 : LRfrc

p (θ0 | h) ≤ cτ
}
has a coverage error

of order O
(
n−1

)
. Following Gelman and Imbens (2019), we recommend using lower order local polynomials

and setting p = 1 or p = 2. In both cases, CSfrc
τ (h) has coverage error decay rate O

(
n−1

)
. The rate optimal

bandwidth obeys h � n−1/3 (p = 1) or h � n−1/4 (p = 2). In the former situation, we require a weaker

16It follows from standard theory that the best possible rate for B̂LR
p is given by B̂LR

p −BLR
p = Op

(
n−1/(2p+5)

)
under our

smoothness assumptions. The coverage error of the feasible Bartlett corrected confidence set is of order n−(1/(2p+5)+(p+1)/(p+2))

if h � n−1/(p+2).
17In case of a typical distributional expansion with leading terms of order nh2p+3 (bias), (nh)−1 (variability) and hp+1

(bias-variability interaction), the best coverage error decay rate of the remainder stays unchanged even if the variability term is
removed.

18Calonico et al. (2014, Remark 7) shows that subtracting the p-th order LP estimator by the nonparametric estimator for
the leading bias term with the same bandwidth is the same as a (p+ 1)-th order LP estimator. By increasing the order of LP
by one, this approach makes the order of bias smaller but brings one more term that contributes to the stochastic variability.
Calonico et al. (2014) proposed bias-correction-aware standard errors that account for the change in variability.
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smoothness assumption, achieve the same fast coverage error decay rate but use a smaller effective sample of

size nh. In this situation, the length of CSfrc
τ (h) is of larger order of magnitude.

Remark 12. We now compare the feasible RCEL to CCFT’s inference method with p = 1. CCFT proposes

Wald-type inference using their local linear estimator with bias correction and standard errors that take into

account estimation of the bias. CCFT’s bias-corrected local linear estimator with common bandwidths is

equivalent to the augmented local quadratic regression estimator. It is well-expected that an extension of

Calonico et al. (2020, Theorem 3.1) holds and CCFT’s confidence interval admits a similar distributional

expansion. Hence for p = 1, CCFT’s method with a bandwidth h that obeys the optimal rate (i.e., h �

n−1/4) has coverage error decay rate n−3/4 (see Calonico et al., 2020, Theorem 3.1(a)). As CCFT, we

use local quadratic moment conditions (p + 1 = 2) in (4) to reduce the smoothing bias. Meanwhile, our

method analytically accounts for the effect of stochastic variability on the coverage error and then chooses

the bandwidth rate optimally (i.e., setting h � n−1/3) so that a faster O
(
n−1

)
coverage error decay rate is

achieved. Note that the same smoothness assumption underlies such comparison. If more smoothness (thrice

differentiability in Assumption 2(a)) is available (see Calonico et al., 2020, Theorem 3.1(b)), we can further

increase the LP order by one (i.e., local cubic). Partial Bartlett correction takes the increase in variability into

account. The length of the resulting CSfrc
τ (h) with p = 2 and the rate optimal bandwidth (i.e., h � n−1/4)

has the same order as CCFT’s confidence interval but CSfrc
τ (h) enjoys a faster O

(
n−1

)
coverage error decay

rate.

Remark 13. Like most existing results on second-order properties of kernel-based nonparametric inference,

Theorem 3 and our previous discussion assume a deterministic bandwidth. In practical data-driven imple-

mentation of the corrected confidence set, one selects a deterministic bandwidth of the form h = H ·n−1/(p+2),

replaces H with a consistent estimator Ĥ and reports CSfrc
τ

(
ĥ
)
where ĥ := Ĥ · n−1/(p+2). Calonico et al.

(2020) (see Section 5.3 therein) proposes an approach that takes the estimated AMSE optimal bandwidth

and rescales it to make it obey the coverage optimal rate (see Section IV(C) of CCFT). We can follow this

approach to use the rescaled versions of CCFT’s bandwidth. Alternatively, we can use a simpler ROT band-

width proposed in Hansen (2021, Chapter 21.6). The partial Bartlett correction we take makes the coverage

accuracy less sensitive to the choice of the constant part of the bandwidth. In simulations, we find that

CSfrc
τ

(
ĥ
)
with ĥ taken to be any of the aforementioned data-driven bandwidth selectors has good coverage

accuracy.

Remark 14. By using the AK-type correction proposed in Theorem 2, we can also construct a confi-

dence band that uses a continuous range of bandwidths to analyze the sensitivity of the result from the

RCEL confidence set CSfrc
τ

(
ĥ
)
to bandwidth choice. It can be easily verified that the conclusion of The-
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orem 2 with p changed to p + 1 still holds when LRp+1 (ϑ0 | h) is replaced by LRfrc
p (ϑ0 | h) since they

are first-order equivalent, uniformly in h ∈ H. We can take the lower and upper bounds in H to be pro-

portional to any of the reference bandwidths ĥ discussed in the preceding remark. Let CSfrc
τ

(
h | h/h

)
:={

θ0 : LRfrc
p (θ0 | h) ≤ zτ

(
h/h

)2}
be the “doubly corrected” confidence set and we construct the RCEL con-

fidence band
{
CSfrc

τ

(
h | h/h

)
: h ∈ H

}
accordingly for sensitivity analysis. We also expect a small coverage

error for the RCEL confidence band.19 Our method thus serves as a very effective tool for AK-type robust

inference that explicitly takes multiple bandwidths into account.

We have shown that the RCEL confidence set has superb coverage accuracy, under the covariate balance

assumption. We now consider scenarios in which covariate balance fails to hold and analyze the sensitivity

of the coverage accuracy to this assumption. Cattaneo and Titiunik (2022) note that “the principle of

covariate balance can be extended beyond pre-determined covariates to variables that are determined after

the treatment is assigned but are known to be unaffected by the treatment...” Such extension of the scope

of covariate is more than welcome in our GMM framework because LP moment conditions (4) allow for any

Z with TZ = 0, regardless of whether Z is a pre-determined covariate or an “unaffected” outcome. While

expanding the set of covariates may improve the efficiency of estimation and inference, it bears the risk that

the prior belief TZ = 0 is actually wrong for some “unaffected” outcomes included in (4). If the falsification

test in the first stage rejects the balance hypothesis for such “unaffected” outcomes, we can exclude it from

covariate adjusted estimation. However, the usual falsification test sets TZ = 0 as the null hypothesis and

may fail to reject if TZ is close to the hypothesized value 0 under the null hypothesis.20 Another possibility is

that Assumption 1 is indeed satisfied by the true probability law but our sample observations are subject to

data contamination or measurement errors that occur after treatment (Kitamura et al., 2013). Z1, ..., Zn may

be drawn from some perturbed probability law which slightly violates µZ,+ = µZ,−. CCFT shows that the

covariate adjusted estimator is inconsistent and the confidence interval fails to have asymptotically correct

coverage probability in both situations when µZ,+ 6= µZ,−. When implementing covariate adjustment, the

researcher may mistakenly include covariates that slightly violate the assumption µZ,+ = µZ,−. Theorem 4

shows that our method is useful when our prior belief about the “unaffected” outcomes is imperfect or the

19In the proof of the asymptotic validity result Pr
[
ϑ0 ∈ CSfrc

τ

(
h | h/h

)
, ∀h ∈ H

]
→ 1 − τ , we show that the distribu-

tion of suph∈HLR
frc
p (ϑ0 | h) is approximated by the distribution of ‖ΓG‖2[1,h/h]

= suph∈HΓG (h/h)2 with a vanishing error,

where ΓG (h/h)2 follows the χ2
1 distribution ∀h ∈ H. We expect that the distributional approximation of suph∈HΓG (h/h)2

to suph∈HLR
frc
p (ϑ0 | h) inherits the good accuracy of the pointwise-in-bandwidth distributional approximation of ΓG (h/h)2 to

LRfrc
p (ϑ0 | h).

20E.g., Ludwig and Miller (2007) found no discontinuity in child mortality from injuries near the cutoff that divides the
treatment and control groups, where the treatment refers to high participation and funding rate for the Head Start program.
Therefore, child mortality from injuries can serve as a covariate Z when the interested outcome is the effect on child mortality
rate from causes affected by Head Start. However, the fact that the balance condition involving Z is not empirically rejected
may be caused by lack of sufficient power. Hence, there is a risk of covariate imbalance.
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data on covariates are contaminated but the incurred imbalance is slight.

By using local asymptotic analysis, we analyze the performance of our RCEL confidence set in the

framework of local misspecification (see, e.g., Armstrong and Kolesár, 2021). We assume that TZ approaches

the hypothesized value 0 under covariate balance at the rate of (nh)
−1/2 so that the coverage probability

Pr
[
ϑ0 ∈ CSfrc

τ (h)
]

= Pr
[
LRfrc

p (ϑ0 | h) ≤ cτ
]
has a limit in (0, 1− τ), which captures the phenomenon that

covariate imbalance results in undercoverage in finite samples. We assume that the bandwidth for our RCEL

confidence set has been set to obey the optimal rate that minimizes the coverage error, i.e., h = H ·n−1/(p+2)

for some constantH > 0, when covariate balance holds. Let ln := n−(p+1)/(2p+4) � (nh)
−1/2. As the standard

Pitman approach to analyzing power properties of tests of parametric hypotheses, we think of the local

imbalance hypothesis TZ = δln as reparametrization of values of TZ that lie in a small neighborhood around 0,

where δ ∈ Rdz denotes the localizing parameter.21 TZ = δln is equivalent to µZ,− = µZ,+−(µD,+ − µD,−) δln

under Assumption 1 (a), (b) and (c). Then it is clear that then the moment conditions (4) are locally

misspecified in the sense of Armstrong and Kolesár (2021) since E
[
h−1Wp;− (Z − ϑ2)

]
= O (ln). Our result

differs from Armstrong and Kolesár (2021) and focuses on the coverage performance of the RCEL confidence

set when δ is close to 0.22 This is in accordance with the fact that local imbalance with a large δ can be

detected with a high probability in the first-stage RD falsification test.

We now consider Pr
[
ϑ0 ∈ CSfrc

τ (h)
]
as a function of δ under local imbalance. Theorem 3 shows that if

δ = 0, Pr
[
ϑ0 ∈ CSfrc

τ (h)
]

= 1 − τ + O
(
n−1

)
. A measure of sensitivity of the coverage accuracy to local

imbalance (i.e., how the coverage probability drops relative to that under δ = 0) is given by the slope of

Pr
[
ϑ0 ∈ CSfrc

τ (h)
]
as a function of δ at δ = 0. We extend Theorem 3 and derive a two-term asymptotic

expansion for Pr
[
ϑ0 ∈ CSfrc

τ (h)
]
and take the sum of the leading terms, denoted by R (δ), as approximation

to Pr
[
ϑ0 ∈ CSfrc

τ (h)
]
in finite samples. We show that R (0) = 1 − τ and the gradient ∇R (δ) := ∂R (δ) /∂δ

of R (δ) at δ = 0 is equal to 0, so that R (δ) is locally constant around δ = 0. This shows that coverage

accuracy of the RCEL confidence set is relatively unaffected by local imbalance in finite samples. We note

that this is indeed a unique property of the RCEL confidence set (Remark 16) and any other inference

method does not have the same property in general. We get the same conclusion in case of local imbalance

due to data contamination, when Z1, ..., Zn are drawn from a locally perturbed population that satisfies

µZ,+ − µZ,− = δln. Let F (· | η) denote the CDF of a χ2
1 (η) (non-central χ2 with one degree of freedom

21Our specification follows Gallant and White (1988, Chapter 7)’s “fixed data-generating process (DGP), drifting hypothesis”
approach. TZ = δln is understood as the assumption that our hypothesized value 0 for the true RD LATE TZ is chosen in
such a way that 0 lies in the ‖δ‖ ln neighborhood of TZ , which is assumed to be fixed. For the alternative “fixed hypothesis,
drifting DGP” approach, we fix a DGP for the latent variables and the score that satisfies Assumptions 1, 2 and 4. TZ = δln
is understood as the assumption that the latent variables and the score follow a joint distribution that is given by the given
DGP with a location shift. By taking this alternative approach, we can show a result similar to Theorem 4 and get an identical
conclusion. The proof requires more complicated arguments and suitable modification of the assumptions.

22The approach of Armstrong and Kolesár (2021) specifies a set in which δ possibly lies and then adjust the critical value to
take into account the maximal misspecification bias. We take a very different approach in this paper.
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and non-centrality parameter η ≥ 0) random variable. Let F (k) (x | η) := ∂kF (x | η) /∂ηk be the k-times

partial derivative of F (x | η) with respect to η. The following result gives a second-order approximation to

the distribution of LRrc
p (ϑ0 | h) under TZ = δln. The same result holds for LRfrc

p (ϑ0 | h).

Theorem 4. Suppose that Assumptions 1 - 5 with Assumption 1(d) replaced by TZ = δln hold. Suppose that h

satisfies h = H ·n−1/(p+2) for some constant H > 0. Then, Pr
[
LRrc

p (ϑ0 | h) ≤ x
]

= F
(
x | H

(
γ>∆δ/σ̄p+1

)2)
+

P (x, δ) ln + o (ln), where P (x, δ) := P1 (δ)F (1)
(
x | H

(
γ>∆δ/σ̄p+1

)2)
+ P2 (δ)F (2)

(
x | H

(
γ>∆δ/σ̄p+1

)2),
γ∆ → γadj and σ̄2

p+1 → V EL
p+1 as n ↑ ∞ and (P1,P2) are homogeneous cubic polynomials with constant

coefficients. The expressions of
(
γ∆, σ̄

2
p+1,P1,P2

)
are in the appendix.

Remark 15. In the approximation to Pr
[
ϑ0 ∈ CSfrc

τ (h)
]

= Pr
[
LRfrc

p (ϑ0 | h) ≤ cτ
]
, the first-order term

F
(
cτ | H

(
γ>∆δ/σ̄p+1

)2) is an even function of δ, ∂F
(
cτ | H

(
γ>∆δ/σ̄p+1

)2)
/∂δ
∣∣∣
δ=0

= 0 and the second-

order approximation P (cτ , δ) is an odd function of δ. Theorem 4 also implies that ∂P (cτ , δ) /∂δ|δ=0 =

0 and P (cτ , ·) is locally constant around the origin. Let R (δ) := F
(
cτ | H

(
γ>∆δ/σ̄p+1

)2)
+ P (cτ , δ) ln.

Then we have ∇R (0) = 0 and this shows that the coverage accuracy of the RCEL confidence set is highly

insensitive to local perturbation to covariate balance (δ = 0). If ‖∇R (0)‖ is large in magnitude, a slight

perturbation would incur severe undercoverage. To see that the slope is a measure of sensitivity to local

imbalance, we consider the approximate minimal coverage minδ∈SνR (δ) on Sν , where ν denotes a positive

constant and Sν :=
{
δ ∈ Rdz : ‖δ‖ = ν

}
represents perturbations with equal magnitude ν in all directions.

δ∗R := argminδ∈SνR (δ) corresponds to the direction in which the perturbation results in the most severe

undercoverage. Clearly, R (δ∗R) < 1− τ and we have the approximation R (δ∗R) = (1− τ)−‖∇R (0)‖ ν+ o (ν)

when ν is small.23 Therefore, the RCEL confidence set has minimal sensitivity due to ‖∇R (0)‖ = 0.

Remark 16. Having a locally constant second-order approximation (as a function of δ) is a unique property.

Let ρς (x) := (x−ς − 1) / {ς (1 + ς)} for ς ∈ R. We interpret the special case ρ0 (x) = −log (x) (EL) as the

limit of ρς (x) as ς → 0. The nonparametric likelihood (NPL) criterion function `ςp (θ | h) is defined by (5)

with
∑
i ρ0 (n · wi) = −

∑
i log

(
wi/n

−1
)
replaced by the more general Cressie-Read divergence

∑
i ρς (n · wi).

The NPL ratio LRςp+1 (θ0 | h) and confidence set are defined analogously. Under the same assumptions as in

Theorem 4, we can show that Pr
[
LRςp+1 (ϑ0 | h) ≤ x

]
admits a similar two-term asymptotic expansion.24 The

first-order term in the expansion for Pr
[
LRςp+1 (ϑ0 | h) ≤ x

]
is still given by F

(
x | H

(
γ>∆δ/σ̄p+1

)2). The

second-order term is of the form (P (x, δ) + Pς (x, δ)) ln, where Pς (x, δ) is an odd function of δ, Pς (x, δ) = 0

if ς = 0 and ∂Pς (x, δ) /∂δ|δ=0 6= 0 in general if ς 6= 0. In this case, there can be perturbation associated
23By using the Lagrange multiplier method to solve the constrained minimization problem minδ∈SνR (δ) and mean value

expansion, δ∗R = −
(
∇R

(
δ∗R
)
/
∥∥δ∗R∥∥) ν and therefore, R

(
δ∗R
)

= (1− τ) −
(
∇R

(
δ̇R

)>
∇R

(
δ∗R
)
/
∥∥∇R (δ∗R)∥∥) ν, where δ̇R is

the mean value that lies between δ∗R and 0. Clearly, ∇R
(
δ̇R

)>
∇R

(
δ∗R
)
/
∥∥∇R (δ∗R)∥∥→ ‖∇R (0)‖ = 0, as ν ↓ 0.

24The proof of this result is omitted for brevity but available from the authors.
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with a large drop in coverage probability of the NPL confidence set. Let Rς (δ) := F
(
cτ | H

(
γ>∆δ/σ̄p+1

)2)
+

(P (x, δ) + Pς (x, δ)) ln and δ∗Rς := argminδ∈SνRς (δ). Then by similar arguments, Rς
(
δ∗Rς

)
= (1− τ) −

‖∇Rς (0)‖ ν + o (ν), which is highly sensitive if ς 6= 0 and ‖∇Rς (0)‖ > 0 is large. In contrast, the RCEL

confidence set exhibits good coverage accuracy uniformly in all δ ∈ Sν when ν is small.

6 Monte Carlo simulations

We conduct simulations to evaluate the finite sample performance of the proposed RCEL inference for sharp

RD designs with covariates. The DGP of the outcome variable Yi, the score Xi and the first covariate Z(1)
i

is based on the simulation design of CCFT. Incorporation of additional covariates Z(2)
i , ..., Z

(l)
i follows that

of Arai et al. (2021). I.e., Yi = µy

(
Xi, Z

(1)
i

)
+
∑l
j=2 π

j−1Z
(j)
i + εy,i and Z

(1)
i = µz (Xi) + εz,i, where

µy (x, z1) :=


0.36 + 0.96x+ 5.47x2 + 15.28x3 + 15.87x4 + 5.14x5 + 0.22z1 if x < 0,

0.38 + 0.62x− 2.84x2 + 8.42x3 − 10.24x4 + 4.31x5 + 0.28z1 if x ≥ 0;

µz (x) :=


0.49 + 1.06x+ 5.74x2 + 17.14x3 + 19.75x4 + 7.47x5 if x < 0,

0.49 + 0.61x− 0.23x2 − 3.46x3 + 6.43x4 − 3.48x5 if x ≥ 0.

Error terms (εy,i, εz,i) are bivariate normal with mean 0, standard deviation 1 and correlation coefficient

ρ = 0.269. Additional covariates
(
Z

(2)
i , ..., Z

(l)
i

)
have a multivariate normal distribution with mean zero and

covariance matrix given by Cov
[
Z

(j)
i , Z

(k)
i

]
= 0.5|j−k|, ∀j, k ≥ 2. We take π = 0.2. We consider three

scenarios with l = 0, 2, 4, which correspond to the total number of covariates dz = l+ 1 being 1, 3, 5. We take

the LP order p = 1 or 2. The sample sizes are n = 500, 1000, 2000. The number of Monte Carlo replications

is 2000.

Table 1 presents the empirical coverage rates of the feasible RCEL confidence set CSfrc
τ

(
ĥ
)
proposed in

Remark 11. The nominal coverage 1−τ is set as 0.90, 0.95, 0.99. Following Remark 13, we consider bandwidths

in the form of ĥ = Ĥ ·n−1/(p+2) and two choices of the constant part Ĥ: ROT in the table corresponds to the

ROT bandwidth recommended in Hansen (2021, Chapter 21.6) and CCFT corresponds to rescaled CCFT’s

bandwidth.25 Both ROT and CCFT bandwidths used for RCEL obey the coverage optimal rate discussed

in Remark 11. For comparison, Table 1 also includes results from CCFT’s method that uses a bandwidth
25As Remark 12 notes, CCFT’s coverage optimal bandwidth has the rate n−1/4 for p = 1. For each simulation replication,

let hCCFT be the CCFT bandwidth computed from R function rdrobust with the options p=1, rho=1, and bwselect="cerrd".
Then in Table 1 and Figure 1, our CCFT bandwidth used for “RCEL, p = 1” is hCCFT ·n−1/12 (rescaled to the coverage optimal
rate n−1/(p+2) discussed in Remark 11). The CCFT bandwidth used for “RCEL, p = 2” is hCCFT itself, as now the coverage
optimal rate for RCEL is n−1/4.
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with the coverage optimal rate and restricts ρ = h/b = 1, where b stands for the pilot bandwidth used for

bias estimation. For each (n, τ) combination, the number most close to the nominal coverage probability is

bold-faced. We observe that both RCEL and CCFT yield coverage probabilities close to their nominal levels

for all the considered scenarios. For RCEL, both ROT and (rescaled) CCFT bandwidths perform reasonably

well. When the sample size is small (n = 500), RCEL exhibits a small advantage over CCFT, which is in line

with the theoretical result that RCEL achieves a faster coverage error decay rate than CCFT. See Remark

12. We then examine how the coverage rate of RCEL confidence set changes when the covariate balance

assumption is slightly violated. We consider the case with one covariate (dz = 1) and modify the DGP of

Z
(1)
i in the following way that the imbalance is characterized by a perturbation parameter δ:

µz (x | δ) :=


0.49 + 1.06x+ 5.74x2 + 17.14x3 + 19.75x4 + 7.47x5 if x < 0,

0.49 + δ + 0.61x− 0.23x2 − 3.46x3 + 6.43x4 − 3.48x5 if x ≥ 0.

Figure 1 plots the simulated coverage rates of RCEL and CCFT as a function of δ ∈ [−0.4, 0.4] for different

combinations of sample size n and nominal coverage 1 − τ . We observe that the coverage rate of RCEL is

less sensitive to the change of δ, which parallels the theoretical finding discussed in Remark 15. Overall, our

simulation results show that RCEL inference method can be a useful addition to practitioners’ toolkit.

7 Empirical illustration

We apply the RCEL inference method to analyze the individual incumbent advantage in Finnish municipal

elections, which was first studied by Hyytinen et al. (2018). In the RD framework, the binary outcome

variable Y indicates whether the candidate is elected in the next election, and the score X is the vote share

margin in the previous election. Two covariates are included: candidates’ age and gender. The main results

are presented in Table 2. The ROT bandwidth is computed in the same way as the simulation exercise. For

p = 1, the CCFT bandwidth and its rescaled version correspond to hCCFT and hCCFT · n−1/12 described in

Footnote 25. For p = 2, the rescaled CCFT bandwidth corresponds to hCCFT (for p = 1) in Footnote 25,

and the CCFT bandwidth is equal to the one used by CCFT for p = 2. The columns of Table 2 present

the estimates of RD LATE ϑ0, p-values for testing H0 : ϑ0 = 0, the 95% confidence intervals and the

selected bandwidths. The dataset also includes 1351 candidates “for whom the (previous) electoral outcome

was determined via random seat assignment due to ties in vote counts” (Hyytinen et al., 2018, Page 1020),

which constitutes a experiment benchmark to evaluate the credibility of the RD treatment effect estimated

from the non-experimental data (candidates with previous electoral ties are excluded from the RD sample).
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As reproduced as “Experiment benchmark” in Table 2, Hyytinen et al. (2018) find zero treatment effect

(see their Table 2, Column 4, the p-value is imputed by us). We notice that RCEL and CCFT methods

using different bandwidths presented in Table 2 deliver non-significant inference results comparable to the

experiment benchmark, except for CCFT (p = 2) that does not restrict ρ := h/b (p-value = 0.028).26 This

is not due to the larger bandwidth (h = 1.103) used by CCFT when p = 2, as RCEL (p = 2) using the same

bandwidth does not reject the null hypothesis (p-value = 0.229).

The robustness of RCEL is further confirmed by Figure 2, which conducts sensitivity analysis of the RCEL

inference method with respect to the bandwidth choice. Figure 2 plots the RCEL confidence band (Remarks

5 and 14) over a continuous range of bandwidths h ∈
[
h, h

]
. Here we choose the lower bound h = 0.12, which

would include about 3% of the sample. The upper bound h = 0.72 is approximately two times the ROT

bandwidth in Table 2 and includes 17% of the total sample. The snooping corrected critical value (2.413)
2 for

the triangular kernel and bandwidth ratio h/h = 6 is calculated from R package BWSnooping. In Figure 2, the

solid (or dotted) line corresponds to 95% uniform (or pointwise) confidence band. The vertical dashed lines

indicate the first two bandwidths used for RCEL in Table 2. For small bandwidth (say, less than 0.2), the

RCEL uniform confidence band is wide. However, as long as the bandwidth is not so small, the confidence

band looks quite stable. Moreover, the confidence band includes zero over the entire bandwidth range we

consider, which demonstrates the robustness of the finding of no incumbency advantage with respect to the

bandwidth choice. Overall, our example illustrates the practicality of the RCEL inference method.

8 Conclusion

This paper proposes a novel EL approach to covariate adjustment for regression discontinuity designs. Our

approach incorporates covariates through over-identifying restrictions which represent the covariate balance

condition. We derive the first-order and second-order asymptotic properties of our method. We show that the

widely-used regression estimator of Calonico et al. (2019) is never less efficient than the standard estimator

without covariates. It achieves efficiency gain as long as the true projection coefficients of some covariates are

nonzero. By establishing the first-order equivalence between our EL estimator and Calonico et al. (2019)’s

regression estimator, we show that the efficiency gain can be attributed to incorporating the covariate balance

condition as side information. We show a uniform-in-bandwidth Wilks theorem, which can be used for

sensitivity analysis and robust inference along the lines of Armstrong and Kolesár (2018). We derive the

distributional expansion for the EL ratio statistic under the covariate balance condition and show that it
26This is in line Hyytinen et al. (2018, columns (2) of Table 4)’s results that the CCT (without covariates) using the MSE-

optimal bandwidth (ρ not restricted) rejects the null hypothesis of zero treatment effect, while the one restricting ρ = 1 does
not reject.
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admits a simple data-driven correction that substantially improves the coverage performance. We also derive

the distributional expansion for the robust corrected EL ratio statistic under the local imbalance condition.

It shows that the robust corrected EL confidence set is self-guarded against undercoverage in case of slight

perturbation to covariate balance.
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Table 1: Sharp RD with covariates: robust corrected EL (RCEL) inference using ROT and CCFT bandwidths
(h) and CCFT Wald-type inference using the bandwidth with coverage optimal (CO) rate and ρ := h/b = 1,
dz = the number of covariates, p = the polynomial order, 1− τ = nominal coverage probability, n = sample
size.

1− τ = 0.99 1− τ = 0.95 1− τ = 0.90

dz Methods h n = 500 1, 000 2, 000 500 1, 000 2, 000 500 1, 000 2, 000

1 RCEL, p = 1 ROT .9805 .9825 .9840 .9265 .9430 .9450 .8750 .8795 .8900
RCEL, p = 1 CCFT .9825 .9850 .9865 .9350 .9420 .9505 .8765 .8905 .9000
RCEL, p = 2 ROT .9880 .9865 .9885 .9400 .9500 .9475 .8870 .8960 .8960
RCEL, p = 2 CCFT .9885 .9900 .9900 .9490 .9495 .9580 .8960 .8980 .9080
CCFT, p = 1 CO, ρ = 1 .9760 .9825 .9905 .9315 .9420 .9535 .8815 .9005 .9130
CCFT, p = 2 CO, ρ = 1 .9740 .9760 .9890 .9265 .9340 .9525 .8745 .8925 .9015

3 RCEL, p = 1 ROT .9780 .9680 .9745 .9155 .9090 .9250 .8560 .8470 .8780
RCEL, p = 1 CCFT .9785 .9740 .9830 .9195 .9195 .9360 .8680 .8660 .8905
RCEL, p = 2 ROT .9840 .9765 .9825 .9325 .9290 .9395 .8730 .8715 .8835
RCEL, p = 2 CCFT .9870 .9790 .9865 .9450 .9310 .9430 .8925 .8735 .8925
CCFT, p = 1 CO, ρ = 1 .9670 .9767 .9860 .9130 .9320 .9500 .8580 .8695 .9015
CCFT, p = 2 CO, ρ = 1 .9640 .9750 .9850 .9130 .9240 .9430 .8520 .8695 .8985

5 RCEL, p = 1 ROT .9645 .9720 .9765 .9035 .9145 .9125 .8525 .8515 .8510
RCEL, p = 1 CCFT .9730 .9690 .9820 .9150 .9125 .9200 .8665 .8515 .8495
RCEL, p = 2 ROT .9800 .9810 .9810 .9185 .9320 .9180 .8620 .8655 .8675
RCEL, p = 2 CCFT .9775 .9815 .9815 .9245 .9320 .9270 .8710 .8745 .8630
CCFT, p = 1 CO, ρ = 1 .9590 .9740 .9795 .8960 .9245 .9345 .8420 .8820 .8805
CCFT, p = 2 CO, ρ = 1 .9630 .9690 .9760 .9060 .9185 .9295 .8475 .8745 .8745
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Figure 1: Coverage rates under covariate imbalance δ = perturbation, n = sample size.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

C
o
v
e
ra

g
e

n = 500, nominal coverage = 95%

RCEL,p=1

RCEL,p=2

CCFT,p=1

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0.85

0.855

0.86

0.865

0.87

0.875

0.88

0.885

0.89

0.895

0.9

C
o
v
e
ra

g
e

n = 500, nominal coverage = 90%

RCEL,p=1

RCEL,p=2

CCFT,p=1

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

C
o
v
e
ra

g
e

n = 1000, nominal coverage = 95%

RCEL,p=1

RCEL,p=2

CCFT,p=1

X 0

Y 0.9495

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0.855

0.86

0.865

0.87

0.875

0.88

0.885

0.89

0.895

0.9

C
o
v
e
ra

g
e

n = 1000, nominal coverage = 90%

RCEL,p=1

RCEL,p=2

CCFT,p=1

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

C
o
v
e
ra

g
e

n = 2000, nominal coverage = 95%

RCEL,p=1

RCEL,p=2

CCFT,p=1

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

C
o
v
e
ra

g
e

n = 2000, nominal coverage = 90%

RCEL,p=1

RCEL,p=2

CCFT,p=1

31



Table 2: Incumbency advantage in Finnish municipal election: ϑ̂0 = RD LATE estimator, h = bandwidth.

Methods Bandwidth selector ϑ̂0 p-value 95% CI CI length h

RD with covariates
n = 154, 543 RCEL, p = 1 ROT -.003 .896 [-.054, .047] .101 .406

RCEL, p = 1 CCFT, rescaled -.066 .587 [-.319, .171] .490 .144
RCEL, p = 1 CCFT -.007 .807 [-.059, .046] .105 .391
CCFT, p = 1 CO .024 .161 [-.010, .059] .069 .391
CCFT, p = 1 CO, ρ = 1 -.012 .671 [-.068, .044] .111 .391

RCEL, p = 2 ROT .023 .234 [-.014, .060] .074 1.098
RCEL, p = 2 CCFT, rescaled -.045 .346 [-.140, .048] .188 .391
RCEL, p = 2 CCFT .023 .229 [-.014, .060] .074 1.103
CCFT, p = 2 CO .033 .028 [003, .062] .065 1.103
CCFT, p = 2 CO, ρ = 1 .017 .402 [-.023, .057] .801 1.103

Experiment
benchmark (Hyytinen

et al., 2018)

-.010 .516 [-.060, .040] .100

n = 1, 351

Figure 2: Robust corrected EL inference applied to Finnish municipal election: 95% uniform (solid) and
pointwise (dotted) confidence bands over the bandwidth range [0.12, 0.72]. p = 1. Corrected critical value
= (2.413)

2. Vertical lines indicate two bandwidth choices in Table 2: ROT bandwidth hROT = 0.406 and
rescaled CCFT bandwidth hCCFT = 0.144.
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Appendix A Proofs of Theorems 1 and 2

For a sequence of classes of R-valued functions Fn defined on S (a compact set in a finite-dimensional

Euclidean space), let ‖f‖Q,2 :=
(∫
f2dQ

)1/2 and N
(
ε,Fn, ‖·‖Q,2

)
denote the ε-covering number, i.e., the

smallest integer m such that there are m balls of radius ε > 0 (with respect to ‖·‖Q,2) centered at points in

Fn whose union covers Fn. A function FFn : S → R+ is an envelope of Fn if supf∈Fn |f | ≤ FFn . We say

that Fn is a (uniform) Vapnik–Chervonenkis-type (VC-type) class with respect to the envelope FFn (see, e.g.,

Chernozhukov et al., 2014b, Definition 2.1) if there exist some positive constants (VC characteristics) AFn ≥ e

and VFn > 1 that are independent of the sample size n such that supQ∈Qfd
S
N
(
ε ‖FFn‖Q,2 ,Fn, ‖·‖Q,2

)
≤

(AFn/ε)
VFn ∀ε ∈ (0, 1] where Qfd

S denotes the collection of all finitely discrete probability measures on S . >

denotes an inequality up to a universal constant that does not depend on the sample size or the population.

For a real sequence {an}∞n=1, we denote bn ∝ an if bn = c · an for some constant c > 0. Proofs of all lemmas

are in the supplement available at ruc-econ.github.io/supplement_RD.pdf.

Lemma 1. Let V denote a random variable and {V1, ..., Vn} are i.i.d. copies of V . Let B (0) denote an

open neighborhood of 0. Suppose that
(
h, h

)
satisfy h = o (1). ∀ (s, k) ∈ {−,+} × N, the following re-

sults hold uniformly in h ∈ H: (a) if gV is Lipschitz continuous on B (0), for k ≥ 2, E
[
h−1W k

p;sV
]

=

ψV,sω
0,k
p;s + O

(
h
)
; (b) if gV is (p+ 1)-times continuously differentiable with Lipschitz continuous g(p+1)

V

on B (0), E
[
h−1Wp;sV

]
= ψV,s + ωp+1,1

p;s ψ
(p+1)
V,s hp+1/ (p+ 1)! + O

(
h
p+2
)

and E
[
h−1Wp+1;sV

]
= ψV,s +

O
(
h
p+2
)
; (c) if g|V |r is bounded on B (0) for some integer r > 2, (nh)

−1/2∑
i

(
W k
p;s,iVi − E

[
W k
p;sV

])
=

Op

(√
log (n) + log (n)

{(
nh
)1/r

/ (nh)
1/2
})

.

Let 0J×K denote the J ×K matrix in which all elements are zeros. Let IK denote the K ×K identity

matrix. Let 0J denote the J-dimensional vector in which all elements are zeros. Let Gi := ∂Ui (θ) /∂θ> =[
G0,i G†,i

]
, where G0,i :=

[
Di 0>dz

]>
and G†,i := Idu . (G,G0, G†) are defined by the same formulae

with Di replaced by D. Denote Ui (θ) := Wp,i ⊗ Ui (θ) and Ûi := Wp,i ⊗ Ui

(
ϑ̂p

)
. Let Ui := Wp,i ⊗ Ui,

Gi := Wp,i ⊗ Gi, G0,i := Wp,i ⊗ G0,i and G†,i := Wp,i ⊗ G†,i. (U ,G,G0,G†) are defined similarly. Let

Ds := Wp;sD. Denote ∆s := E
[
h−1Wp;s

]
and ∆A := E

[
h−1A

]
for a random variable/vector/matrix A. Let

∆UU> := (nh)
−1∑

i UiU>i , ∆̂UU> := (nh)
−1∑

i ÛiÛ>i and ∆G := (nh)
−1∑

i Gi. Let U := (nh)
−1/2∑

i Ui and

Û := (nh)
−1/2∑

i Ûi.

Denote S (λ, θ) := 2
∑
i log

(
1 + λ>Ui (θ)

)
and ϑ̃p := ϑ̃p (ϑ0). Note that the dual form of the EL criterion

function is `p (θ | h) = supλ∈L(θ)S (λ, θ), where L (θ) :=
{
λ ∈ R2du : λ>Ui (θ) > −1, ∀i

}
. maxi is understood

as max1≤i≤n. For square matrices A and B, diag (A,B) denotes the block diagonal matrix. ‖A‖ is understood

as the spectral norm of A and %min (A) denotes the smallest eigenvalue of A. In the remaining proofs in
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Appendix A, whenever applied to quantities that depend on h, Op (·), op (·), O (·) and o (·) notations are

understood as being uniform in h ∈ H. For notational simplicity, denote n := nh, n := nh, η̂p := ϑ̂p − ϑ

and η̃p := ϑ̃p − ϑ†. “With probability approaching one” is abbreviated as “wpa1”. The proof of the following

lemma follows the arguments in Newey and Smith (2004).

Lemma 2. Suppose that Assumptions 1, 2 and 3 hold. Suppose that
(
h, h

)
satisfy nh

2p+3
= O (1) and

log (n)
(
n1/12/n1/2

)
= o (1). Then, the following results hold uniformly in h ∈ H: (a)

√
nhη̂p = Op

(√
log (n)

)
;

(b) λ̂p := argmaxλ∈L(ϑ̂p)S
(
λ, ϑ̂p

)
exists wpa1 and

√
nhλ̂p = Op

(√
log (n)

)
; (c)

√
nhη̃p = Op

(√
log (n)

)
;

(d) λ̃p := argmaxλ∈L(ϑ0,ϑ̃p)S
(
λ, ϑ0, ϑ̃p

)
exists wpa1 and

√
nhλ̃p = Op

(√
log (n)

)
.

Denote O :=
(
∆>G∆−1

UU>∆G
)−1

, N := ∆−1
UU>∆GO and Q := ∆−1

UU> − N∆>G∆−1
UU> . Let (O†,N†,Q†) be

defined by the same formulae with ∆G replaced by ∆G† .

Lemma 3. Suppose that the same assumptions as Lemma 2 hold. Then, the following results hold uniformly

in h ∈ H: (a)
√
nh
(
λ̂>p , η̂

>
p

)
= U>

[
Q N

]
+ Op

(
υ†n
)
; (b)

√
nh
(
λ̃>p , η̃

>
p

)
= U>

[
Q† N†

]
+ Op

(
υ†n
)
,

where υ†n := log (n) /
√
n+ log (n)

3/2 (
n1/6/n

)
.

Proof of Theorem 1. LetMs := Wp;s (M − ϑ1), Zs := Wp;s (Z − ϑ2),Ms := (nh)
−1/2∑

iWp;s,i (Mi − ϑ1),

Zs := (nh)
−1/2∑

iWp;s,i (Zi − ϑ2) and γ∆ :=
(
∆Z+Z+

/∆2
+ + ∆Z−Z−/∆

2
−
)−1 (

∆Z+M+
/∆2

+ + ∆Z−M−/∆
2
−
)
.

Also denote Us := Wp;sU , U s := (nh)
−1/2∑

iWp;s,iUi, Φ00 := ∆>G0
∆−1
UU>∆G0

, Φ0† := ∆>G0
∆−1
UU>∆G† , Φ†0 :=

Φ>0†, Φ†† := ∆>G†∆
−1
UU>∆G† and Φ± := ∆U+U>+ /∆

2
+ + ∆U−U>− /∆

2
−. Then we have

Σ∆ :=
(
e>du,1Φ−1

± edu,1
)−1

=
(

∆M2
+
/∆2

+ + ∆M2
−
/∆2
−

)
−
(

∆M+Z>+ /∆
2
+ + ∆M−Z>− /∆

2
−

)
γ∆

= ∆(M+−Z>+ γ∆)
2/∆2

+ + ∆(M−−Z>−γ∆)
2/∆2

−, (11)

where the second equality follows from writing Φ± as a block matrix and inverting and the third equality

follows from simple algebra. And similarly,

e>du,1Φ−1
±
(
U+/∆+ − U−/∆−

)
=
{(
M+/∆+ −M−/∆−

)
−
(
Z+/∆+ −Z−/∆−

)>
γ∆

}
/Σ∆. (12)

By simple algebra,
(

Φ00 − Φ0†Φ
−1
†† Φ†0

)−1

= Σ∆/
(
∆D+

/∆+ −∆D−/∆−
)2. Then, by this result, writing

∆>G∆−1
UU>∆G as a block matrix and inverting,

(
∆>G∆−1

UU>∆G
)−1

=
(
∆D+

/∆+ −∆D−/∆−
)−2

 Σ∆ −Σ∆Φ0†Φ
−1
††

−Φ−1
†† Φ†0Σ∆ Φ−1

†† + Φ−1
†† Φ†0Σ∆Φ0†Φ

−1
††

 . (13)
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By straightforward algebraic calculation,

(
∆>G0
− Φ0†Φ

−1
†† ∆>G†

)
∆−1
UU>U =

(
∆D+

/∆+ −∆D−/∆−
)

e>du,1Φ−1
±
(
U+/∆+ − U−/∆−

)
. (14)

Then, by this result, (12) and (13),

e>dϑ,1
(
∆>G∆−1

UU>∆G
)−1 (

∆>G∆−1
UU>U

)
=

(
∆D+

/∆+ −∆D−/∆−
)−2

Σ∆

(
∆>G0
− Φ0†Φ

−1
†† ∆>G†

)
∆−1
UU>U

=

(
M+/∆+ −M−/∆−

)
−
(
Z+/∆+ −Z−/∆−

)>
γ∆

∆D+
/∆+ −∆D−/∆−

. (15)

It follows from Lemma 1 with h = h = h that γ∆ = γadj+O (h), ∆Ds = ψD,s+O
(
hp+1

)
and ∆s = ϕ+O

(
hp+1

)
∀s. By Lemma 1 with h = h = h and Markov’s inequality,Ms = Op (1) and Zs = Op (1) ∀s. Then, it follows

from Lemma 3 with h = h = h and these results that

√
nh
(
ϑ̂p,0 − ϑ0

)
= e>dϑ,1

(
∆>G∆−1

UU>∆G
)−1 (

∆>G∆−1
UU>U

)
+ op (1)

=
{(
M+ −Z+γadj

)
−
(
M− −Z−γadj

)}
/ (ψD,+ − ψD,−) + op (1)

= (nh)
−1/2

∑
i

(Wp;+,i −Wp;−,i) (εi − µε) / (ψD,+ − ψD,−) + op (1) , (16)

where εi := Mi − Z>i γadj. Let Ei := (Wp;+,i −Wp;−,i) (εi − µε) and E be defined similarly. Then,

√
nh

(
ϑ̂p,0 − ϑ0 −

∆E
ψD,+ − ψD,−

)
=
∑
i

(
Ei√
nh
− E

[
E√
nh

])
/ (ψD,+ − ψD,−) + op (1) (17)

follows from subtracting both sides of (16) by
√
nh∆E/ (ψD,+ − ψD,−). By Lemma 1 with h = h = h, ∆E =

(ζp;+ − ζp;−)hp+1/ (p+ 1)! + O
(
hp+2

)
and ∆E2 = ω0,2

p;+

∑
s∈{−,+} ψ(ε−µε)2,s + O (h). It follows from simple

algebraic calculations that
∑

s∈{−,+} ψ(ε−µε)2,s = σ2
adjϕ. Then, Var

[
E/
√
h
]

= ∆E2−h∆2
E = ω0,2

p;+σ
2
adjϕ+O (h).

By LIE and change of variables, ∆E4 = O (1). Then,

∑
i

E


Ei/

√
nh− E

[
E/
√
nh
]

√
Var

[
E/
√
h
]


4 >

∆E4 + h3∆4
E

(nh)
(

Var
[
E/
√
h
])2 = O

(
(nh)

−1
)
, (18)

where the inequality follows from Loève’s cr inequality and the equality follows from Var
[
E/
√
h
]

= ω0,2
p;+σ

2
adjϕ+

O (h), ∆E4 = O (1) and ∆E = O
(
hp+1

)
. (18) verifies Lyapunov’s condition. By Lyapunov’s central limit

theorem,
∑
i

(
Ei/
√
nh− E

[
E/
√
nh
])
/

√
Var

[
E/
√
h
]
→d N (0, 1). The conclusion follows from this result,

(17), Var
[
E/
√
h
]

= ω0,2
p;+σ

2
adjϕ+O (h) and Slutsky’s lemma. �
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The following lemma shows that {LRp (ϑ0 | h) : h ∈ H} can be approximated by the square of an empirical

process indexed by h ∈ H. Denote PTnf := n−1
∑
i f (Ti, Xi), PT f := E [f (T,X)] and GTn :=

√
n
(
PTn − PT

)
,

where Ti :=
(
Yi, Di, Z

>
i

)> (similarly, T :=
(
Y,D,Z>

)>). Denote ‖F‖PT ,r :=
(
PT |F |r

)1/r. Let ξ (x) :=

E
[
(ε− µε)2 | |X| = x

]
and q (· | h) be defined by q (Ti, Xi | h) := h−1/2Ei/

√
ξ (|Xi|) f|X| (|Xi|)ω0,2

p;+, where

f|X| denotes the PDF of |X|.

Lemma 4. Suppose that the assumptions of Lemma 2 hold. Then, uniformly in h ∈ H, LRp (ϑ0 | h) ={
GTn q (· | h)

}2
+Op

(
log (n)h+ log (n)

3/2 (
n1/12/n1/2

))
.

Proof of Theorem 2. Denote ZQ± := supf∈Q±G
T
nf =

∥∥GTn∥∥Q. Since FQ is also an envelope of Q± :=

Q ∪ (−Q) (−Q := {−f : f ∈ Q}) and the covering number of Q± is at most twice that of Q, Q± is also

VC-type with respect to FQ. By standard calculus calculations (see, e.g., the proof of Chernozhukov et al.,

2014b, Corollary 5.1) and Chernozhukov et al. (2014b, Lemma 2.1), there exists a zero-mean Gaussian

process
{
GT (f) : f ∈ Q±

}
that is a tight random element in `∞ (Q±) and also satisfies E

[
GT (f)GT (g)

]
=

Cov [f (T,X) , g (T,X)], ∀f, g ∈ Q±.27 By Giné and Nickl (2015, Theorem 3.7.28), almost surely the sample

paths Q± 3 f 7→ GT (f) are prelinear and therefore, almost surely, ∀f ∈ Q, GT (f) + GT (−f) = 0,

and supf∈Q±G
T (f) =

∥∥GT∥∥
Q
. Let Γ̄G (h) := GT (q (· | h)) and therefore, the zero-mean Gaussian process{

Γ̄G (h) : h ∈ H
}
is a tight random element in `∞ (H) and has the covariance structure E

[
Γ̄G (h) Γ̄G (h′)

]
=

Cov [q (T,X | h) , q (T,X | h′)], ∀ (h, h′) ∈ H2. By definition,
∥∥Γ̄G∥∥H =

∥∥GT∥∥
Q
. By change of variables and

LIE, supf∈QPT |f |3 = suph∈HE
[
|q (T,X | h)|3

]
> h−1/2 and similarly supf∈QPT |f |4 > h−1. Also, PTF 12

Q >

h/h6. By Chernozhukov et al. (2016, Theorem 2.1) with B (f) = 0, F = Q±, q = 12, Kn = log (n), σ = 1,

b > h−1/2 and γ = log (n)
−1, there exists Z̃Q± =d supf∈Q±G

T (f) =
∥∥GT∥∥

Q
which satisfies ZQ± − Z̃Q± =

Op (υ∗n), where “=d” is understood as being equal in distribution and υ∗n :=
{

log (n) (log (n)n)
1/12

}
/n1/2 +

log (n) /n1/6. By Dudley’s entropy integral bound (Giné and Nickl, 2015, Theorem 2.3.7), Chen and Kato

(2020, Lemma A.2) and standard calculus calculations (see, e.g., calculations in the proof of Chernozhukov

et al., 2014b, Corollary 5.1),

E
[∥∥GT∥∥

Q

]
>
∫ σQ∨n−1/2‖FQ‖PT ,2

0

√
1 + log

(
N
(
ε,Q, ‖·‖PT ,2

))
dε

>
(
σQ ∨ n−1/2 ‖FQ‖PT ,2

)√
log (n) = O

(√
log (n)

)
. (19)

By Lemma 4, suph∈HLRp (ϑ0 | h) =
∥∥GTn∥∥2

Q
+Op

(
log (n)h+ log (n)

3/2 (
n1/12/n1/2

))
. By (19) and the fact

27Tightness of Q is equivalent to the condition that Q endowed with the intrinsic pseudo metric (f, g) 7→ ‖f − g‖PT ,2 :=(
PT (f − g)2

)1/2
is totally bounded and almost surely the sample paths f 7→ GT (f) are uniformly continuous with respect to

the intrinsic pseudo metric. By Kosorok (2007, Lemmas 7.2 and 7.4),
{
GT (f) : f ∈ Q

}
is also separable as a stochastic process.
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that E
[∥∥GTn∥∥Q] = O

(√
log (n)

)
, we have Z2

Q±
−Z̃2

Q±
= Op

(√
log (n)υ∗n

)
. Therefore, suph∈HLRp (ϑ0 | h) =

Z̃2
Q±

+ Op

(√
log (n)υ∗n + log (n)h

)
. By Dudley (2002, Theorem 9.2.2) and suph∈HLRp (ϑ0 | h) − Z̃2

Q±
=

op

(
log (n)

−1
)
, there exists a null sequence εn ↓ 0 such that Pr

[∣∣∣suph∈HLRp (ϑ0 | h)− Z̃2
Q±

∣∣∣ > εn/log (n)
]
≤

εn and by the fact that (a− b)2 ≤
∣∣a2 − b2

∣∣ ∀a, b ≥ 0 ,

Pr

[∣∣∣∣√suph∈HLRp (ϑ0 | h)− Z̃Q±

∣∣∣∣ >√εn/log (n)

]
≤ εn. (20)

It is easy to check that for random variables (V,W ) and constants r1, r2, t > 0 such that Pr [|V −W | > r1] ≤

r2,

|Pr [V ≤ t]− Pr [W ≤ t]| ≤ Pr [|W − t| ≤ r1] + r2. (21)

Then, by (20) and (21),

∣∣∣Pr
[
suph∈HLRp (ϑ0 | h) ≤ z1−τ

(
h/h

)2]− Pr
[
Z̃2
Q± ≤ z1−τ

(
h/h

)2]∣∣∣
≤ Pr

[∣∣∣Z̃Q± − z1−τ
(
h/h

)∣∣∣ ≤√εn/log (n)
]

+ εn. (22)

Since Z̃Q± =d

∥∥GT∥∥
Q

and
{
GT (f) : f ∈ Q

}
is a centered Gaussian process with E

[
GT (f)

2
]

= 1, ∀f , by

using the Gaussian anti-concentration inequality (Chernozhukov et al., 2014a, Corollary 2.1) and (19),

Pr
[∣∣∣Z̃Q± − z1−τ

(
h/h

)∣∣∣ ≤√εn/log (n)
]

>
√
εn/log (n)

(
E
[∥∥GT∥∥

Q

]
+ 1
)

= O (
√
εn) . (23)

It then follows from (22) and (23) that Pr
[
LRp (ϑ0 | h) ≤ z1−τ

(
h/h

)2
,∀h ∈ H

]
= Pr

[∥∥Γ̄G∥∥H ≤ z1−τ
(
h/h

)]
+

o (1). Let N be an N (0, 1) random variable that is independent of
{
Γ̄G (h) : h ∈ H

}
. Let Γ̃G (h) :=

Γ̄G (h) + E [q (T,X | h)] ·N . By change of variables, suph∈H |E [q (T,X | h)]| = O
(
h

1/2
)
.
{
Γ̃G (h) : h ∈ H

}
is a zero-mean Gaussian process which satisfies

∥∥∥Γ̃G∥∥∥
H

=
∥∥Γ̄G∥∥H + Op

(
h

1/2
)

and has the covariance

structure E
[
Γ̃G (h) Γ̃G (h′)

]
= E [q (T,X | h) q (T,X | h′)], ∀ (h, h′) ∈ H2. By LIE and change of vari-

ables, E [q (T,X | h) q (T,X | h′)] =
√
h/h′

∫∞
0
Kp;+ (z)Kp;+ ((h/h′) z) dz/ω0,2

p;+. Let ΓG (s) := Γ̃G (s · h), s ∈[
1, h/h

]
. Then it is easy to see that the zero-mean Gaussian process

{
ΓG (s) : s ∈

[
1, h/h

]}
has a covariance

structure given by (9) and ‖ΓG‖[1,h/h] =
∥∥∥Γ̃G∥∥∥

H
. By Dudley (2002, Theorem 9.2.2) and

∥∥∥Γ̃G∥∥∥
H
−
∥∥Γ̄G∥∥H =

op

(
log (n)

−1/2
)
, there exists a null sequence ε̃n ↓ 0 such that Pr

[∣∣∣∥∥∥Γ̃G∥∥∥
H
−
∥∥Γ̄G∥∥H∣∣∣ > ε̃n/

√
log (n)

]
≤ ε̃n.

By similar arguments, we have Pr
[∥∥∥Γ̃G∥∥∥

H
≤ z1−τ

(
h/h

)]
− Pr

[∥∥Γ̄G∥∥H ≤ z1−τ
(
h/h

)]
= o (1) . By the def-

inition of z1−τ
(
h/h

)
and ‖ΓG‖[1,h/h] =

∥∥∥Γ̃G∥∥∥
H
, Pr

[∥∥∥Γ̃G∥∥∥
H
≤ z1−τ

(
h/h

)]
= 1 − τ . It then follows that

Pr
[
LRp (ϑ0 | h) ≤ z1−τ

(
h/h

)2
,∀h ∈ H

]
= 1− τ + o (1) . �
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Appendix B Proofs of Theorems 3 and 4

We denote n̄ := nh for notational simplicity and write δ = O?p (an) for some bounded sequence an if there

exists some positive constants c1, c2 > 0 such that Pr [|δ| > c1an] ≤ c2
(
log (n) /n̄3/2

)
. It is straightforward

to check that if δ1 = O?p (an) and δ2 = O?p (bn), then δ1δ2 = O?p (anbn) and δ1 + δ2 = O?p (an + bn), i.e., the

algebra of the Op notations carry over to O?p notations. We say that an event occurs wp? if its probability is

1−O
(
log (n) /n̄3/2

)
.

Lemma 5. Suppose that the same assumptions as Lemma 1 hold with h = h = h. If g|V |5 is bounded on

B (0), n̄−1/2
∑
i

(
W k
p;s,iVi − E

[
W k
p;sV

])
= O?p

(√
log (n)

)
, ∀ (k, s) ∈ N× {−,+}.

The following result is an analogue of Lemma 2. Its proof essentially follows similar arguments.

Lemma 6. Suppose that the same assumptions as Theorem 3 hold. (a)
√
n̄η̂p = O?p

(√
log (n)

)
; (b) λ̂p :=

argmaxλ∈L(ϑ̂p)S
(
λ, ϑ̂p

)
exists wp? and

√
n̄λ̂p = O?p

(√
log (n)

)
; (c)

√
n̄η̃p = O?p

(√
log (n)

)
; (d) λ̃p :=

argmaxλ∈L(ϑ0,ϑ̃p)S
(
λ, ϑ0, ϑ̃p

)
exists wp? and

√
n̄λ̃p = O?p

(√
log (n)

)
.

Consider the singular value decomposition of ∆
−1/2

UU> (−∆G): S>∆
−1/2

UU> (−∆G) T =

[
Λ 0dϑ×dz

]>
, where

S>S = I2du , T>T = Idϑ and Λ is a dϑ-dimensional diagonal matrix with the square roots of the eigenvalues

of ∆>G∆−1
UU>∆G being on its diagonal. We follow Chen and Cui (2007) to rotate the moment conditions by

Γ := S>∆
−1/2

UU> so that results from Chen and Cui (2007); Ma (2017) can be applied. Let Vi (θ) := ΓUi (θ),

Vi := ΓUi, Hi := Γ (−Gi), H†,i := Γ (−G†,i) (V,H,H† defined similarly) and V̂i := ΓÛi. Denote ∆VV> :=

n̄−1
∑
i ViV>i and ∆H := n̄−1

∑
iHi. Note that the EL criterion function is invariant to such a rotation,

i.e., `p (θ | h) = supλ2
∑
i log

(
1 + λ>Vi (θ)

)
. For notational simplicity, we still use λ̂p and λ̃p to denote the

Lagrange multipliers. Clearly, (b) and (d) of Lemma 6 still hold. Let Π := ΛT> and Ω := Π−1. Then,

∆VV> = I2du , ∆H := Γ (−∆G) =

[
Π> 0dϑ×dz

]>
and ∆H† := Γ

(
−∆G†

)
=

[
Π>† 0d†×dz

]>
, where Π† is

a dϑ×d† matrix collecting the last d† columns of Π. Denote J :=
(

Π>† Π†

)−1

Π>† , P := Π†J and M := −Idϑ+P.

Then, by inverting the block matrices,

 −∆VV> ∆H

∆>H 0dϑ×dϑ


−1

=

 −∆−1
VV> + ∆−1

VV>∆H
(
∆>H∆−1

VV>∆H
)−1

∆>H∆−1
VV> ∆−1

VV>∆H
(
∆>H∆−1

VV>∆H
)−1(

∆>H∆−1
VV>∆H

)−1
∆>H∆−1

VV>
(
∆>H∆−1

VV>∆H
)−1



=


0dϑ×dϑ 0dϑ×dz Ω>

0dz×dϑ −Idz 0dz×dϑ

Ω 0dϑ×dz ΩΩ>

 =

 − (Γ>)−1
QΓ−1 −

(
Γ>
)−1

N

−N>Γ−1 O

 (24)
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and

 −∆VV> ∆H†

∆>H† 0d†×d†


−1

=


M 0dϑ×dz J>

0dz×dϑ −Idz 0dz×d†

J 0d†×dz JJ>

 =

 − (Γ>)−1
Q†Γ

−1 −
(
Γ>
)−1

N†

−N>† Γ−1 O†

 . (25)

By similar arguments as in the proof of Lemma 3, the first order conditions
∑
i V̂i/

(
1 + λ̂>p V̂i

)
= 0 and∑

iH>i λ̂p/
(

1 + λ̂>p V̂i
)

= 0 hold wp?. Expanding the left hand sides yields

0 =
∑
i

V̂i

1− λ̂>p V̂i +
(
λ̂>p V̂i

)2

−
(
λ̂>p V̂i

)3

+

(
λ̂>p V̂i

)4

1 + λ̂>p V̂i


0 =

∑
i

H>i λ̂p

1− λ̂>p V̂i +
(
λ̂>p V̂i

)2

−

(
λ̂>p V̂i

)3

1 + λ̂>p V̂i

 . (26)

By Lemma 6 and maxi

∥∥∥Ûi∥∥∥ = O?p
(
n̄1/5

)
, maxi

∣∣∣λ̂>p V̂i∣∣∣ >
∥∥∥λ̂p∥∥∥(maxi

∥∥∥V̂i∥∥∥) = O?p

(√
log (n)/n̄3/10

)
. There-

fore, maxi

∣∣∣λ̂>p V̂i∣∣∣ < 1/2 wp?. By this result, Lemma 6 and n̄−1
∑
i

∥∥∥Ûi∥∥∥4

= O?p (1), which follows from bound-

edness of Θ, Markov’s inequality and Ûi = Ui−Giη̂p,
∑
i

(
λ̂>p V̂i

)4

/
(

1 + λ̂>p V̂i
)

= O?p

(
log (n)

2
/n̄
)
. Similarly,∑

iH>i λ̂p
(
λ̂>p V̂i

)3

/
(

1 + λ̂>p V̂i
)

= O?p

(
log (n)

2
/n̄
)
. By V̂i = Vi+Hiη̂p and Lemma 6,

∑
i λ̂
>
p V̂i =

∑
i λ̂
>
p Vi+∑

i λ̂
>
p Hiη̂p,

∑
i

(
λ̂>p V̂i

)2

=
∑
i

(
λ̂>p Vi

)2

+
∑
i

(
λ̂>p Hiη̂p

)2

+ 2
∑
i

(
λ̂>p Vi

)(
λ̂>p Hiη̂p

)
and

∑
i

(
λ̂>p V̂i

)3

=∑
i

(
λ̂>p Vi

)3

+ 3
∑
i

(
λ̂>p Vi

)2 (
λ̂>p Hiη̂p

)
+ O?p

(
log (n)

5/2
/n̄3/2

)
. By plugging these results into the right

hand side of (26),

−∆VV> λ̂p + ∆Hη̂p = − 1

n̄

∑
i

Vi +
1

n̄

∑
i

Vi
(
λ̂>p Hiη̂p

)
− 1

n̄

∑
i

Vi
(
λ̂>p Vi

)2

− 2

n̄

∑
i

Vi
(
λ̂>p Vi

)(
λ̂>p Hiη̂p

)
+

1

n̄

∑
i

Vi
(
λ̂>p Vi

)3

+
1

n̄

∑
i

Hiη̂p
(
λ̂>p Vi

)
+

1

n̄

∑
i

Hiη̂p
(
λ̂>p Hiη̂p

)
− 1

n̄

∑
i

Hiη̂p
(
λ̂>p Vi

)2

+
(
∆VV> −∆VV>

)
λ̂p −

(
∆H −∆H

)
η̂p +O?p

(
(log (n) /n̄)

2
)

∆>Hλ̂p =
1

n̄

∑
i

H>i λ̂p
(
λ̂>p Vi

)
+

1

n̄

∑
i

H>i λ̂p
(
λ̂>p Hiη̂p

)
− 1

n̄

∑
i

H>i λ̂p
(
λ̂>p Vi

)2

−
(

∆
>
H −∆>H

)
λ̂p +O?p

(
(log (n) /n̄)

2
)
. (27)

By fifth-order Taylor expansion and maxi

∣∣∣λ̂>p V̂i∣∣∣ = O?p

(√
log (n)/n̄3/10

)
, `p

(
ϑ̂p | h

)
can be written as the

sum of 2
∑
i λ̂
>
p V̂i −

∑
i

(
λ̂>p V̂i

)2

+ 2
∑
i

(
λ̂>p V̂i

)3

/3−
∑
i

(
λ̂>p V̂i

)4

/2 and a remainder term bounded up to

a constant by
∑
i

∣∣∣λ̂>p V̂i∣∣∣5 >
∥∥∥λ̂p∥∥∥5∑

i

∥∥∥V̂i∥∥∥5

= O?p

(
log (n)

5/2
/n̄3/2

)
wp?. By V̂i = Vi +Hiη̂p and Lemma 6,
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∑
i

(
λ̂>p V̂i

)4

=
∑
i

(
λ̂>p Vi

)4

+O?p

(
log (n)

5/2
/n̄3/2

)
and therefore,

n̄−1`p

(
ϑ̂p | h

)
=

2

n̄

∑
i

λ̂>p Vi+
2

n̄

∑
i

λ̂>p Hiη̂p−
1

n̄

∑
i

(
λ̂>p Vi

)2

− 1

n̄

∑
i

(
λ̂>p Hiη̂p

)2

− 2

n̄

∑
i

(
λ̂>p Vi

)(
λ̂>p Hiη̂p

)
+

2

3

1

n̄

∑
i

(
λ̂>p Vi

)3

+
2

n̄

∑
i

(
λ̂>p Vi

)2 (
λ̂>p Hiη̂p

)
− 1

2n̄

∑
i

(
λ̂>p Vi

)4

+O?p

(
log (n)

5/2
/n̄5/2

)
. (28)

A stochastic expansion (e.g., Newey and Smith, 2004) is understood as an approximation that is a poly-

nomial of centered sample averages and has an approximation error of desired order of magnitude. We

use (24) to invert (27) and get higher-order approximations for
(
λ̂p, η̂p

)
. We then replace all sample

averages except n̄−1
∑
i Vi which is approximately centered (‖∆V‖ = O

(
hp+1

)
) with the sums of their

population means and their centered versions. By iteratively replacing
(
λ̂p, η̂p

)
on the right hand side

of (27) with the approximations, using Lemmas 5 and 6 and dropping terms that are O?p
(

(log (n) /n̄)
2
)
,

we get cubic stochastic expansions of
(
λ̂p, η̂p

)
. By the same steps and plugging stochastic expansions

of
(
λ̂p, η̂p

)
into the right hand side of (28), we have a stochastic expansion of n̄−1`p

(
ϑ̂p | h

)
so that

n̄−1`p

(
ϑ̂p | h

)
= ̂̀? + O?p

(
log (n)

5/2
/n̄5/2

)
, where the leading term ̂̀? is a quartic polynomial of centered

sample averages. Similarly, by using Lemmas 5 and 6, the first-order conditions and (25), we get cubic stochas-

tic expansions of
(
λ̃p, η̃p

)
and a quartic stochastic expansion of `p

(
ϑ0, ϑ̃p | h

)
so that n̄−1`p

(
ϑ0, ϑ̃p | h

)
=˜̀? + O?p

(
log (n)

5/2
/n̄5/2

)
. The same algebraic calculations have been done in Chen and Cui (2007); Ma

(2017) so that we use them directly here. We switch to coordinate notations and apply the calculations

from Chen and Cui (2007); Ma (2017). In the rest of the proofs, summation over repeated indices is

taken implicitly with the “
∑

” notation suppressed and ranges of indices fixed: k, l,m, n, o, v, q = 1, ..., dϑ,

k, l,m, n, o, v = 1, ..., 2du, u,w = 1, ..., d†, a, b, c, d, e, f = 1, ..., 2dz, s, t, a, b, c, d, e = 1, ..., dz and u,w = 1, ..., du.

Let αkl := ∆V(k)V(l) , αklm := ∆V(k)V(l)V(m) , αklmn := ∆V(k)V(l)V(m)V(n) , γk,n := ∆H(kn) , γk;l,n := ∆V(k)H(ln) ,

γk;l;m,n := ∆V(k)V(l)H(mn) , γk,n;l,o := ∆H(kn)H(lo) , Ak := n̄−1
∑
i V

(k)
i , Akl := n̄−1

∑
i V

(k)
i V

(l)
i − αkl, Aklm :=

n̄−1
∑
i V

(k)
i V

(l)
i V

(m)
i − αklm, Ck,n := n̄−1

∑
iH

(kn)
i − γk,n and Ck;l,n := n̄−1

∑
i V

(k)
i H

(ln)
i − γk;l,n. By Lemma

5, n̄−1
∑
i V

(k)
i V

(l)
i V

(m)
i V

(n)
i − αklmn, n̄−1

∑
i V

(k)
i V

(l)
i H

(mn)
i − γk;l;m,n and n̄−1

∑
iH

(kn)
i H(lo)

i − γk,n;l,o are all

O?p

(√
log (n) /n̄

)
. We can show that

(
λ̂p, η̂p

)
and n̄−1`p

(
ϑ̂p | h

)
admit stochastic expansions with lead-

ing terms that are polynomials of
(
Ak, Akl, Aklm, Ck,n, Ck;l,n

)
with coefficients given by

(
αkl, αklm, αklmn

)
,(

γk,n, γk;l,n, γk;l;m,n, γk,n;l,o
)
and Ω. Formally, their expressions are the same as those given in the special case

of Chen and Cui (2007) (see (2.6) and (2.8) therein) when the moment restrictions are linear in parameters

and terms that depend on the second and third derivatives of the moment restrictions are removed. Similar

stochastic expansions of
(
λ̃p, η̃p

)
and n̄−1`p

(
ϑ0, ϑ̃p | h

)
that are polynomials of

(
Ak, Akl, Aklm, Ck,n, Ck;l,n

)
can also be obtained. Formally, their expressions are the same as those given in the special case of Ma (2017)
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when the moment restrictions and the null restrictions are both linear in parameters and hence omitted. See

Ma (2017, (C.4)). Let LR? := n̄
(˜̀? − ̂̀?) so that LRp (ϑ0 | h) = LR? +O?p

(
log (n)

5/2
/n̄3/2

)
.

Let
(
Υkl,Υklm,Υklmn

)
be defined by the same formulae as those of

(
αkl, αklm, αklmn

)
with V replaced by

U . Let
(

Γk,u
† ,Γk;l,u

† ,Γk;l;m,u
† ,Γk,u;l,w

†

)
be defined by the formulae of

(
γk,n, γk;l,n, γk;l;m,n, γk,n;l,o

)
with (V,H)

replaced by (U ,G†). Denote Ū (θ2) := Z − θ2, Ū := Ū (ϑ2) and Ḡ := −∂Ū (θ2) /∂θ>2 = Idz . Also let

Ū (θ2) := Wp ⊗ Ū (θ2), Ū := Wp ⊗ Ū , Ḡ := Wp ⊗ Ḡ and
(
Ūi (θ2) , Ūi, Ḡi

)
be defined by the same formulae

with (X,Z) replaced by (Xi, Zi). Let
(
Ō, N̄, Q̄

)
be defined by the formulae of (O,N,Q) with (∆UU> ,∆G)

replaced by (∆ŪŪ> ,∆Ḡ). Let
(
Ῡab, Ῡabc, Ῡabcd

)
and

(
Γ̄a,s, Γ̄a;b,s, Γ̄a;b;c,s, Γ̄a,s;b,t

)
be defined by the formu-

lae of
(
αkl, αklm, αklmn

)
and

(
γk,n, γk;l,n, γk;l;m,n, γk,n;l,o

)
with (V,H) replaced by

(
Ū , Ḡ

)
. Let Υk := ∆U(k)

and Ῡa := ∆Ū(a) . Let B†p := Q
(kl)
† ΥkΥl, V †p,1 := ΥklmnQ

(kl)
† Q

(mn)
† /2, V †p,2 := −ΥklmQ

(kn)
† Q

(lo)
† Q

(mv)
† Υnov/3,

V †p,3 := 2Γk;l;m,w
† N

(kw)
† Q

(lm)
† , and V †p,4 := −Γk,u;l,w

† Q
(kl)
† O

(uw)
† . Let

(
B‡p,V

‡
p,1,V

‡
p,2,V

‡
p,3,V

‡
p,4

)
be defined by

the same formulae with (Q†,N†,O†,Γ†,Υ) replaced by
(
Q̄, N̄, Ō, Γ̄, Ῡ

)
. Let C pre

p (n, h) := n̄
(
B†p −B‡p

)
+

n̄−1
∑4
j=1

(
V †p,j − V ‡p,j

)
denote the pre-asymptotic coverage error.

Lemma 7. Suppose that the same assumptions as Theorem 3 hold. Then, Pr [LR? ≤ x] = Fχ2
1

(x) −

C pre
p (n, h)xfχ2

1
(x)+O

(
υ]n
)
, where υ]n := (log (n) ‖∆U‖) /

√
n̄+log (n)

5/2
/n̄3/2 +h ‖∆U‖+n−1 + n̄2 ‖∆U‖4 +

n̄ ‖∆U‖3.

Proof of Theorem 3. By simple algebra, Q† =

 Q†11 Q†12

Q†21 Q†22

, where Q†11 := ∆−2
+ Φ−1

± , Q†22 := ∆−2
− Φ−1

± ,

Q†12 = Q†21 := −∆−1
+ ∆−1

− Φ−1
± , O† =

(
∆2

+∆−1
U+U>+

+ ∆2
−∆−1
U−U>−

)−1

and N† =

[
N>†1 N>†2

]>
, where N†1 :=

∆+∆−1
U+U>+

O† and N†2 := ∆−∆−1
U−U>−

O†. For simplicity, denote Πu
s := ∆U(u)

s UsU>s
and Πuw

s := ∆U(u)
s U(w)

s UsU>s
,

s ∈ {−,+}. First, write ΥklmnQ
(kl)
† Q

(mn)
† = Q

(kl)
† tr (Q†∆U(k)U(l)UU>). Then it is easy to check that

ΥklmnQ
(kl)
† Q

(mn)
† = Q

(uw)
†11 tr

(
Q†11Πuw

+

)
+ Q

(uw)
†22 tr

(
Q†22Πuw

−
)

ΥklmQ
(kn)
† Q

(lo)
† Q

(mv)
† Υnov = Q

(uw)
†11 tr

(
Q†11Πu

+Q†11Πw
+

)
+ Q

(uw)
†22 tr

(
Q†22Πu

−Q†22Πw
−
)

+ 2Q
(uw)
†21 tr

(
Q†12Πu

−Q†21Πw
+

)
Γk;l;m,w
† N

(kw)
† Q

(lm)
† = tr

(
Q†11∆Wp;+U+U>+ N†1

)
+ tr

(
Q†22∆Wp;−U−U>−N†2

)
Γk,u;l,w
† Q

(kl)
† O

(uw)
† = tr

(
∆W 2

p;+
Q†11O†

)
+ tr

(
∆W 2

p;−
Q†22O†

)
.

By Lemma 1, Q†11 = Ξ1/
(
ϕω0,2

p;+

)
+ O (h), Q†22 = Ξ1/

(
ϕω0,2

p;+

)
+ O (h), Q†21 = −Ξ1/

(
ϕω0,2

p;+

)
+ O (h),

O† =
(
ω0,2
p;+/ϕ

)
Ξ2 + O (h), N†1 = µ−1

UU>,+
Ξ2/ϕ + O (h) and N†2 = µ−1

UU>,−Ξ2/ϕ + O (h). It follows that

V †p,1 =
((
ω0,4
p;+/ω

0,2
p;+

)
Ξ

(uw)
1 Ψuw

1

)
/
(

2ϕω0,2
p;+

)
+O (h), V †p,2 =

(
−
(
ω0,3
p;+/ω

0,2
p;+

)2

Ξ
(uw)
1 Ψuw

2

)
/
(

3ϕω0,2
p;+

)
+O (h),

V †p,3 =
(

4ω0,3
p;+tr (Ξ1Ξ2)

)
/
(
ϕω0,2

p;+

)
+O (h) and V †p,4 =

(
−2ω0,2

p;+tr (Ξ1Ξ2)
)
/ϕ+O (h). Similar results hold for
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(
V ‡p,1,V

‡
p,2,V

‡
p,3,V

‡
p,4

)
. By tedious algebra, it can be verified that B‡p = Q(kl)ΥkΥl. By (S7) in the supplement

(ruc-econ.github.io/supplement_RD.pdf) and simple algebra,

B†p−B‡p =
{(

∆M+
/∆+ −∆M−/∆−

)
−
(
∆Z+

/∆+ −∆Z−/∆−
)>
γ∆

}2

/Σ∆ =
(
BEL
p h

p+1
)2
/V EL

p +O
(
h2p+3

)
.

(29)

It follows that C pre
p (n, h) = Cp (n, h)+O

(
n̄ ‖∆U‖2 h+ n−1

)
and Pr [LR? ≤ x] = Fχ2

1
(x)−Cp (n, h)xfχ2

1
(x)+

O
(
υ]n + n̄ ‖∆U‖2 h

)
. By LRp (ϑ0 | h) = LR? + O?p

(
log (n)

5/2
/n̄3/2

)
and (S17) in the supplement with(

LR?, n̄ (R0 +R)
2
)

replaced by (LRp (ϑ0 | h) , LR?), we get the first conclusion. By using the same ar-

guments, we can show that Pr [LRp+1 (ϑ0 | h) ≤ x] = Fχ2
1

(x) − C̃ pre
p+1 (n, h)xfχ2

1
(x) + O

(
υ]n
)
. Then by

Lemma 1 and similar calculations, Pr [LRp+1 (ϑ0 | h) ≤ x] = Fχ2
1

(x)− (nh)
−1 V LR

p+1xfχ2
1

(x) + O (υ�n), where

υ�n :=
(
log (n)

∥∥∆Wp+1⊗U
∥∥) /√n̄ + log (n)

5/2
/n̄3/2 + n̄

∥∥∆Wp+1⊗U
∥∥2

+ h
∥∥∆Wp+1⊗U

∥∥ + n−1. By Lemma 1,∥∥∆Wp+1⊗U
∥∥ = O

(
hp+2

)
. It is easy to check that the decay rate of

(
log (n)

∥∥∆Wp+1⊗U
∥∥) /√n̄+log (n)

5/2
/n̄3/2+

n̄
∥∥∆Wp+1⊗U

∥∥2
+ h

∥∥∆Wp+1⊗U
∥∥ is minimized if h is chosen to balance n̄

∥∥∆Wp+1⊗U
∥∥2 and h

∥∥∆Wp+1⊗U
∥∥. In

this case, we have h � n−1/(p+2) and υ�n = O
(
n−1

)
. The second conclusion follows from applying Taylor

expansion to Pr
[
LRrc

p (ϑ0 | h) ≤ x
]

= Pr
[
LRp+1 (ϑ0 | h) ≤ x

(
1 + (nh)

−1 V LR
p+1

)]
. �

Proof of Theorem 4. Let ϑ3 := µZ,−. Now TZ = δln is equivalent to ϑ2 − ϑ3 = δn where δn :=

(µD,+ − µD,−) δln for simplicity. We redefine some notations for notational simplicity: θ := (θ0, θ1, θ2, θ3),

ϑ := (ϑ0, ϑ1, ϑ2, ϑ3), Ui (θ) :=
(
Wp+1;+,iUi (θ0, θ1, θ2)

>
,Wp+1;−,iUi (θ0, θ1, θ3)

>
)>

and Ui := Ui (ϑ) (U de-

fined similarly). Let Γ, (Vi (θ) ,Vi,V) and (Hi,H,H†,i,H†) be redefined accordingly using the redefined

(Ui (θ) ,Ui,U). Also let
(
Ak, Akl, Ck,n

)
,
(
αk, αkl, αklm, γk,n, γk;l,n

)
, (M, J,P, $,Ω) and (Q†,N†,O†,Q,N,O) be

redefined accordingly. As in the proof of Theorem 3, we apply the rotation by Γ so that `p+1 (θ | h) =

supλ2
∑
i log

(
1 + λ>Vi (θ)

)
. Let Vδ,i := Vi (ϑ0, ϑ1, ϑ2, ϑ2). It is easy to check that Lemma 6 still holds

for
(
η̂p+1, λ̂p+1, η̃p+1, λ̃p+1

)
under TZ = δln. (27) and (28) hold for

(
η̂p+1, λ̂p+1

)
with Vi replaced by

Vδ,i under TZ = δln. Similarly, (27) and (28) with (Vi,Hi) replaced by (Vδ,i,H†,i) hold for
(
η̃p+1, λ̃p+1

)
and n̄−1`p+1

(
ϑ0, ϑ̃p+1 | h

)
under TZ = δln. Let

(
R̃δ1, R̃

δ
2

)
be defined by the formulae of

(
R̃1, R̃2

)
in the

proof of Lemma 7 with Vi replaced by Vδ,i. By arguments as in the proof of Lemma 7 and calculations

in Ma (2017), LRp+1 (ϑ0 | h) = n̄
(
R̃δ1 + R̃δ2

)2

+ O?p

(
log (n)

2
/n̄
)
under TZ = δln. Let Ak

δ := n̄−1
∑
i V

(k)
δ,i

and Akl
δ := n̄−1

∑
i V

(k)
δ,i V

(l)
δ,i − αkl. Let H̃i := ∂Vi (θ) /∂θ> and let

(
C̃k,m, γ̃k,m, C̃k;l,m, γ̃k;l,m

)
be defined by

the formulae of
(
Ck,nγk,n, Ck;l,n, γk;l,n

)
with (Hi,H) replaced by

(
H̃i, H̃

)
. It is easy to see that Ak

δ =

Ak + δ
(a)
n

(
C̃k,dϑ+a + γ̃k,dϑ+a

)
and Akl

δ = Akl + δ
(a)
n

(
C̃k;l,dϑ+a + γ̃k;l,dϑ+a

)
[k, l] + O?p

(
l2n
)
. Note that by

Lemma 1, αk = e>2du,kΓ∆U = O
(
n−1

)
. By using these results and replacing Ak with Åk + αk, we de-

compose R̃δ1 = R̃δ11 + R̃δ10 + O
(
l2nh
)
, where R̃δ11 := $(k)

(
Åk + δ

(a)
n C̃k,dϑ+a

)
and R̃δ10 := $(k)γ̃k,dϑ+aδ

(a)
n .
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Similarly, we write R̃δ2 = R̃δ20 + R̃δ21 +R2 +O?p
(
log (n) l3n

)
, where

R̃δ20 :=

{
1

2
$(m)M(nl)

(
γ̃m;n,dϑ+a[m,n]

)
γ̃l,dϑ+b −$(n)γ̃n;dϑ+c,dϑ+bγ̃dϑ+c,dϑ+a

+

(
1

3
$(k)M(mv)M(nl)αkmn −$(n)M(mv)P(ol)γm;n,kΩ(ko)

)
γ̃v,dϑ+aγ̃l,dϑ+b

+
((
γdϑ+c;v,m[dϑ + c, v]

)
Ω(mo)P(ok)$(v) − αvmdϑ+cM(vk)$(m)

)
γ̃k,dϑ+bγ̃dϑ+c,dϑ+a

}
δ(a)
n δ(b)

n , (30)

R̃δ21 is defined by the sum of $(m)M(nk)
(
γ̃m;n,dϑ+a[m,n]

)
Åkδ

(a)
n /2−$(n)

(
γ̃dϑ+a;n,dϑ+b[dϑ + a, n]

)
Ådϑ+aδ

(b)
n

and the right hand side of (S11) in the supplement with αk replaced by γ̃k,dϑ+aδ
(a)
n and R2 is defined in

the proof of Lemma 7. Let Rδ0 := R̃δ10 + R̃δ20, Rδ1 := R̃δ11 + R̃δ21 and Rδ := Rδ1 + R2 so that we have

LRp+1 (ϑ0 | h) = n̄
(
Rδ0 +Rδ

)2
+ O?p (lnh). Denote κ̄ab0 := −M(kl)γ̃l,dϑ+aγ̃k,dϑ+b, βδn := n̄κ̄ab0 δ

(a)
n δ

(b)
n and

σ̄2
p+1 := Σ∆/ (µD,+ − µD,−)

2, where Σ∆ is defined by (11) with p changed to p+ 1. By (24) and (25),

κ̄ab0 δ
(a)
n δ(b)

n = (µD,+ − µD,−)
2

(Q† −Q)
(dϑ+a dϑ+b)

δ(dϑ+a)δ(dϑ+b)∆2
−l

2
n =

(
γ>∆δ

)2
l2n

σ̄2
p+1

, (31)

where γ∆ is redefined by replacing p and Z− with p + 1 and Wp+1;− (Z − ϑ3), γ∆ = γadj + O (h) and

σ̄2
p+1 = V EL

p+1 + O (h). By (24), (25), the fact ΩP =

[
0dϑ J

>]>
, tedious algebra and Lemma 1,

(
Rδ0
)2

=

κ̄ab0 δ
(a)
n δ

(b)
n + κ̄abc1 δ

(a)
n δ

(b)
n δ

(c)
n + o

(
l3n
)
where

κ̄abc1 := −2

3
αmnkM(kl)M(mv)M(no)γ̃v,dϑ+aγ̃o,dϑ+bγ̃l,dϑ+c + 2αmndϑ+dM(mv)M(no)γ̃v,dϑ+aγ̃o,dϑ+bγ̃dϑ+d,dϑ+c

− 2αk dϑ+e dϑ+dMklγ̃dϑ+e,dϑ+aγ̃dϑ+d,dϑ+bγ̃l,dϑ+c.

Let κ̄a2 := αmnkM(km)M(nl)γ̃l,dϑ+a/3, κ̄a3 := −2γl;dϑ+b,kΩ(km)M(ml)γ̃dϑ+b,dϑ+a, κ̃δ2,n := 1 + (κ̄a2 + κ̄a3) δ
(a)
n

and κ̄a4 := 2γo;n,lΩ(lv)P(vo)M(nk)γ̃k,dϑ+a. By calculation using arguments in the proof of Lemma 7, we have

κ1

(√
n̄Rδ

)
= κ̃1,n + o (ln), κ2

(√
n̄Rδ

)
= κ̃δ2,n + o (ln) and κ3

(√
n̄Rδ

)
= o (ln), where κ̃1,n is defined in the

proof of Lemma 7. Then, 2
√
n̄Rδ0κ̃1,n = (−κ̄a2 + κ̄a4) δ

(a)
n + O

(
l2n
)
. By arguments used to show (S13) and

(S14) in the supplement (i.e., Skovgaard, 1981 with s = p = q = 3, βs,n = ln and λn = O (ln)),

Pr
[
n̄
(
Rδ0 +Rδ

)2 ≤ x] = F

(
x/κ̃δ2,n |

(√
n̄Rδ0 + κ̃1,n

)2

/κ̃δ2,n

)
+ o (ln) . (32)

Then by Taylor expansion,

F

(
x/κ̃δ2,n |

(√
n̄Rδ0 + κ̃1,n

)2

/κ̃δ2,n

)
= F

(
x/κ̃δ2,n | βδn

)
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+
{
n̄κ̄abc1 δ(a)

n δ(b)
n δ(c)

n − βδn (κ̄a2 + κ̄a3) δ(a)
n + (−κ̄a2 + κ̄a4) δ(a)

n

}
F (1)

(
x | βδn

)
+ o (ln) . (33)

Let f (· | η) denote the χ2
1 (η) PDF. By using the recurrence properties of non-central χ2 (Cohen, 1988),

−xf (x | η) = 2ηF (2) (x | η) + (η + 1)F (1) (x | η). By these results and Taylor expansion,

F
(
x/κ̃δ2,n | βδn

)
= F

(
x | βδn

)
+ xf

(
x | βδn

) (
1/κ̃δ2,n − 1

)
+O

(
l2n
)

= F
(
x | βδn

)
+
(

2βδn (κ̄a2 + κ̄a3) δ(a)
n

)
F (2)

(
x | βδn

)
+
(
βδn (κ̄a2 + κ̄a3) δ(a)

n + (κ̄a2 + κ̄a3) δ(a)
n

)
F (1)

(
x | βδn

)
+ o (ln) . (34)

By arguments as in the proof of Lemma 7 and Lemma 1,

(κ̄a3 + κ̄a4) δ(a)
n = (µD,+ − µD,−) ∆−

(
−Γk;l,u
† N

(ku)
† Q

(l dϑ+a)
† + Γ̄a;b,sN̄(as)Q̄(b dz+a)

)
δ(a)ln = O (lnh) ,

and similarly, κ̄a3δ
(a)
n = O (lnh). It then follows from these results, (33) and (34) that

Pr
[
n̄
(
Rδ0 +Rδ

)2 ≤ x] = F
(
x | βδn

)
+
(
n̄κ̄abc1 δ(a)

n δ(b)
n δ(c)

n

)
F (1)

(
x | βδn

)
+
(

2βδnκ̄
a
2δ

(a)
n

)
F (2)

(
x | βδn

)
+ o (ln) .

(35)

By (24), (25), simple algebra and Lemma 1, we can find constants K abc
1 and K a

2 such that n̄κ̄abc1 δ
(a)
n δ

(b)
n δ

(c)
n =

K abc
1 δ(a)δ(b)δ(c)ln+O (lnh) and κ̄a2δ

(a)
n = K a

2 δ
(a)ln+O (lnh). By (31) and Lemma 1, βδn = H

(
γ>adjδ

)2

/V EL
p+1+

O (h). Let P1 (δ) := K abc
1 δ(a)δ(b)δ(c) and P2 (δ) := 2Hγ

(a)
adj γ

(b)
adjK

c
2 δ

(a)δ(b)δ(c)/V EL
p+1. The conclusion follows

from these results, (35), the fact that LRrc
p (ϑ0 | h) = n̄

(
Rδ0 +Rδ

)2
+O?p (lnh) under TZ = δln and (21). �
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Proof of Lemma 1. (a) follows from LIE and change of variables. (b) is a straightforward extension of

Bickel and Doksum (2015, Proposition 11.3.1), which follows from LIE and (p+ 1)-th order Taylor expansion.

For (c), denote q̄ (V,X | h) := h−1/2W k
p;sV and Q̄ := {q̄ (· | h) : h ∈ H}. Denote PVn f := n−1

∑
i f (Vi, Xi),

PV f := E [f (V,X)] and GVn :=
√
n
(
PVn − PV

)
. Then we have

∥∥GVn ∥∥Q̄ = sup
h∈H

∣∣∣∣∣ 1√
nh

∑
i

(
W k
p;s,iVi − E

[
W k
p;sV

])∣∣∣∣∣ .
Let σ2

Q̄
:= supf∈Q̄PV f2. It follows from LIE and change of variables that σ2

Q̄
= suph∈HE

[
h−1W 2k

p;sgV 2 (X)
]

=

O (1). Assume s = + without loss of generality. By definition and the assumption that K is supported

on [−1, 1], q̄ (v, x | h) = Kkp;− (x/h)h−1/21 (0 < x < h) v. Since Assumption 3 also implies that Kkp;− has

bounded variation ∀k ∈ N. By Giné and Nickl (2015, Proposition 3.6.12),
{
x 7→ Kkp;− (x/h) : h ∈ H

}
is VC-

type with respect to a constant envelope and its VC characteristics are independent of n. By Kosorok

(2007, Lemma 9.6),
{

(x, v) 7→ h−1/21 (0 < x < h) v : h ∈ H
}

is VC-subgraph with an envelope (x, v) 7→

h−1/21
(
0 < x < h

)
|v| and VC index being at most 3. By Kosorok (2007, Theorem 9.3) and Chernozhukov

et al. (2014, Corollary A.1), Q̄ is VC-type with respect to an envelope FQ̄ (v, x) ∝ h−1/21
(
0 < x < h

)
|v|.

By Chen and Kato (2020, Corollary 5.5), E
[∥∥GVn ∥∥Q̄] > σQ̄

√
log (n) + log (n)

(
PV |FQ̄|

r)1/r
n1/r/

√
n, where

PV |FQ̄|
r

= O
(
h/hr/2

)
. (c) follows from Markov’s inequality. �

Proof of Lemma 2. Let L] :=
{
λ ∈ R2du : ‖λ‖ ≤ log (n) /

√
nh
}
. By

maxi ‖Ui‖ /
√
nh > maxi1

(
|Xi| ≤ h

)
‖Ui‖ /

√
n ≤

(∑
i

1
(
|Xi| ≤ h

)
‖Ui‖12

)1/12

/
√
n
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and Markov’s inequality, we have maxi ‖Ui‖ /
√
nh = Op

(
n1/12/n1/2

)
. It follows that maxisupλ∈L]

∣∣λ>Ui∣∣ =

Op
(
log (n)

(
n1/12/n1/2

))
and maxisupλ∈L]

∣∣λ>Ui∣∣ < 1/2 ∀h ∈ H wpa1. Therefore, L] ⊆ L (ϑ), ∀h ∈ H

wpa1. Since S (·, ϑ) is continuous and L] is compact, λ] := argmaxλ∈L]
S (λ, ϑ) exists ∀h ∈ H wpa1. By the

definition of λ] and second-order Taylor expansion,

0 = S (02du , ϑ) ≤ S (λ], ϑ) = 2
(√

nhλ]

)>
U −

(√
nhλ]

)> 1

nh

∑
i

UiU>i(
1 + λ̇>] Ui

)2

(√nhλ])

≤ 2
∥∥∥√nhλ]∥∥∥ ∥∥U∥∥− (√nhλ])>

 1

nh

∑
i

UiU>i(
1 + maxisupλ∈L]

|λ>Ui|
)2

(√nhλ]) , (S1)

where λ̇] is the mean value that lies on the line joining 02du and λ]. Since maxisupλ∈L]

∣∣λ>Ui∣∣ < 1/2 ∀h ∈ H

wpa1, by (S1),

0 ≤ S (λ], ϑ) ≤ 2
∥∥∥√nhλ]∥∥∥∥∥U∥∥− 4

9

(√
nhλ]

)> (
∆UU> −∆UU>

) (√
nhλ]

)
− 4

9

(√
nhλ]

)>
∆UU>

(√
nhλ]

)
,

∀h ∈ H wpa1 and therefore,

%min (∆UU>)
∥∥∥√nhλ]∥∥∥2

≤ 9

2

∥∥∥√nhλ]∥∥∥∥∥U∥∥+
∥∥∆UU> −∆UU>

∥∥∥∥∥√nhλ]∥∥∥2

, (S2)

∀h ∈ H wpa1. Since U = (nh)
−1/2∑n

i=1 (Ui − E [U ]) +
√
nh∆U , it follows from Lemma 1 that

∥∥U∥∥ =

Op

(√
log (n)

)
. It also follows from Lemma 1 that ∆UU>−∆UU> = Op

(√
log (n) /n+ log (n)

(
n1/6/n

))
and

∆UU> = diag
(
ψUU>,+, ψUU>,−

)
+ O

(
h
)
. Since diag

(
ψUU>,+, ψUU>,−

)
is positive definite, %min (∆UU>) is

bounded away from zero when n is sufficiently large. By assumption,
∥∥∥√nhλ]∥∥∥ ≤ log (n). It follows from these

results and (S2) that
√
nhλ] = Op

(√
log (n)

)
. By this result, Pr

[√
nhλ] ≤ log (n) /2, ∀h ∈ H

]
→ 1 and

therefore, wpa1, ∀h ∈ H, λ] is in the interior of L] and the first-order condition is satisfied: ∂S (λ, ϑ) /∂λ|λ=λ]
=

02du . Since S (·, ϑ) is concave, λ] attains supλ∈L(ϑ)S (λ, ϑ) ∀h ∈ H wpa1 and therefore, supλ∈L(ϑ)S (λ, ϑ) =

S (λ], ϑ) ≤ 2
∥∥∥√nhλ]∥∥∥∥∥U∥∥ = Op (log (n)). Denote λ\ :=

√
log (n) / (nh)Û/

∥∥∥Û∥∥∥. It can be shown by us-

ing similar arguments, boundedness of Θ and Ûi = Ui − Giη̂p that maxi

∥∥∥Ûi∥∥∥ /√nh = Op
(
n1/12/n1/2

)
. By

second-order Taylor expansion,

S
(
λ\, ϑ̂p

)
= 2

(√
nhλ\

)>
Û −

(√
nhλ\

)> 1

nh

∑
i

ÛiÛ>i(
1 + λ̇>\ Ûi

)2

(√nhλ\)

S2



≥ 2
(√

nhλ\

)>
Û −

(√
nhλ\

)> 1

nh

∑
i

ÛiÛ>i(
1−

√
log (n) / (nh)

(
maxi

∥∥∥Ûi∥∥∥))2

(√nhλ\) , (S3)

where λ̇\ is the mean value that lies on the line joining 02du and λ\. Then,
√

log (n)
∥∥∥Û∥∥∥ ≤ S

(
λ\, ϑ̂p

)
+

2

(
(nh)

−1∑
i

∥∥∥Ûi∥∥∥2
)

log (n), ∀h ∈ H, wpa1. By Ûi = Ui − Giη̂p, Lemma 1 and boundedness of Θ, we have

(nh)
−1∑

i

∥∥∥Ûi∥∥∥2

= Op (1). By the definition of ϑ̂p, S
(
λ\, ϑ̂p

)
≤ supλ∈L(ϑ̂p)S

(
λ, ϑ̂p

)
≤ supλ∈L(ϑ)S (λ, ϑ).

Since supλ∈L(ϑ)S (λ, ϑ) = Op (log (n)), it follows that Û = Op

(√
log (n)

)
. Since Û = U −∆G

√
nhη̂p, then,

∥∥∥√nhη̂p∥∥∥√%min (∆
>
G∆G

)
≤
∥∥∥∆G
√
nhη̂p

∥∥∥ ≤ ∥∥∥Û∥∥∥+
∥∥U∥∥ . (S4)

By Lemma 1, ∆G =

[
µ>G,+ µ>G,−

]>
+ Op

(√
log (n) /n+ h

)
.
[
µ>G,+ µ>G,−

]>
has full column rank,

if µD,+ 6= µD,−. By using the fact that |%min (A)− %min (B)| ≤ ‖A− B‖, %min
(

∆
>
G∆G

)
is bounded away

from zero ∀h ∈ H, wpa1. (a) follows easily from this result, (S4) and the fact that
∥∥∥Û∥∥∥ and

∥∥U∥∥ are both

Op

(√
log (n)

)
. By maxi

∥∥∥Ûi∥∥∥ /√nh = Op
(
n1/12/n1/2

)
and the definition of L], maxisupλ∈L]

∣∣∣λ>Ûi∣∣∣ =

Op
(
log (n)

(
n1/12/n1/2

))
and therefore maxisupλ∈L]

∣∣∣λ>Ûi∣∣∣ < 1/2 ∀h ∈ H wpa1. Therefore, L] ⊆ L
(
ϑ̂p

)
,

∀h ∈ H wpa1. Since S
(
·, ϑ̂p

)
is continuous and L] is compact, λ̂] := argmaxλ∈L]

S
(
λ, ϑ̂p

)
exists ∀h ∈ H

wpa1. By the definition of λ̂] and similar arguments used to show (S2), we have %min (∆UU>)
∥∥∥√nhλ̂]∥∥∥ >∥∥∥Û∥∥∥ +

∥∥∥∆̂UU> −∆UU>
∥∥∥ ∥∥∥√nhλ̂]∥∥∥. Since ∆̂UU> −∆UU> = (nh)

−1∑
i

{
Giη̂pU>i + Uiη̂>p G>i + Giη̂pη̂>p G>i

}
, it

follows from Lemma 1 and (a) that ∆̂UU> − ∆UU> = Op

(√
log (n) /n

)
and therefore, ∆̂UU> − ∆UU> =

Op

(√
log (n) /n+ log (n)

(
n1/6/n

))
. Since

∥∥∥√nhλ̂]∥∥∥ ≤ log (n) by construction, it follows from these results

that
√
nhλ̂] = Op

(√
log (n)

)
. Wpa1, ∀h ∈ H, λ̂] is in the interior of L] and the first-order condition

is satisfied: ∂S
(
λ, ϑ̂p

)
/∂λ

∣∣∣
λ=λ̂]

= 02du . It follows from the concavity of S
(
·, ϑ̂p

)
that λ̂] also attains

supλ∈L(ϑ̂p)S
(
λ, ϑ̂p

)
∀h ∈ H wpa1. Then (b) follows from setting λ̂p = λ̂]. (c) and (d) follow from similar

arguments. �

Proof of Lemma 3. It is shown in the proof of Lemma 2 that λ̂p satisfies the first-order condition which

can be written as
∑
i Ûi/

(
1 + λ̂>p Ûi

)
= 02du ∀h ∈ H wpa1. We also showed that maxi

∥∥∥Ûi∥∥∥ /√nh =

Op
(
n1/12/n1/2

)
and
√
nhλ̂p = Op

(√
log (n)

)
. Therefore, we have maxi

∣∣∣λ̂>p Ûi∣∣∣ = op (1). By Ûi = Ui − Giη̂p,

Lemma 1 and boundedness of Θ, we have (nh)
−1∑

i

∥∥∥Ûi∥∥∥3

= Op
(
1 + log (n)

(
n1/4/n

))
and (nh)

−1∑
i

∥∥∥Ûi∥∥∥4

=

Op
(
1 + log (n)

(
n1/3/n

))
. By these results, Lemma 2 and simple algebra, (nh)

−1∑
i ÛiÛ>i /

(
1 + λ̂>p Ûi

)2

=

∆̂UU>+op (1). It is shown in the proof of Lemma 2 that ∆̂UU> = diag
(
ψUU>,+, ψUU>,−

)
+op (1). Therefore,

%min

(
(nh)

−1∑
i ÛiÛ>i /

(
1 + λ̂>p Ûi

)2
)

is bounded away from zero ∀h ∈ H, wpa1. By the implicit function

S3



theorem, wpa1 ∀h ∈ H, there exists a continuously differentiable function λ (·) defined on some open neigh-

borhood B
(
ϑ̂p

)
of ϑ̂p such that λ̂p = λ

(
ϑ̂p

)
and (nh)

−1∑
i Ui (θ) /

(
1 + λ (θ)

> Ui (θ)
)

= 02du ∀θ ∈ B
(
ϑ̂p

)
.

Since S (·, θ) is concave, S (λ (θ) , θ) = supλ∈L(θ)S (λ, θ) and ϑ̂p = argminθ∈B(ϑ̂p)S (λ (θ) , θ). By the chain rule

and
∑
i Ûi/

(
1 + λ̂>p Ûi

)
= 02du , the first-order condition for ϑ̂p can be written as

∑
i G>i λ̂p/

(
1 + λ̂>p Ûi

)
=

02du , which holds ∀h ∈ H wpa1. By simple algebra we have

02du =
∑
i

Ûi − ÛiÛ>i λ̂p +
Ûi
(
Û>i λ̂p

)2

1 + λ̂>p Ûi

 and 0dϑ =
∑
i

G>i λ̂p − G
>
i λ̂p

(
λ̂>p Ûi

)
1 + λ̂>p Ûi

 . (S5)

By maxi

∣∣∣λ̂>p Ûi∣∣∣ = op (1), (nh)
−1∑

i

∥∥∥Ûi∥∥∥ = Op (1), (nh)
−1∑

i

∥∥∥Ûi∥∥∥3

= Op
(
1 + log (n)

(
n1/4/n

))
and Lemma

2, (nh)
−1/2∑

i

{
Ûi
(
Û>i λ̂p

)2
}
/
(

1 + λ̂>p Ûi

)
= Op

(
υ‡n
)
and (nh)

−1/2∑
i

{
G>i λ̂p

(
λ̂>p Ûi

)}
/
(

1 + λ̂>p Ûi
)

=

Op
(
υ‡n
)
, where υ‡n := log (n) /

√
n + log (n)

2 (
n1/4/n3/2

)
. By these results and Ûi = Ui − Giη̂p, (S5) can be

written as ∆̂UU>
√
nhλ̂p+ ∆G

√
nhη̂p = U +Op

(
υ‡n
)
and ∆

>
G
√
nhλ̂p = Op

(
log (n) /

√
n
)
. By ∆̂UU> −∆UU> =

Op

(√
log (n) /n+ log (n)

(
n1/6/n

))
, ∆G −∆G = Op

(√
log (n) /n

)
and Lemma 2, we have

∆UU>
√
nhλ̂p + ∆G

√
nhη̂p = U +Op

(
υ†n
)
and ∆>G

√
nhλ̂p = Op

(
υ†n
)
. (S6)

Since it follows from Lemma 1 that ∆UU> = diag
(
ψUU>,+, ψUU>,−

)
+O

(
h
)
and ∆G =

[
µ>G,+ µ>G,−

]>
+

O
(
h
p+1
)
, ∆UU> and ∆>G∆−1

UU>∆G are invertible ∀h ∈ H, when n is sufficiently large. (a) follows from

 ∆UU> ∆G

∆>G 0dϑ×dϑ


−1

=

 Q N

N> −O


and (S6). (b) follows from similar arguments. �

Proof of Lemma 4. By Taylor expansion, S
(
λ̂p, ϑ̂p

)
is equal to the sum of 2λ̂>p

(∑
i Ûi
)
−
∑
i

(
λ̂>p Ûi

)2

and

a remainder term that is bounded up to a constant by
∑
i

∣∣∣λ̂>p Ûi∣∣∣3 /(1−
∣∣∣λ̂>p Ûi∣∣∣)3

. By using (nh)
−1∑

i

∥∥∥Ûi∥∥∥3

=

Op
(
1 + log (n)

(
n1/4/n

))
and Lemma 2,

∑
i

∣∣∣λ̂>p Ûi∣∣∣3 = Op

(√
log (n)υ‡n

)
. By these results and maxi

∣∣∣λ̂>p Ûi∣∣∣ =

op (1), S
(
λ̂p, ϑ̂p

)
= 2λ̂>p

(∑
i Ûi
)
−
∑
i

(
λ̂>p Ûi

)2

+ Op

(√
log (n)υ‡n

)
. It was shown in the proof of Lemma

3 that Û = ∆̂UU>
(√

nhλ̂p

)
+ Op

(
υ‡n
)
. It follows from these results, Lemma 2 and ∆̂UU> − ∆UU> =

Op

(√
log (n) /n+ log (n)

(
n1/6/n

))
that S

(
λ̂p, ϑ̂p

)
=
(√

nhλ̂p

)>
∆UU>

(√
nhλ̂p

)
+ Op

(√
log (n)υ†n

)
. By

Lemma 3 and U = Op

(√
log (n)

)
, S
(
λ̂p, ϑ̂p

)
= U>QU+Op

(√
log (n)υ†n

)
. Similarly, we have S

(
λ̃p, ϑ0, ϑ̃p

)
=

U>Q†U+Op

(√
log (n)υ†n

)
. By definition, LRp (ϑ0 | h) = S

(
λ̃p, ϑ0, ϑ̃p

)
−S

(
λ̂p, ϑ̂p

)
. Therefore, LRp (ϑ0 | h) =

S4



U> (Q† −Q)U +Op

(√
log (n)υ†n

)
. Then, by straightforward algebraic calculations,

Q† −Q = ∆−1
UU>

{
∆G
(
∆>G∆−1

UU>∆G
)−1

∆>G −∆G†

(
∆>G†∆

−1
UU>∆G†

)−1

∆>G†

}
∆−1
UU>

= ∆−1
UU>

(
∆G0 −∆G†Φ

−1
†† Φ†0

)(
Φ00 − Φ0†Φ

−1
†† Φ†0

)−1 (
∆>G0 − Φ0†Φ

−1
†† ∆>G†

)
∆−1
UU> . (S7)

Then by this result, (12), (14) and
(

Φ00 − Φ0†Φ
−1
†† Φ†0

)−1

= Σ∆/
(
∆D+

/∆+ −∆D−/∆−
)2

U> (Q† −Q)U =
{

e>du,1Φ−1
±
(
U+/∆+ − U−/∆−

)}2
Σ∆

=
{(
M+/∆+ −M−/∆−

)
−
(
Z+/∆+ −Z−/∆−

)>
γ∆

}2

/Σ∆. (S8)

By using γ∆ = γadj+O
(
h
)
and (11), Σ∆ = ∆E2/ϕ

2 +O
(
h
)
. By

∥∥U∥∥ = Op

(√
log (n)

)
and γ∆ = γadj+O

(
h
)
,

the numerator on the right hand side of the second equality in (S8) is
{

(nh)
−1/2∑

i Ei
}2

+Op
(
log (n)h

)
. Let

q̃ (Ti, Xi | h) := h−1/2Ei/
√

∆E2 and Q̃ := {q̃ (· | h) : h ∈ H}. Then it is clear that
{

(nh)
−1/2∑

i Ei
}2

/∆E2 ={
GTn q̃ (· | h)

}2 and therefore, LRp (ϑ0 | h) =
{
GTn q̃ (· | h)

}2
+ Op

(
log (n)h+

√
log (n)υ†n

)
. Also denote

Q := {q (· | h) : h ∈ H} and D := {q (· | h)− q̃ (· | h) : h ∈ H}. By similar arguments as in the proof of

Lemma 1, Q̃ and Q are both VC-type with respect to the envelopes
(
FQ̃, FQ

)
satisfying FQ̃ (Ti, Xi) ∝

h−1/21
(
|Xi| ≤ h

)
|εi − µε| /

√
infh∈H∆E2 and FQ (Ti, Xi) ∝ h−1/21

(
|Xi| ≤ h

)
|εi − µε| /

√
ξ (|Xi|) f|X| (|Xi|),

respectively. By change of variables, PTF 12
Q̃
� PTF 12

Q = O
(
h/h6

)
. By Chernozhukov et al. (2014, Lemma

A.6), D is VC-type with respect to the envelope FD = FQ̃ + FQ. Let

σ2
D := sup

f∈D
PT f2 = sup

h∈H
E
[
(q (T,X | h)− q̃ (T,X | h))

2
]
.

By LIE and the fact that (Wp;+ +Wp;−)
2

= Kp;+ (|X| /h),

E
[
(q (T,X | h)− q̃ (T,X | h))

2
]

= E

 1

h
(Wp;+ +Wp;−)

2
(ε− µε)2

 1√
∆E2

− 1√
ξ (|X|) f|X| (|X|)ω0,2

p;+

2


=

∫ ∞
0

1

h
Kp;+

( z
h

)2

√ξ (z) f|X| (z)

∆E2
− 1√

ω0,2
p;+

2

dz. (S9)

Note that ∆E2 =
∫∞

0
h−1Kp;+ (z/h)

2
ξ (z) f|X| (z) dz and therefore, it follows from mean value expansion

and (S9) that σ2
D = O

(
h

2
)
. By Chen and Kato (2020, Corollary 5.5), E

[∥∥GTn∥∥D] > σD
√

log (n) +

log (n) ‖FD‖PT ,12 n
1/12/

√
n and therefore, E

[∥∥GTn∥∥D] = O
(√

log (n) · h+ log (n)
(
n1/12/n1/2

))
. Let σ2

Q̃
:=

supf∈Q̃PT f2 and σ2
Q := supf∈QPT f2. It is easy to see that PT f2 = 1, if f ∈ Q or f ∈ Q̃ and therefore,
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σ2
Q̃

= σ2
Q = 1. Similarly, E

[∥∥GTn∥∥Q̃] > σQ̃
√

log (n) + log (n)
∥∥FQ̃

∥∥
PT ,12

n1/12/
√
n and a similar inequality

with Q̃ replaced by Q holds. Therefore, E
[∥∥GTn∥∥Q̃] � E

[∥∥GTn∥∥Q] = O
(√

log (n)
)
. Then it follows from

Markov’s inequality that
{
GTn q̃ (· | h)

}2 −
{
GTn q (· | h)

}2
= Op

(
log (n)h+ log (n)

3/2 (
n1/12/n1/2

))
. The

conclusion follows from this result and LRp (ϑ0 | h) =
{
GTn q̃ (· | h)

}2
+Op

(
log (n)h+

√
log (n)υ†n

)
. �

Proof of Lemma 5. Let rn :=
√
n̄/log (n), V i := Vi1 (Vi > rn), V i := Vi1 (Vi ≤ rn) and

(
V , V

)
be defined

similarly. Then write n̄−1/2
∑
i

(
W k
p;s,iVi − E

[
W k
p;sV

])
=W+W, whereW := n̄−1/2

∑
i

(
W k
p;s,iV i − E

[
W k
p;sV

])
and W := n̄−1/2

∑
i

(
W k
p;s,iV i − E

[
W k
p;sV

])
. Let σ2

W := Var
[
h−1/2W k

p;sV
]
. By σ2

W ≤ E
[
h−1W 2k

p;sV
2
]
, LIE

and change of variables, σ2
W = O (1).

∣∣W k
p;s,iV i − E

[
W k
p;sV

]∣∣ is bounded by an upper bound that is pro-

portional to rn. Let c > 0 denote an arbitrary positive constant. By Giné and Nickl (2015, Theorem 3.1.7

and Equation 3.24) with u = log (nc), Pr
[
|W| ≥

(√
2cσ2
W + c/3

)√
log (n)

]
≤ 2n−c. By σ2

W = O (1) and

taking c to be sufficiently large, W = O?p

(√
log (n)

)
. By Markov’s inequality, the fact that V

2 ≤ V 2 |V/rn|3

and change of variables, Pr
[∣∣W∣∣ ≥√log (n)

]
≤ E

[
h−1W 2k

p;sV
2
]
/log (n) ≤ E

[
h−1W 2k

p;s |V |
5
]
/
(
r3
n · log (n)

)
=

O
(
log (n) /n̄3/2

)
and therefore, W = O?p

(√
log (n)

)
. �

Proof of Lemma 6. ByMarkov’s inequality, Pr
[
n̄−1

∑
i ‖Ui‖

5
> ∆‖U‖5 + c

]
is bounded above by the fourth

central moment of n̄−1
∑
i ‖Ui‖

5 divided by c4, where c > 0 is an arbitrary positive constant. By straightfor-

ward calculation and change of variables, its fourth central moment is bounded above by 3n−2
(

E
[
h−2 ‖U‖10

])2

+

n−3E
[
h−4 ‖U‖20

]
= O

(
n̄−2

)
. Therefore, n̄−1

∑
i ‖Ui‖

5
= O?p (1) and by maxi ‖Ui‖ ≤

(∑
i ‖Ui‖

5
)1/5

,

maxi ‖Ui‖ = O?p
(
n̄1/5

)
. Then, by this result and the definition of L], Pr

[
maxisupλ∈L]

∣∣λ>Ui∣∣ ≥ 1/2
]
is

bounded above by Pr
[
maxi ‖Ui‖ ≥

(√
n̄/log (n)

)
/2
]

= O
(
n̄−2

)
. Therefore, L] ⊆ L (ϑ) wp? and λ] :=

argmaxλ∈L]
S (λ, ϑ) exists wp?. By using U = O?p

(√
log (n)

)
and ∆UU> −∆UU> = O?p

(√
log (n) /n̄

)
, which

follow from Lemma 5, and repeating the steps in the proof of Lemma 2,
√
n̄λ] = O?p

(√
log (n)

)
. Then,

√
n̄λ] ≤ log (n) /2 wp? and S (λ], ϑ) = supλ∈L(ϑ)S (λ, ϑ) = O?p (log (n)). By similar arguments, boundedness

of Θ and Ûi = Ui − Giη̂p, maxi

∥∥∥Ûi∥∥∥ = O?p
(
n̄1/5

)
and n̄−1

∑
i

∥∥∥Ûi∥∥∥2

= O?p (1). By repeating the steps in the

proof of Lemma 2,
√

log (n)
∥∥∥Û∥∥∥ ≤ supλ∈L(ϑ)S (λ, ϑ) + 2

(
n̄−1

∑
i

∥∥∥Ûi∥∥∥2
)

log (n) = O?p (log (n)). (a) follows

from (S4), U = O?p

(√
log (n)

)
, Û = O?p

(√
log (n)

)
and the fact that %min

(
∆
>
G∆G

)
is bounded away from

zero wp?, which follows from Lemmas 1 and 5. The proof of (b) parallels that of Lemma 2(b) and uses the

fact ∆̂UU> −∆UU> = O?p

(√
log (n) /n̄

)
. (c) and (d) follow from similar arguments. �

Proof of Lemma 7. A decomposition LR? = n̄
(
R̃2

1 + 2R̃1R̃2 + 2R̃1R̃3 + R̃2
2

)
can be derived. R̃k is a

homogeneous k-th order polynomial of
(
Ak, Akl, Aklm, Ck,n, Ck;l,n

)
so that R̃1 = O?p

(√
log (n) /n̄

)
, R̃2 =

O?p (log (n) /n̄) and R̃3 = O?p

(
(log (n) /n̄)

3/2
)
. −M is a projection matrix onto the orthogonal complement

of the column space of Π†. Let $0 be a vector spanning the one-dimensional orthogonal complement of
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the column space of Π† so that −M = $0

(
$>0 $0

)−1
$>0 . Let $ := $0/

√
$>0 $0. Then, $>$ = 1 and

−M = $$>. The expressions of
(
R̃1, R̃2, R̃3

)
can be readily obtained in a special case of Ma (2017).

Algebraic calculations in Ma (2017) show that by setting R̃1 := $(k)Ak,

R̃2 :=
1

2
M(mk)$(n)AmnAk−$(n)Andϑ+aAdϑ+a+

{
1

3
αvmnM(vl)M(mk)$(n) − γm;v,oΩ(on)P(nk)M(ml)$(v)

}
×AlAk +

{(
γdϑ+a;v,m[dϑ + a, v]

)
Ω(mo)P(ok)$(v) − αvmdϑ+aM(vk)$(m)

}
AkAdϑ+a − Ω(ko)P(om)$(l)

× Cl,kAm +
{
αv dϑ+a dϑ+b$(v) − γdϑ+a;dϑ+b,mΩ(mn)$(n)

}
Adϑ+aAdϑ+b + Ω(km)$(m)Cdϑ+a,kAdϑ+a, (S10)

where γdϑ+a;v,m[dϑ + a, v] denotes γdϑ+a;v,m + γv;dϑ+a,m and R̃3 to be given by the formula provided in

Ma (2017, Appendix D.3), we have LR? = n̄
(
R̃2

1 + 2R̃1R̃2 + 2R̃1R̃3 + R̃2
2

)
. (S10) is formally the same as

Ma (2017, (D.2)) with terms that depend on the second derivatives removed. The expression of R̃3 is also

essentially the same as that of R3 in Ma (2017, Appendix D.3) with terms that depend on the higher-order

derivatives removed and hence omitted for brevity.

Let αk := ∆V(k) and Åk := Ak − αk. By replacing Ak with Åk + αk, we have R̃1 = R̃10 + R̃11, where

R̃10 := $(k)αk and R̃11 := $(k)Åk. Similarly, we replace Ak with Åk+αk to decompose R̃2 = R̃22 +R̃21 +R̃20

so that R̃2k is a homogeneous (2− k)−th order polynomial of α1, ..., α2du :

R̃21 :=
1

2
M(mk)$(n)Amnαk−$(n)Andϑ+aαdϑ+a+

2

3
αvmnM(vl)M(mk)$(n)Ålαk−γm;v,oΩ(on)P(nk)M(ml)$(v)

×
(
Ålαk[l, k]

)
+
{(
γdϑ+a;v,m[dϑ + a, v]

)
Ω(mo)P(ok)$(v) − αvmdϑ+aM(vk)$(m)

}(
αkÅdϑ+a[k, dϑ + a]

)
− Ω(ko)P(om)$(l)Cl,kαm +

{
αv dϑ+a dϑ+b$(v) − γdϑ+a;dϑ+b,mΩ(mn)$(n)

}(
αdϑ+aÅdϑ+b[dϑ + a, dϑ + b]

)
+ Ω(km)$(m)Cdϑ+a,kαdϑ+a, (S11)

R̃22 is defined by the right hand side of (S10) with Ak replaced by Åk and R̃20 := R̃2−R̃22−R̃21 = O
(
‖∆U‖2

)
.

Let R0 := R̃10 + R̃20, R1 := R̃11 + R̃21 and R2 := R̃22. We decompose R̃3 = R̃33 + R̃32 + R̃31 + R̃30 in

a similar manner and let R3 := R̃33. R3 is given by the formula of R̃3 with Ak replaced by Åk. Then,

let R := R1 + R2 + R3. By Lemma 5, R̃1 + R̃2 + R̃3 = R0 + R + O?p (‖∆U‖ log (n) /n̄) and therefore,

LR? = n̄ (R0 +R)
2

+O?p
(
υ]n
)
.

Let F :=
(
Wp ⊗ U,Wp,

(
W 2
p;+,W

2
p;−
)> ⊗ (U,U2

)
,
(
W 3
p;+,W

3
p;−
)> ⊗ U3

)
. Fi is defined analogously and

let df denote the dimension of F . It can be shown that
√
n̄R := hn

(
F
)
, where F := n̄−1/2

∑
i (Fi − E [F ]) and

hn is a cubic polynomial. E.g.,
√
n̄$(k)Åk = $̃>∆

−1/2

UU>
(
n̄−1/2

∑
i (Ui − E [U ])

)
, where $̃ := S

[
$> 0>dz

]>
.

It can be shown that other terms on the right hand side of (S11) can also be written as linear functions
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of F . Similarly, it can be shown by tedious algebra that
√
n̄R2 and

√
n̄R3 are homogenous quadratic

and cubic polynomials of F . A more lucid proof of this fact uses the observation that `p
(
ϑ̂p | h

)
=

infθ2supλ2
2
∑
i log

(
1 + λ>2 Ūi (θ2)

)
. Let Mi (θ0, θ1) := Wp,i ⊗ (Yi − θ0Di − θ1). By rearranging the mo-

ment conditions, `p
(
ϑ̂p | h

)
= infθ0,θ1,θ2supλ1,λ2

2
∑
i log

(
1 + λ>1Mi (θ0, θ1) + λ>2 Ūi (θ2)

)
. Let Wi (θ) :=(

Mi (θ0, θ1) , Ūi (θ2)
)
. ϑ̂p and λ̂ :=

(
λ̂1, λ̂2

)
satisfy the first-order conditions wp?:

∑
i

Mi

(
ϑ̂p,0, ϑ̂p,1

)
1 + λ̂>Wi

(
ϑ̂p

) = 02,
∑
i

Ūi
(
ϑ̂p,2

)
1 + λ̂>Wi

(
ϑ̂p

) = 02dz ,
∑
i

(Wp,i ⊗ (Di, 1))
>
λ̂1

1 + λ̂>Wi

(
ϑ̂p

) = 02,
∑
i

Ḡ>i λ̂2

1 + λ̂>Wi

(
ϑ̂p

) = 0dz .

The third condition implies that λ̂1 = 02 wp?. Therefore, `p
(
ϑ̂p | h

)
= 2

∑
i log

(
1 + λ̂>2 Ūi

(
ϑ̂p,2

))
and the

second and fourth conditions are
∑
i Ūi

(
ϑ̂p,2

)
/
(

1 + λ̂>2 Ūi
(
ϑ̂p,2

))
= 02dz and

∑
i Ḡ>i λ̂2/

(
1 + λ̂>2 Ūi

(
ϑ̂p,2

))
=

0dz , which coincide with the first-order conditions of infθ2supλ2

∑
i log

(
1 + λ>2 Ūi (θ2)

)
. Therefore, we have

`p

(
ϑ̂p | h

)
= infθ2supλ2

2
∑
i log

(
1 + λ2Ūi (θ2)

)
. By expansion and Lemma 6, we get approximations for λ̂2,

ϑ̂p,2 and `p
(
ϑ̂p | h

)
which are similar to (27) and (28). Then it is clear that by replacing sample averages

with sums of their centered versions and population counterparts we can get further approximations which

are polynomials in n̄−1/2
∑
i

(
F̄i − E

[
F̄
])
, where

(
F̄i, F̄

)
are defined by the formulae of (Fi,F) with (Ui, U)

replaced by
(
Ūi, Ū

)
. Similarly, the stochastic expansion of `p

(
ϑ0, ϑ̃p | h

)
should involve only terms in F .

Let κj (V ) denote the j-th cumulant of a random variable V . We follow arguments in the proof of Calonico

et al. (2022, Theorem S.1) and apply Skovgaard (1986, Theorem 3.4) with s = 4 to Sn := B−1/2F where

B := Var [F ] /h. For any t ∈ Rdf with ‖t‖ = 1, by change of variables and calculation of the moments (see,

e.g., DiCiccio et al., 1988, Page 12), κ3

(
t>Sn

)
= E

[(
t>Sn

)3]
= O

(
n̄−1/2

)
, κ4

(
t>Sn

)
= E

[(
t>Sn

)4] −
3
(

E
[(
t>Sn

)2])2

= O
(
n̄−1

)
and ρs,n (t) := max

{∣∣κ3

(
t>Sn

)∣∣ /3!,
√
|κ4 (t>Sn)| /4!

}
= O

(
n̄−1/2

)
, uniformly

in t. Condition I and II of Skovgaard (1986, Theorem 3.4) are satisfied by taking an (t) ∝
√
n̄ and εn = n̄−3/2.

Let Ψ̂V (t) := E
[
exp

(
it>V

)]
denote the characteristic function of a random vector V , where i :=

√
−1.

Let Fs :=
(
Wp;sU,Wp;s,W

2
p;s

(
U,U2

)
,W 3

p;sU
3
)
, s ∈ {−,+}. Then, Ψ̂F (t) = E

[
exp

(
it>+F+

)
1 (X ≥ 0)

]
+

E
[
exp

(
it>−F−

)
1 (X < 0)

]
, where (t−, t+) denote corresponding coordinates of t. By change of variables,

E
[
exp

(
it>+F+

)
1 (X ≥ 0)

]
= h (fX (0)E+ (t+) +O (h)) + Pr [X > h], where E+ is the characteristic function

of Kp;+ (V ) (U, 1), Kp;+ (V )
2 (
U,U2

)
, Kp;+ (V )

3
U3, where (V,U) has the joint density given by (v, u) 7→

1 (0 ≤ v ≤ 1) fU |X (u | 0). A similar result holds for E
[
exp

(
it>−F−

)
1 (X < 0)

]
with E− (t−) defined similarly.

Therefore, Ψ̂F (t) = 1−Pr [−h < X ≤ h]+hfX (0) (E+ (t+) + E− (t−))+O
(
h2
)
. By Assumption 5, the vector-

valued functions (v, u) 7→
(

1,
(
Kp;+ (v) ,Kp;+ (v)

2
,Kp;+ (v)

3
)
⊗
(
1, u, u2, u3

))
are linearly independent. By

invoking the same arguments as in the proof of Calonico et al. (2022, Lemma S.9), ∀ε > 0, ∃cε > 0 such

that sup‖t‖>ε |E+ (t+)| < 1− cε. A similar result holds for E−. Then by these results, ∀ε > 0, ∃cε > 0 such
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that sup‖t‖>ε

∣∣∣Ψ̂F (t)
∣∣∣ < 1− cεh, when n is sufficiently large. It follows from this result and arguments in the

proof of Calonico et al. (2022, Theorem S.1) that ∀δ > 0, ∃cδ > 0 such that sup‖t‖>δ
√
n̄

∣∣∣Ψ̂Sn (t)
∣∣∣ ≤ (1− cδh)

n

when n is sufficiently large. It is also easy to see that ∀δ > 0, (1− cδh)
n ≤ ε

df/2+2
n , when n is sufficiently

large. Therefore, Condition III′′α of Skovgaard (1986, Theorem 3.4 and Remark 3.5) is satisfied with α = 1.

Verification of Condition IV of Skovgaard (1986, Theorem 3.4) follows from essentially the same calculations

and arguments in the proof of Calonico et al. (2022, Theorem S.1). Now all conditions for Skovgaard (1986,

Theorem 3.4) are verified. It shows that Sn admits a valid Edgeworth expansion, i.e., conditions (3.1), (3.2)

and (3.3) of Skovgaard (1981) are satisfied with Un = Sn, s = 4, βs,n = n̄−1 and the Edgeworth expansion

holds uniformly over the class of all convex sets in Rdf . Note that we can write
√
n̄R = hn

(
B1/2Sn

)
. Then

we apply Skovgaard (1981) to show that the Edgeworth expansion is preserved by smooth transformations.

Condition (3.4) of Skovgaard (1981) is satisfied with gn taken to be x 7→ hn
(
B1/2x

)
whose the gradient

at zero ∇gn (0) is given by ∇gn (0) = B1/2
(
$̃>∆

−1/2

UU> , 0
>
df−2du

)>
+ O (‖∆U‖) by the chain rule. Then we

apply Skovgaard (1981, Theorem 3.2) to fn (Sn) := B−1
n gn (Sn), where B2

n := ∇gn (0)
>∇gn (0). Then, B2

n =

$̃>∆
−1/2

UU> (Var [U ] /h) ∆
−1/2

UU> $̃+O (‖∆U‖) = 1+O (‖∆U‖). Condition I of Skovgaard (1981, Assumption 3.1)

is satisfied with p = 4. Condition II of Skovgaard (1981, Assumption 3.1) is satisfied with λn = O
(
n̄−1/2

)
so

that λp−1
n = o

(
n̄−1

)
. Now all conditions for Skovgaard (1981, Theorem 3.2) are verified. It is left to compute

the approximate cumulants.

Then we calculate the formal cumulants of fn (Sn) = B−1
n

√
n̄R. In the calculations, we repeatedly use

formulae for moments of products of sample averages (e.g., DiCiccio et al., 1988, Page 12) and Lemma 1. By

definition, E [R1] = 0. We calculate E [R2], let the remainder term absorb the terms that involve α1, ..., α2du

and get E [R2] = n̄−1κ̄1 +O (‖∆U‖ /n) where κ̄1 := αmnkM(mk)$(n)/6− Ω(ko)P(om)$(l)γm;l,k. By formulae

for third moments and Lemma 1, E [R3] = O
(
n̄−2

)
. Therefore, κ1

(√
n̄R
)

= κ̃1,n+O
(
n̄−1/2 ‖∆U‖h+ n̄−3/2

)
with κ̃1,n := n̄−1/2κ̄1 . For the second cumulant, by definition, κ2 (R) = E

[
R2
]
−(E [R])

2 and by formulae for

fifth and sixth moments and Lemma 1, E
[
R2
]

= E
[
R2

1

]
+ 2 ·E [R1R2] + 2 ·E [R1R3] + E

[
R2

2

]
+O

(
n̄−3

)
. By

R1 = R̃11 + R̃21 and calculation, E
[
R2

1

]
= E

[
R̃2

11

]
+2 ·E

[
R̃21R̃11

]
+O

(
n̄−1 ‖∆U‖2

)
, E [R1R2]+E [R1R3] =

E
[
R̃11R2

]
+ E

[
R̃11R3

]
+ O

(
n̄−2 ‖∆U‖

)
. Then by calculation, E

[
R̃2

11

]
= n̄−1 + O

(
‖∆U‖2 /n

)
and 2 ·

E
[
R̃21R̃11

]
= n̄−1κ̃21,n+O

(
‖∆U‖2 /n

)
, where κ̃21,n := αmnoM(no)M(mk)αk/3−2γl;dϑ+a,kΩ(km)M(ml)αdϑ+a.

Then, E
[
R2

1

]
= n̄−1 (1 + κ̃21,n)+O

(
n̄−1 ‖∆U‖2

)
. Calculation of 2·E

[
R̃11R2

]
+2·E

[
R̃11R3

]
+E

[
R2

2

]
follows

from replication of calculations in Ma (2017) and we can directly use the results therein. By calculations in

Ma (2017), we have

2 · E
[
R̃11R2

]
+ 2 · E

[
R̃11R3

]
+ E

[
R2

2

]
= n̄−2

8∑
j=1

κ̄2j +O
(
n̄−2 ‖∆U‖h+ n̄−3

)
,
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for some bounded constants κ̄21, ..., κ̄28, e.g., κ̄21 := αvmnM(vo)M(ml)M(nk)αklo/3−αvmdϑ+aM(vo)M(mn)αon dϑ+a+

αndϑ+a dϑ+bM(nm)αmdϑ+a dϑ+b and the O
(
n̄−2 ‖∆U‖h+ n̄−3

)
remainder collects terms that depend on

α1, ..., α2du and higher-order terms from the fourth moment calculation. The expressions of κ̄22, ..., κ̄28 are also

easily obtained fromMa (2017) and hence omitted. Therefore, κ2

(√
n̄R
)

= κ̃2,n+O
(
‖∆U‖2 + n̄−1 ‖∆U‖+ n̄−2

)
,

where κ̃2,n := 1 + κ̃21,n + κ̃22,n and κ̃22,n := n̄−1
(∑8

j=1 κ̄2j − κ̄2
1

)
. By definition, κ3 (R) = E

[
R3
]
− 3 ·

E [R] E
[
R2
]

+ 2 (E [R])
3 and by E [R] = E [R2] +O

(
n̄−2

)
, E [R2] = O

(
n̄−1

)
, E
[
R2
]

= E
[
R2

1

]
+O

(
n̄−2

)
and

E
[
R3
]

= E
[
R3

1

]
+3 ·E

[
R2R

2
1

]
+O

(
n̄−3

)
, which follows from formulae for higher moments, we have κ3 (R) =

E
[
R3

1

]
− 3

(
E
[
R2R

2
1

]
− E [R2] E

[
R2

1

])
+O

(
n̄−3

)
. It is easy to check that E

[
R3

1

]
= E

[
R̃3

11

]
+O

(
n̄−2 ‖∆U‖

)
,

E
[
R2R

2
1

]
= E

[
R2R̃

2
11

]
+ O

(
n̄−2 ‖∆U‖

)
. By these results and E

[
R2

1

]
= E

[
R̃2

11

]
+ O

(
n̄−1 ‖∆U‖

)
, κ3 (R) =

E
[
R̃3

11

]
− 3

(
E
[
R2R̃

2
11

]
− E [R2] E

[
R̃2

11

])
+ O

(
n̄−3 + n̄−2 ‖∆U‖

)
. Calculation and expansion of E

[
R̃3

11

]
−

3
(

E
[
R2R̃

2
11

]
− E [R2] E

[
R̃2

11

])
follows from replication of calculations in Ma (2017). For example, by cal-

culation using formulae for moments (DiCiccio et al., 1988),

E
[
R̃3

11

]
= n−2

(
E

[(
h−1$(k)V(k) −$(k)αk

)3
])

= n−2E

[(
h−1$(k)V(k)

)3
]

+O
(
n̄−2 ‖∆U‖h

)
,

and the O
(
n̄−2 ‖∆U‖h

)
remainder collects all terms in the expansion of the third moment which depend

on α1, ..., α2du . Note that we can write E
[
h−1

(
$(k)V(k)

)3]
= $(k)$(l)$(m)αklm in coordinate notations.

Similarly, we calculate E
[
R2R̃

2
11

]
−E [R2] E

[
R̃2

11

]
. We note that coefficients of terms of order n̄−2 in E

[
R̃3

11

]
−

3
(

E
[
R2R̃

2
11

]
− E [R2] E

[
R̃2

11

])
are formally the same as those of the leading terms in the calculation of the

formal third cumulant in Ma (2017). Calculations in Ma (2017) show that the sum of these coefficients

are exactly zero and therefore, the leading term vanishes so that κ3

(√
n̄R
)

= O
(
‖∆U‖ /

√
n̄+ n̄−3/2

)
. By

this result, the fact that κ4 (R) = E
[
R4
]
− 3

(
E
[
R2
])2 − 4 · E [R]κ3 (R) + 2 (E [R])

4, E [R] = O
(
n̄−1

)
,

R = R̃11 + R̃21 +R2 +R3 and standard calculations,

κ4 (R) = E
[
R4
]
− 3

(
E
[
R2
])2

+O
(
n̄−3 ‖∆U‖+ n̄−4

)
=

{
E
[
R̃4

11

]
− 3

(
E
[
R̃2

11

])2
}

+ 4
{

E
[
R2R̃

3
11

]
− 3 · E

[
R2R̃11

]
E
[
R̃2

11

]}
+ 6

{
E
[
R2

2R̃
2
11

]
− E

[
R2

2

]
E
[
R̃2

11

]}
+ 4

{
E
[
R2R̃

3
11

]
− 3 · E

[
R2R̃11

]
E
[
R̃2

11

]}
+O

(
n̄−3 ‖∆U‖+ n̄−4

)
. (S12)

And by standard calculations,

E
[
R̃4

11

]
− 3

(
E
[
R̃2

11

])2

= n−3

(
E

[(
h−1$(k)V(k) −$(k)αk

)4
]
− 3

(
E

[(
h−1$(k)V(k) −$(k)αk

)2
])2

)

= n−3

(
E

[(
h−1$(k)V(k)

)4
]
− 3

(
E

[(
h−1$(k)V(k)

)2
]))

+O
(
n̄−3 ‖∆U‖h

)
,
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and the O
(
n̄−3 ‖∆U‖h

)
remainder collects all terms that depend on α1, ..., α2du . Similarly, we also calculate

E
[
R2R̃

3
11

]
− 3 · E

[
R2R̃11

]
E
[
R̃2

11

]
, E
[
R2

2R̃
2
11

]
− E

[
R2

2

]
E
[
R̃2

11

]
and E

[
R2R̃

3
11

]
− 3 · E

[
R2R̃11

]
E
[
R̃2

11

]
on

the right hand side of the second equality in (S12), ignore small-order terms that depend on α1, ..., α2du

and take the sum of the leading terms. We do not need to rework on the calculations since they are for-

mally the same as those done in Ma (2017). Calculations in Ma (2017) show that the sum of the leading

terms on the right hand side of (S12) is exactly zero so that it follows from this result and (S12) that

κ4

(√
n̄R
)

= O
(
n̄−1 ‖∆U‖+ n̄−2

)
. By previous calculations and Bn = 1 + O (‖∆U‖), we get the approxi-

mate cumulants for fn (Sn): κ1 (fn (Sn)) = B−1
n κ̃1,n +O

(
n̄−1/2 ‖∆U‖h+ n̄−3/2

)
, κ2 (fn (Sn)) = B−2

n κ̃2,n +

O
(
‖∆U‖2 + n̄−1 ‖∆U‖+ n̄−2

)
, κ3 (fn (Sn)) = O

(
‖∆U‖ /

√
n̄+ n̄−3/2

)
and κ4 (fn (Sn)) = O

(
n̄−1 ‖∆U‖+ n̄−2

)
.

Let φ
(
· | µ, σ2

)
denote the PDF of N

(
µ, σ2

)
. By applying Skovgaard (1981, Theorem 3.2) to fn (Sn) =

B−1
n

√
n̄R,

Pr
[
n̄ (R0 +R)

2 ≤ x
]

=

∫
|t+(
√
n̄R0)/Bn|≤√x/Bn

φ
(
t | B−1

n κ̃1,n, B
−2
n κ̃2,n

)
dt+O

(
‖∆U‖ /

√
n̄+ n̄−3/2

)
, (S13)

uniformly in x > 0. By using the recurrence properties of non-central χ2 (Cohen, 1988) and mean value

expansion, we have ∂F (x | λ) /∂λ|λ=λ = −xfχ2
1

(x) + O
(
λ
)
. By this result, B2

n = 1 + O (‖∆U‖), change of

variables and mean value expansion,

∫
|t+(
√
n̄R0)/Bn|≤√x/Bn

φ
(
t | B−1

n κ̃1,n, B
−2
n κ̃2,n

)
dt =

∫
|t|≤
√
x/κ̃2,n

φ
(
t |
(√

n̄R0 + κ̃1,n

)
/
√
κ̃2,n, 1

)
dt

= F

(
x

κ̃2,n
|
(√
n̄R0 + κ̃1,n

)2
κ̃2,n

)
= Fχ2

1
(x)− xfχ2

1
(x)

((√
n̄R̃10 + κ̃1,n

)2

+ κ̃21,n + κ̃22,n

)
+O

(
ν]n
)
. (S14)

By (S13) and (S14),

Pr
[
n̄ (R0 +R)

2 ≤ x
]

= Fχ2
1

(x)− C̃ pre
p (n, h)xfχ2

1
(x) +O

(
ν]n
)
, (S15)

where C̃ pre
p (n, h) := n̄R̃2

10 + 2
√
n̄R̃10κ̃1,n + κ̃21,n + n̄−1

∑8
j=1 κ̄2j . By tedious and lengthy algebra, we

can directly show that R̃2
10 = B†p − B‡p and

∑8
j=1 κ̄2j =

∑4
j=1

(
V †p,j − V ‡p,j

)
+ O (h) and 2

√
n̄R̃10κ̃1,n +

κ̃21,n = O (h ‖∆U‖). By calculating E [LR?] with arguments used repeatedly in previous proofs, we find

that C̃ pre
p (n, h) is just the leading term in the expansion E [LR?] − 1 = C̃ pre

p (n, h) + o
(
υ\n
)
, where υ\n :=

‖∆U‖+ n̄ ‖∆U‖2 + n̄−1. We use the fact that `p
(
ϑ̂p | h

)
= infθ2supλ2

2
∑
i log

(
1 + λ>2 Ūi (θ2)

)
and an alter-

native expression for LR? = n̄
(˜̀? − ̂̀?) to get a more lucid proof.

We consider the singular value decomposition of ∆
−1/2

ŪŪ> (−∆Ḡ) such that S̄>∆
−1/2

ŪŪ> (−∆Ḡ) T̄ =

[
Λ̄ 0dz×dz

]>
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where S̄>S̄ = I2dz , T̄>T̄ = Idz and Λ̄ is a dz-dimensional diagonal matrix. We apply the rotation by

V̄i (θ2) := Γ̄Ūi (θ2) where Γ̄ := S̄>∆
−1/2

ŪŪ> so that `p
(
ϑ̂p | h

)
= infθ2supλ2

2
∑
i log

(
1 + λ>2 V̄i (θ2)

)
and calcu-

lations from Matsushita and Otsu (2013) can be applied. Also denote V̄i := Γ̄Ūi, H̄i := Γ̄
(
−Ḡi

)
(V̄ and H̄

defined similarly) and Ω̄ :=
(
Λ̄T̄>

)−1. Then it follows that ∆V̄V̄> = I2dz×2dz and

 −∆V̄V̄> ∆H̄

∆>H̄ 0dz×dz


−1

=


0dz×dz 0dz×dz Ω̄>

0dz×dz −Idz 0dz×dz

Ω̄ 0dz×dz Ω̄Ω̄>

 =

 − (Γ̄>)−1
Q̄Γ̄−1 −

(
Γ̄>
)−1

N̄

−N̄>Γ̄−1 Ō

 . (S16)

Let
(
Aa
‡, A

ab
‡ , A

abc
‡ , Ca,s

‡ , Ca;b,s
‡

)
,
(
αa
‡, α

ab
‡ , α

abc
‡ , αabcd

‡

)
and

(
γa,s‡ , γa;b,s‡ , γa,s;b,t‡ , γa;b;c,s

‡

)
be defined by the same

formulae as those of
(
Ak, Akl, Aklm, Ck,n, Ck;l,n

)
,
(
αk, αkl, αklm, αklmn

)
and

(
γk,n, γk;l,n, γk,n;l,o, γk;l;m,n

)
, with

(V,H,Vi,Hi) replaced by
(
V̄, H̄, V̄i, H̄i

)
. The leading terms in the stochastic expansion of n̄−1`p

(
ϑ̂p | h

)
is given by n̄−1 ̂̀? = R̃dz+a

‡1 R̃dz+a
‡1 + 2R̃dz+a

‡1 R̃dz+a
‡2 + 2R̃dz+a

‡1 R̃dz+a
‡3 + R̃dz+a

‡2 R̃dz+a
‡2 , where the expressions of(

R̃dz+a
‡1 , R̃dz+a

‡2 , R̃dz+a
‡3

)
are readily obtained in a special case of Matsushita and Otsu (2013) when the moment

conditions are linear in parameters. E.g., R̃dz+a
‡1 := Adz+a

‡ ,

R̃dz+a
‡2 := −1

2
Adz+b
‡ Adz+a dz+b

‡ +
1

3
αdz+a dz+b dz+c
‡ Adz+b

‡ Adz+c
‡ − Ω̄(st)Cdz+a,s

‡ At‡ + Ω̄(st)γdz+a;dz+b,s
‡ Adz+b

‡ At‡

and the expression of R̃dz+a
‡3 is omitted for brevity (see Matsushita and Otsu, 2013, A.1). Let Åa

‡ := Aa
‡−αa

‡.

We again replace Aa
‡ by Åa

‡ + αa
‡ to obtain R̃dz+a

‡1 = R̃dz+a
‡11 + R̃dz+a

‡10 , R̃dz+a
‡2 = R̃dz+a

‡22 + R̃dz+a
‡21 + R̃dz+a

‡20

and R̃dz+a
‡3 = R̃dz+a

‡33 + R̃dz+a
‡32 + R̃dz+a

‡31 + R̃dz+a
‡30 . Then by standard calculations, E

[
n̄−1 ̂̀?] is equal to

the sum of R̃dz+a
‡10 R̃dz+a

‡10 , R̃dz+a
‡10 E

[
R̃dz+a
‡22

]
, E
[
R̃dz+a
‡11 R̃dz+a

‡21

]
, E
[
R̃dz+a
‡11 R̃dz+a

‡11

]
and 2 · E

[
R̃dz+a
‡11 R̃dz+a

‡22

]
+ 2 ·

E
[
R̃dz+a
‡11 R̃dz+a

‡33

]
+ E

[
R̃dz+a
‡22 R̃dz+a

‡22

]
with an o

(
υ\n
)
remainder term. By inverting using the second equality

of (S16), R̃dz+a
‡10 R̃dz+a

‡10 = αdz+a
‡ αdz+a

‡ = Q̄(ab)ῩaῩb. By calculation and ∆V̄V̄> = I2dz×2dz , E
[
R̃dz+a
‡11 R̃dz+a

‡11

]
=

n̄−1dz + O
(
‖∆U‖2 /n

)
. It is easy to calculate that E

[
R̃dz+a
‡22

]
= −n̄−1αdz+a dz+b dz+b

‡ /6 − Ω̄(st)γt;dz+a,s
‡ +

O (‖∆U‖ /n). Then by (S16),

R̃dz+a
‡10 E

[
R̃dz+a
‡22

]
= −n̄−1

(
1

6
ῩabcQ̄(ab)Q̄(cd)Ῡd + Γ̄a;b,sN̄(as)Q̄(bc)Ῡc

)
+ o

(
υ\n/n̄

)
.

By calculation and using (S16), E
[
R̃dz+a
‡11 R̃dz+a

‡21

]
= n̄−1ῩabcQ̄(ab)Q̄(cd)Ῡd/6 + o

(
υ\n/n̄

)
. By calculation in

Matsushita and Otsu (2013, A.4),

2 · E
[
R̃dz+a
‡11 R̃dz+a

‡22

]
+ 2 · E

[
R̃dz+a
‡11 R̃dz+a

‡33

]
+ E

[
R̃dz+a
‡22 R̃dz+a

‡22

]
= n̄−2

8∑
j=1

κ̄‡2j + o
(
υ\n/n̄

)
,

S12



where the constants are defined by

(κ̄†21, κ̄‡22, κ̄‡23, κ̄‡24, κ̄‡25, κ̄‡26, κ̄‡27, κ̄‡28) :=

(
1

2
ῩabcdQ̄(ab)Q̄(cd),−1

3
ῩabcQ̄(ad)Q̄(be)Q̄(cf)Ῡdef ,

2Γ̄a;b;c,sN̄(as)Q̄(bc),−Γ̄a;b,sQ̄(ac)Q̄(bd)N̄(es)Ῡcde,−Γ̄a,s;b,tQ̄(ab)Ō(st)

Γ̄a;c,sQ̄(ab)Q̄(cd)Ō(st)Γ̄b;d,t,−Γ̄a;c,sN̄(at)Q̄(cd)N̄(bs)Γ̄b;d,t, Γ̄a;c,sN̄(as)Q̄(cd)N̄(bt)Γ̄b;d,t
)
.

Note that (κ̄†21, κ̄‡22, κ̄‡23, κ̄‡25) =
(
V ‡p,1,V

‡
p,2,V

‡
p,3,V

‡
p,4

)
. Therefore,

E
[
n̄̂̀?] = dz + n̄B‡p − Γ̄a;b,sN̄(as)Q̄(bc)Ῡc + n̄−1

8∑
j=1

κ̄‡2j + o
(
υ\n
)
.

Let κ̄†2j be defined by the formula of κ̄‡2j with
(
Ῡ, Q̄, N̄, Ō, Γ̄

)
replaced by (Υ,Q†,N†,O†,Γ†) and also

(κ̄†21, κ̄†22, κ̄†23, κ̄†25) =
(
V †p,1,V

†
p,2,V

†
p,3,V

†
p,4

)
. By following the same steps, we get a similar expansion for

E
[
n̄˜̀?]. And, then we have E

[
n̄
(˜̀? − ̂̀?)]− 1 = C̃ pre

p (n, h) + o
(
υ\n
)

C̃ pre
p (n, h) = n̄

(
B†p −B‡p

)
− Γk;l,u

† N
(ku)
† Q

(lm)
† Υm + Γ̄a;b,sN̄(as)Q̄(bc)Ῡc + n̄−1

8∑
j=1

(κ̄†2j − κ̄‡2j) .

It is easy to see that by Lemma 1, Γk;l,u
† � Γ̄a;b,s = O (h). Therefore, Γk;l,u

† N
(ku)
† Q

(lm)
† Υm � Γ̄a;b,sN̄(as)Q̄(bc)Ῡc =

O (‖∆U‖h), κ̄†24 � κ̄‡24 = O (h) and κ̄†26 � κ̄†27 � κ̄†28 � κ̄‡26 � κ̄‡27 � κ̄‡28 = O
(
h2
)
. It follows from

these results that C̃ pre
p (n, h) = C pre

p (n, h) +O
(
‖∆U‖h+ n−1

)
.

It is easily seen that the result (S13) with the weak inequality replaced by a strict inequality still holds

(see Skovgaard, 1981, Theorem 3.2). By LR? = n̄ (R0 +R)
2

+O?p
(
υ]n
)
and the fact (21),

∣∣∣Pr [LR? ≤ x]− Pr
[
n̄ (R0 +R)

2 ≤ x
]∣∣∣ ≤ Pr

[∣∣∣n̄ (R0 +R)
2 − x

∣∣∣ ≤ c1υ]n]+ c2

(
log (n) /n̄3/2

)
= O

(
υ]n
)
,

(S17)

where the equality follows from (S13) and boundedness of φ (· | κ̃1,n, κ̃2,n). The conclusion follows from (S15),

(S17) and C̃ pre
p (n, h) = C pre

p (n, h) +O
(
‖∆U‖h+ n−1

)
. �
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