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Abstract

This paper proposes a novel approach to incorporate covariates in regression discontinuity (RD) de-
signs. We represent the covariate balance condition as over-identifying moment restrictions. The empirical
likelihood (EL) RD estimator efficiently incorporates the information from covariate balance and thus has
an asymptotic variance no larger than that of the standard estimator without covariates. It achieves effi-
ciency gain under weak conditions. We resolve the indeterminacy raised by Calonico, Cattaneo, Farrell,
and Titiunik (2019, Page 448) regarding the asymptotic efficiency gain from incorporating covariates to
RD estimator, as their estimator has the same asymptotic variance as ours. We then propose a robust
corrected EL (RCEL) confidence set which achieves the fast n~* coverage error decay rate even though
the point estimator converges at a nonparametric rate. In addition, the coverage accuracy of the RCEL
confidence set is automatically robust against slight perturbation to the covariate balance condition, which
may happen in cases such as data contamination and misspecified “unaffected” outcomes used as covari-
ates. We also show a uniform-in-bandwidth Wilks theorem, which is useful in sensitivity analysis for the
proposed RCEL confidence set in the sense of Armstrong and Kolesar (2018). We conduct Monte Carlo
simulations to assess the finite-sample performance of our method and also apply it to a real dataset.
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1 Introduction

The RD design resembles a randomized experiment conducted near the cut-off of the score (forcing variable)
and exploits the discontinuous variation in the probability of treatment to nonparametrically identify the
LATE at the cut-off under mild continuity assumptions on the latent variables.! The transparent close-form
identification (Hahn et al., 2001) of the RD LATE calls for nonparametric estimation and inference methods
as they avoid functional form assumptions. See Cattaneo et al. (2019) for a recent review of RD. In practical
implementations, information from pre-treatment covariates (i.e., variables that have already been determined
before the assignment of the treatment) is incorporated to enhance efficiency and compensate for low accuracy
of nonparametric methods. A widely-used procedure is augmented local polynomial (LP) regression where
the covariates enter linearly. Calonico et al. (2019, CCFT, hereafter) formalizes this augmented regression
approach and derives its (first-order) asymptotic properties. CCFT shows that augmented LP regression
estimator consistently estimates the RD local average treatment effect (LATE) under the covariate balance
condition, i.e., the expectations of covariates coincide at both sides of the cut-off. Apart from CCFT,
covariate adjustment for RD receives much attention in recent literature. See Frolich and Huber (2019)
for an alternative approach which requires smoothing over covariates but allows for potential failure of
covariate balance. Arai et al. (2021) and Kreift and Rothe (2021) extend CCFT’s approach to control for a
high-dimensional covariate vector by regularization. Noack et al. (2021) extends CCFT’s linear regression
adjustment to nonparametric adjustment with machine learning methods. See Cattaneo et al. (2021) for a

recent review of covariate adjustment for RD.

This paper studies a novel approach to incorporate covariates in a generalized method of moments (GMM)
framework with local smoothing. We formulate the close-form identification of (sharp or fuzzy) RD treat-
ment effect as LP moment conditions. Then covariate balance is characterized by a set of over-identifying LP
moment conditions and used as “side information”. The LP moment conditions are derived from a population-
level minimum contrast problem (see Bickel and Doksum, 2015, Chapter 11.3 and Jiang and Doksum, 2003).
CCEFT treats covariate balance as a maintained assumption and our approach is not more restrictive in this
regard. Our framework naturally calls for (efficient) GMM estimation. EL and generalized EL (Newey and
Smith, 2004) are popular alternatives to GMM which do not require first-step estimation of the efficient
weighting matrix.? We show in Theorem 1 and Remark 1 that the asymptotic variance of the EL RD es-

timator with the covariate-balancing-induced over-identifying moment conditions included is no larger than

'In a recent study, Hyytinen et al. (2018) confirmed that RD produces estimates that are in line with the results from a
comparable experiment if inference is implemented with the method of Calonico et al. (2014).

2See, e.g., Kitamura (2006) for a comprehensive review of EL and generalized EL. See, e.g., Chen and Qin (2000); Otsu et al.
(2013, 2015); Ma et al. (2019) for EL inference in the context of non-parametric curves. It was shown that EL has favorable
properties relative to GMM. See, e.g., Chen and Cui (2007); Kitamura (2001); Matsushita and Otsu (2013); Newey and Smith
(2004); Otsu (2010); Ma (2017) among many others.



the standard LP regression RD estimator without covariates. In addition, we show that the EL estimator
is first-order equivalent to the regression estimator of CCFT. The first contribution of this paper is that we
provide new insights into CCFT’s method and resolve the indeterminacy raised on Page 448 of CCFT re-
garding asymptotic efficiency. We show that CCFT’s estimator weakly dominates the standard LP regression
estimator without covariates and achieves efficiency gain as long as the true projection coefficients of some
covariates are nonzero. See Remarks 1, 2 and 3. We explain such an asymptotic efficiency ranking from the
perspective of local randomization and provide a GMM interpretation of CCFT’s estimator: its potential
efficiency gain can be attributed to efficient inclusion of covariate balance as side information. Our result

also provides a simple characterization of “irrelevant” covariates (Remark 3).

Then we show that inference using the EL ratio has several favorable theoretical advantages. EL infer-
ence does not require calculation of standard errors and explicit studentization. Theorem 2 shows a new
uniform-in-bandwidth extension of the standard Wilks theorem (i.e., the EL ratio statistic is asymptotically
x?). Our uniform-in-bandwidth version adjusts for specification search over multiple bandwidths known as
bandwidth snooping (Armstrong and Kolesar, 2018, AK, hereafter) and takes into account the effects from
data-dependent bandwidths in a robust manner (Remarks 4 and 6). It also provides a powerful tool for
sensitivity analysis in the sense of AK (Remark 5). By deriving distributional expansions, Calonico et al.
(2018) shows that proper studentization for Wald-type inference is crucial for having desirable coverage prop-
erties. We follow the same approach and show that implicit studentization of EL achieves favorable coverage
properties. Theorem 3 characterizes the leading coverage error (i.e., the discrepancy between the nominal
and finite-sample coverage probabilities, see, e.g., Calonico et al. (2020)) term in the distributional expansion
of the EL ratio statistic. The coverage expansion for the EL confidence set for the RD LATE is strikingly as
simple as the asymptotic mean square error (AMSE) for the point estimator. The coverage optimal band-
width, which is defined as the minimizer of this leading coverage error in the spirit of Calonico et al. (2020),
has a simple close form (Remark 9). Theorem 3 constructs a simple data-driven robust corrected EL (RCEL)
confidence set with favorable robustness properties, which is the second contribution of this paper. This
method does not require resampling and is thus computationally inexpensive. It complements the Wald-type
inference method of CCFT and addresses common concerns in empirical applications. In particular, Theorem
3 shows that the EL confidence set admits partial Bartlett correction (Chen, 1996), i.e., rescaling the EL ratio
for improving the coverage accuracy, which can also be combined with internalized bias removal (Calonico

et al., 2014).% In the context of EL inference on nonparametric curves, partial Bartlett correctability is a

3Compared with the expressions of correction factors for EL in other contexts (e.g., Chen and Cui, 2007; Matsushita and Otsu,
2013; Ma, 2017), our correction factor is very simple and thus can be estimated with good accuracy in finite samples, thanks to
a special property of the moment conditions under consideration (i.e., asymptotic uncorrelatedness between the conditions and
their derivatives).



stronger property than Bartlett correctability in the conventional sense (Remarks 10 and 11). We show that
our RCEL confidence set achieves a coverage error decay rate of n=! (n € N denotes the sample size) under
minimal smoothness assumptions and also the covariate balance condition. Note that n~! is the coverage
error decay rate of standard two-sided confidence intervals for parameters that can be estimated at the n~=1/2
parametric rate (see, e.g., Hall, 1991). The RCEL confidence set achieves the same rate even though the
EL point estimator converges at a slower nonparametric rate. Therefore, our method is particularly useful

when the researcher is faced with a small sample but the researcher wishes to have the coverage error under

control.

Theorem 4 considers deviation from covariate balance and shows that the coverage accuracy of the RCEL
confidence set for our parameter of interest is highly insensitive to mild deviation (Remark 15), which we
refer to as local imbalance in this paper. Failure of the covariate balance assumption may happen in at least
two realistic situations. In real applications (see, e.g., Cattaneo et al., 2019), the researcher may have access
to observations on outcomes which are determined after treatment but are considered unaffected by the
treatment (“unaffected” outcomes). Covariate balance should also hold for “unaffected” outcomes. However,
specification of the “unaffected” outcomes is based on prior knowledge or empirical evidence, which might
be mistaken. Another concern is that the balance condition holds for pre-treatment covariates in theory
but our sample observations on these covariates are contaminated (possibly due to measurement errors that
occur after treatment) so that they are drawn from a perturbed population (Kitamura et al., 2013) that
slightly violates the balance condition. When covariate balance does not hold exactly, the coverage accuracy
of our RCEL confidence set stays relatively unaffected , while other inference methods may exhibit severe
undercoverage (Remark 16). To the best of our knowledge, these robustness properties are novel in the
literature. We are unaware of any other inference method that has similar properties. These properties
result from the intrinsic second-order properties of EL and the fact that the LP moment conditions for
RD are asymptotically uncorrelated with their derivatives. Combination of RCEL and AK-type correction
is straightforward (Remark 14) and provides a more accurate uniform confidence band that is useful for

sensitivity analysis and robust inference.

In relation to the literature, Otsu et al. (2015) proposed EL inference for RD without covariates. Their
method was based on first-order conditions from standard local linear regression. This paper focuses on
covariate adjustment and uses different moment conditions. In another related paper, Ma et al. (2019)
studied EL inference for the parameter of interest in the density discontinuity design (Jales and Yu, 2016).
The scope of this paper is different from Ma et al. (2019) but the LP moment conditions in both papers are

from population-level LP fitting (minimum contrast problem) in Bickel and Doksum (2015). Our paper uses



a similar approach to covariate adjustment as Wu and Ying (2011); Zhang (2018) who formulated covariate
balance in randomized experiments as moment conditions and proposed EL-type methods. We formulate
local imbalance and study the impact of it on the coverage accuracy by using standard local asymptotic
analysis (e.g., the Pitman approach to local power analysis). Local imbalance can be also viewed as a special
case of local misspecification of the moment conditions in the GMM framework (see, e.g., Armstrong and
Kolesar, 2021 and references therein). But the approach we take differs from those employed by papers
in this strand of literature. Our approach follows Bravo (2003) and is based on second-order asymptotic
expansion of the coverage probability under drifting alternative hypotheses (i.e., local imbalance). Lastly
we note that our approach is potentially more flexible than the augmented regression approach of CCFT.
In the literature, nonlinear estimators are proposed for RD with limited outcome variables (e.g., Xu, 2017,
2018). To the best of our knowledge, covariate adjustment to nonlinear estimation for RD has not been
studied. Extension of CCFT’s linear regression approach in these contexts is not straightforward and the
desired properties (consistency and potential efficiency gain) may no longer hold. Incorporating covariates
by the EL probabilities (see, e.g., Brown and Newey, 2002) derived in this paper seems a simple solution and

is able to deliver efficiency gain under covariate balance. Such extensions are beyond the scope of this paper.

Section 2 quickly reviews the RD design. Section 3 introduces our EL method for RD with covariates.
Section 4 provides results on its first-order asymptotic properties. Section 5 is devoted to second-order
properties. Sections 6 and 7 present results from simulation and empirical exercises. Section 8 concludes.
Proofs of the theorems are collected in the appendix. Proofs of the lemmas are relegated to a supplement

available at ruc-econ.github.io/supplement RD.pdf.

2 Regression discontinuity designs

Let X € R be a continuous score supported on [z,Z]. Let fx denote its density function. We normalize
the cutoff point to zero (so that 0 € [z, Z] without loss of generality) for notational brevity. For any k-times
differentiable univariate function f, let f*) denote the k—th order derivative. In this paper, “a := b” means
that a is defined by b and “a =: b” means that b is defined by a. Denote ¢ = fx (0) and ¢*) = f)((k) (0) for
simplicity. For a random vector (or matrix) V, denote gy (z) = E[V | X = z] and my (2) = gv (z) fx (x).

Denote u&fl = limxTogg,k) (x) and d)gﬁ)f = limzmmg) (z). (,u%fl,z/}&kl) are defined similarly with limgq

replaced by lim, . For simplicity, also denote py ¢ == ,ug)’)s, Yy = 5/02 (se{—,+})and pyx = pv++py,—.
Let a denote the transpose of a. For random vectors (V,U), denote Sy yr o = pyyr s — pvshuTs (S €

{—7 +}) and EVUT,:E = EVUT,-‘,- + EVUT,—'


http://ruc-econ.github.io/supplement_RD.pdf

Let Y € R denote the outcome variable, D € {0,1} be the binary treatment and Z € R% be pre-
treatment covariates or “unaffected” outcomes. Variables in Z can be continuous, discrete or mixed. We
observe (Y, D, Z) and the score X. Let 1(-) denote the indicator function. In an RD model, incentive is
assigned if X > 0. In a sharp RD case D = I = 1(X > 0) (i.e., perfect compliance). In the electoral
RD model (see Lee, 2008; Hyytinen et al., 2018), (X, D,Y’) correspond to the vote share margin in the last
election, results of the last election (win or lose) and this election. Researchers almost always have access to
some pre-treatment covariates. In the electoral RD case, commonly observed covariates such as candidates’
age, gender and the incumbency status are determined prior to the election considered. The more general
fuzzy RD model assumes D # I but gp has a jump discontinuity at © = 0 (up + # pp,—) due to the incentive.

This is known as limited compliance in the literature.

The RD model can be embedded in the potential outcome and treatment framework. Let (Y (1),Y (0))
be potential outcomes with or without treatment. Let (D, D_) denote the potential treatments with
or without incentives. The observed outcome Y and treatment D are determined by Y = DY (1) +
(1-D)Y (0) and D = IDy + (1 —1I)D_ respectively. The complier group is defined to be individ-
uals with Dy > D_ (ie., (Dy,D_) = (1,0)).* Following CCFT, we let (Z(1),Z (0)) denote poten-
tial covariates and then Z = DZ (1) + (1—-D)Z(0). Let U (k) == (Y (k),Z(k)), Yk € {0,1}. De-
note gqa (v) == Pr[Dy =d,D_=d' | X = x| and gyp)jqa (v) = E[U (k)| Dy =d,D_ =d', X = z]. Sim-
ilarly, let U = (Y,Z) and gyjqa (z) = E[Y | Dy =d,D_ =d', X =x]. By the law of iterated expec-
tations (LIE), g9 = 3 (4.41e(0,1)2 9da9jaar- Let Fy == E[Y (1) =Y (0) [ X =0,D4 > D_] be the RD
LATE (the average treatment effect for individuals with zero score in the complier group) and similarly,
Iz =E[Z(1)—Z(0)| X =0,D4 > D_] denotes the RD LATE on Z. The following assumption is implicit
in CCFT.

Assumption 1. (a) gy(k)jaa and gaar are continuous at 0,V (k,d,d’) € {0, 1}%; (b)) Pr[D_ <D, | X =0] =
1; (¢) Pr[Dy > D_ | X = 0] £0; (d) Tz =0.

The RD model imposes only a few weak identifying assumptions. In Assumption 1, (a), (b) and (c) are
local versions of the LATE assumptions: (a) and (b) impose local continuity and monotonicity assumptions
respectively and (c) imposes existence of the local complier group. These are key identifying assumptions
for the RD model (see Dong, 2018). Under (a), (uy,+, 4D, 4, pz,+) and (py,—, up,—, piz,—) exist. (c) implies
that up + > pup,—. These assumptions have testable implications (Arai et al., 2021). It can be shown that

under these assumptions, 3 is nonparametrically identified: H = ¥ == (uy+ —pv,—)/ (p+ — tD,—)

4RD can be represented by a triangular model. See Dong (2018). (Y, D) are assumed to be generated by a triangular model
Y =g(D,X,Z,e) and D=1(X >0)hy (X,Z,n)+1(X <0)h_ (X, Z,n), where (g, h4, h_) are unknown functions and (e, n)
are (potentially correlated) unobserved disturbances of unrestricted dimensionality. Then the potential outcomes and treatments
are given by Y (1) = g (1, X, Z,€), Y (0) = g (0, X, Z,¢), Dy = hy (X, Z,n) and D_ = h_ (X, Z,1).



(see Hahn et al., 2001; Dong, 2018), where 1 is an observable population feature.® Similarly, under (a),
(b) and (¢), 9z = (pz+ —pz-)/(wp+ —pp,—). Following CCFT, we impose (d), which means that
there is no RD treatment effect on Z. If Z includes only pre-treatment variables, this assumption holds by
definition. Under (a), (b) and (c), (d) is equivalent to the covariate balance condition puz = pz _, which
is a testable restriction on the population of the observed variables. Indeed, it is the null hypothesis of a
popular falsification or placebo test for the RD model.5 See, e.g., Lee (2008); Canay and Kamat (2017).
pz + = pz,— is satisfied if the conditional distribution of Z given X = z is continuous at = 0. Evidence
against uz 4+ = pz _ in the data (so that a hypothesis test of pz 4 = pz _ is rejected) casts doubts on the
validity of the continuity assumption (a). We can also augment the list of potential covariates to include
outcomes that are determined after the assignment but unaffected by the treatment. “Unaffected” outcomes
can be found in many applications. See, e.g., Cattaneo and Titiunik (2022, Section 4.1) for discussion.
Unlike pre-treatment variables, the assumption that the “unaffected” outcomes satisfy (d) is based on our

prior knowledge or evidence.

3 Covariate balance as moment restrictions

This section introduces a GMM framework that formulates the RD estimand and the covariate balance
condition as a set of over-identifying moment restrictions. First, we show that the RD estimand 9, which has
causal interpretation under the identifying assumptions of the RD model, can be approximately identified by
two just-identified LP moment conditions. Let K denote the kernel function and let h denote the bandwidth.
Denote K, (t) == h™'K (t/h). Let M ==Y —9¢D and note that

111101E[Y—90D | X =2] = li%E[Y —0oD | X = z] if and only if 6y = .

Denote ¥1 = pap,+ = par,—. Let p > 1 be the integer-valued LP order. Denote 7, (t) == (1,¢,... )
According to Jiang and Doksum (2003), p-th order LP approximation of (¢ar,—, ¥ar,+) can be derived from

solving the following minimum contrast problem. Let ej s denote the s-th unit vector in R¥. Let

0
T ; T 2
Yo = ep_‘_l,largmln/ {mum (@) —2"rp (2)} Kp (2) do (1)
z€RPHL Jg
5In the sharp RD model (utp,+ = 1 and pp, _ = 0 in this case) or under a stronger conditional independence assumption

(Hahn et al., 2001), a causal parameter that corresponds to a broader subpopulation (conditional average treatment effect) is
identified by the same ratio: E[Y (1) =Y (0) | X = 0] = 9o .

While most empirical works conduct the balance test separately for each covariate, some researchers have noted that the
problem of multiple testing may generate statistical imbalance of some covariates by chance. See, e.g., Hyytinen et al. (2018).
In a separate paper, we propose a joint EL test for the smoothness of multiple covariates at the cut-off.



and ¢4 be defined by the minimizer on the right hand side with the integral range [z, 0] replaced by [0,Z].
Denote V,,_ = fi)l rp (t) rp ()" K (t)dt and Kp.— (t) = e;+171V[;1_7'p (t) K (t). Let (Vp4, Kp.4) be defined
by the same equations with the integral range [—1, 0] replaced by [0,1].” Let the data {(Y;, D;, X;, Z;)} i,
be i.i.d. copies of (Y, D, X, Z). Then, let W,,,_; ==1(X; <0)Kp.— (X;/h), Wyt :==1(X; > 0) Kp.4 (X;/h)

and Wi = (Wp.4.i, Wp;—vi)T'

(Wp,—, Wp.4, W,) are defined by the same formulae with X; replaced by X.
Then, by solving the first-order conditions of (1), we have s = E [h™'Wsgn (X)] = E [h7'W,,sM]. By
Taylor expansion (see Jiang and Doksum, 2003), 1s = ¥a7s+0 (h?!) under suitable smoothness assumptions
imposed on gys. From (1) with my (z) replaced by fx (), we have E [ W] = ¢+0 (hP*1), Vs € {—, +}.

Therefore,

E[Wps (Y — 9D — 1)) = O (WPF?) Vs € {—,+}, (2)

which are the two LP moment conditions that (approximately) identify (Jq, ¥1).

Next, we incorporate the information from the covariates by directly formulating the covariate balance
condition as over-identifying moment restrictions. This differs from CCFT where covariates are included as
additional regressors in the LP regression (see (6)). Let ¥ = pz 4+ = pz,_ denote the common value. By

solving (1) with my, replaced by mz and fx, we have
E Wyt (Z —02)] = O (h**?) and E[W,,,_ (Z — ¥2)] = O (W*1?). (3)

We restrict the bandwidths on the left and the right of the cut-off to be the same. It is possible to extend
all of the theorems in this paper to accommodate different bandwidths on different sides. Now combining
restrictions (2) and (3) we have the following over-identified LP moment conditions:
Y — 99D — 9
E|W,® T =omy), (4)
Z — U

where ® denotes the Kronecker product. Note that we have 2(1+ d,) LP moment conditions that ap-
proximately identify 2 + d, parameters. ¥g = 4 is the parameter of interest and (¥;,92) are nuisance
parameters. Denote ¢ := (190,191,192) S Rdﬁ (dlg = 2+dz), 191- = (191,192) € Rdlf (dT = 1+dz), 0= (00,01,92)
and GT = (91,02).

We define the EL criterion function:

W1 seeny Wr

(0| h) = min —QZlog(n-wi)

"(Kpi+, Kp;—) coincide with the “equivalent kernel” of LP regression. See, e.g., Section S2.1 of AK.



Y; —00D; — 01

subject to sz Wi ® =0, Zwi =1and w; >0, Vi, (5)

Z; — 04

where ), is understood as Y. ;. — >, log (n - w;) /n is the Kullback-Leibler divergence from (w1, ..., w,) to
the uniform weights 1/n. Denote U; (0) = (Yi —00D; — 01,7 — GJ)T, U; := U; (¥) for notational simplicity
and d,, '= 1+d,. U () and U are defined by the same formulae with (Y;, D;, X;, Z;) replaced by (Y, D, X, Z).
The p-th order EL estimator is given by 0, = (@,’0,3}7,1,@,’2) = argmingeolp (0 | h), where © C R% is a
compact parameter space such that ¢ is an interior point of ©. Also denote the constrained EL estimator:
d, (0p) = (5,,,1 (6o) ,9p.2 (00)> = argming ce, €y (60,0t | h), where ©1 C Rt is a compact constrained
parameter space such that J; is in the interior of ©; and 6y is some hypothesized value. The EL ratio
statistic is given by LRy, (0o | h) = ¢, (90, 5p (6o) | h) — 4y (317 | h), which is a function of . It is shown in
the proof of Theorem 3 that ¢, (ép | h) = infg,supy2 >, log (1 + ATW,,; ® (Z; — 62)) and therefore it suffices
to solve a simpler optimization problem. Let 7 € (0,1) be the significance level. Let Fx% and fx? denote the
cumulative distribution function (CDF) and probability density function (PDF) of a x? (x? with one degree
of freedom) random variable respectively. Let ¢, = Fx_fl (1 — 7) be the (1 — 7) quantile of the x? distribution.
An EL confidence set for ¥y with nominal coverage probability 1 — 7 is CS, (h) :={6p : LR, (6o | h) < ¢, }.
For fuzzy RD, as Noack and Rothe (2019)’s method, the EL confidence set avoids a “delta method” argument
used by the Wald-type inference of CCFT. The EL probabilities (weights) w1, ..., W, are those corresponding
to the minimizer of the problem (5) with 6 = 5,, (Brown and Newey, 2002). These EL probabilities can
be used for covariate adjustment in nonlinear estimation associated with RD (e.g., Xu, 2017, 2018 among

others), for which extension of CCFT’s approach is involved.®

4 Efficiency gain and uniform-in-bandwidth Wilks theorem

This section provides asymptotic properties of the EL estimator and EL ratio statistic. Theorem 1 shows
asymptotic normality and gives the expression for the AMSE. We then compare it with the asymptotic
result from CCFT. Theorem 2 provides uniform-in-bandwidth large sample approximation to the distri-
bution of the EL ratio with 6y = 9. For a vector z, let z(9) denote its j-th coordinate. Similarly,

AGK) denotes the jk-th element of a matrix A. By abuse of notation, for a d,—dimensional random

8Tt is shown in the proof of Theorem 3 that n®; = (1 +X;Wp,i® (Zi —51,12)) where Xp solves > . Wy ®

(Z.L- — 5;;,2) / (1 —i—X;—Wp,i ® (Z.L- — 191,,2)> = 0. Indeed, it is clear that the EL estimator (ﬂp,o,ﬂp,l) is numerically equiv-
alent to the plug-in (method of moments) estimator that solves the sample analogue of the moment conditions (2) with the
empirical distribution replaced by the EL probabilities: >, @w;Wp;s 4 (YZ - 5p,0Di - 5p,1 = 0. We conjecture that the same
reweighting adjustment can be extended to the nonlinear cases considered by Xu (2017, 2018).



vector V, let V2 denote V ® V with duplicated coordinates removed, i.e., V2 := vech (VVT), where
vech (A) denotes the half vectorization of a matrix A. Similarly, V3 denotes the vector consisting of
VMvyech (VVT) , V@vech ((V(z), ey V(”l”))—r (V(z), ey V(d“))),..., (V(dv))g. ||z|| denotes the Euclidean norm

of the vector x. We assume the following assumptions hold.

Assumption 2. (a) On a neighborhood around 0, ga(xyjaar and gaa are (p + 1)-times continuously differen-
tiable with Lipschitz continuous (p + 1)-th order derivatives, goy(y)2|aqr s Lipschitz continuous and gjo (k)12 |aar
is bounded and fx is (p+ 1)-times continuously differentiable with Lipschitz continuous (p+ 1)-th order
derivative; (b) E |U (k) U (k‘)T | Dy >D_, X = O} is positive definite, Yk € {0,1}.

Assumption 3. (a) K is a symmetric continuous PDF supported on [—1,1]; (b) Ky, is differentiable with

bounded first-order derivatives on (—1,0) and (0,1).

Assumption 2 is imposed on the latent variables in the RD model and parallels Assumption SA-5 of
CCFT. Since g = >_(4.41e{0,1}2 9dd’ 9w1dar, B = D10 (1) + (1= D4)B(0) if X > 0 and U = D_U(1) +
(1-D_)2(0) if X < 0, Assumption 2(a) guarantees that gy and mg have continuous derivatives up
to (p+ 1)-th order on the left and right neighborhoods of 0. Similarly, gy2 is continuous and Gyu|r2 18
bounded on the left and right neighborhoods of 0, under Assumption 2(a). Denote v.4j = E}}yiEZM,i,
€:=M— ZT'yadj and ofdj = Y2+ — Xpz7 +7dj- Existence of these quantities is guaranteed by Assumption
2(a). Under Assumption 1, g+ = pte,— = . Assumption 2(a) guarantees that g. and m. admit continuous
derivatives up to (p + 1)-th order on the left and right neighborhoods of 0 so that the leading bias terms

ko plyg k
P3s 1]);-5- = Jo Kpr (1) dt

can be characterized. Denote (. == wP ! ( Fr _ uego(pﬂ)), s € {—, 4}, where w’
and w;,]i = ffl tIC,, - (t)kdt. Assumption 2(b) guarantees that pypT 4 and pypT _ exist and are both
positive definite. Assumption 3(a) is standard and also imposed in CCFT. Assumption 3(b) is also found in
AK. Assumption 3(a) implies that KCp.+ (t) = Kp.— (—t) ¥t € R and therefore (b) also holds for IC,,,_. The

following result shows the asymptotic distribution of 5p,0, the EL estimator of the RD LATE.

Theorem 1. Suppose that Assumptions 1, 2 and 3 hold. Assume that the bandwidth satisfies nh??™3 = O (1)
and log (n)? / (nh) = 0(1). Then, V/nh (1/9\1,’0 — ¥y — %thP+1) —a N (0, 7F"), where

¢ ¢ w2 52
L — . ; di
p;+ P; and af/pEL . p;+" adj

P = .
P o(up+ —pp,-) (p+1)! ¢ (up.t — pp.)°

Remark 1. We consider the special case of sharp RD and p = 1. The local linear estimator %L can be
obtained from a single localized regression. CCFT’s approach augments the regression to incorporate pre-

treatment covariates. CCFT’s covariate adjusted estimator 58(:” is given by the regression coefficient of
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~ . 2
198—CFT = CI+dz73 argmin Z Ky (X;) {Yz —ag —boX; —ar l; — 1 X;I; — ;d} . (6)
(ao,bo,a1,b1,d)ERA+d= Z

The covariates enter linearly and kernel smoothing over the covariates is not needed. ¥§FT converges in

probability to the sharp RD estimand, under the covariate balance assumption. @5" — v is approximately

N (0,7 / (nh)) distributed and JSCFT — 9, is approximately N (0, 7FT/(nh)), under the undersmoothing
assumption nh® = o(1). Vary and Covy are understood as Var[- | X = 0] and Cov[- | X = 0] and ), is

understood as Zke{o,l}' We compare the asymptotic variance 7;F- = w%iafdj/cp with 7t = w?iaf,_/gp

4/ CCFT _ 0.2

and W)y 0cer/ @, where of == 3", Var|o [Y (k)] (see, e.g., Imbens and Kalyanaraman, 2011) and

. -1
ogcer = >, Var|g [Y (k) — Z (k)" yecrr| with yecpr = (3o, Varjo [Z (K)]) (X, Covpo [Z (k),Y (k)]).O Tt
is easy to check that in the definition dej and Yagj, Sarz+ = 0P, YmzTe =2 Covg [Y (k),Z (k)T} and

Yzz7 + = >, Varp [Z (k)]. To see dej < of, observe that by definition,

0o =Sz, — BarzT 4 Vadj
=0 — (Z Covyg [Y k), Z (k)TD <Z Varp [Z (k)}) (Z Covp [Z (k)Y (k:)]) <oi. (7)
k k k

Next, we show that afdj = o¢cpr-'Y Observe that vaq; = yccrr and also

Varyg |2 (0) ] + Vario [ Z (1) v | = 7 (Vario [Z (0)] + Varg [Z (1)]) 7aq

= Covio [Y (1), 2 (1) 7aa] + Covio [Y (0), 2 (0)" 7aa] = Baszr 2700 (8)

Therefore,

02y = Varjo [V (0)] + Varp [ (1)] = Covo |[¥ (1), 2 (1) 7aqs]

— Covo [Y (0), 2 (0) 7aqs| = Varyo [Y (0) = 2 (0)T aes] + Varpp [ (1) = Z (1) 7| = e
where the second equality follows from

Varyg [Y () = Z () 7ag] = Varo[Y (&)] + Varig [ Z (k) 9aa] =2+ Covio [Y (k) Z (1) e

91t is easy to see that the method of moments estimator of 9o based on (2) without using (3) has the same asymptotic
variance 't as the standard local linear estimator.
19Tndeed, it can be shown that the EL and CCFT’s estimators with undersmoothing (i.e., nh® = o (1)) are first-order equivalent

in a stronger sense: 58CFT — 3'15'-0 =op ((nh)71/2>,

11



4 CCFT —

and (8). The equivalence result L can be generalized to the case of arbitrary p. The equivalence

also holds for fuzzy RD with an arbitrary LP order p.

Remark 2. The conclusion dej = 0Zcpr < 0f implies that the asymptotic variance of both EL and CCFT
estimators is smaller or equal to that of the standard local linear estimator without covariates. This asymp-
totic efficiency ranking is achieved without additional assumptions other than covariate balance. At the first
glance, such an asymptotic efficiency ranking seems surprising given that CCFT (on their Page 448) finds no
definite ranking between U%CFT and o and interprets the indeterminacy as “in perfect agreement with those
in the literature on analysis of experiments,..., where it is also found that incorporating covariates in ran-
domized controlled trials using linear regression leads to efficiency gains only under particular assumptions”.
As the RD design is often viewed as local randomization, let us reconcile our finding and CCFT’s comment
from the perspective of randomized experiments. In RD designs, continuity of the density of the score X
implies that the shares of units with X being in small neighborhoods to the left and right of the cutoff are
equal (Noack et al., 2021, Section 5.2). Therefore, the RD design is analogous to a randomized experiment
with equal probabilities of being in treatment and control groups. In the literature of randomized experi-
ments, Negi and Wooldridge (2014, Theorem 5.2(iv)) show that when the assignment probability is equal to
1/2, the pooled regression adjustment (see Negi and Wooldridge, 2014 for its definition), whose algorithm
is analogous to that of the CCFT estimator, always leads to a smaller or equal asymptotic variance. The
assignment probability assumption is automatically fulfilled in RD designs. Theorem 1 and the first-order
equivalence between the EL and CCF'T estimators explains the asymptotic efficiency ranking from a different
perspective: CCFT’s estimator can be interpreted as being efficiently incorporating the side information
from the covariate balance condition, which will typically reduce the asymptotic variance, and in the worst

scenario, will yield the same asymptotic variance if the side information is irrelevant.!!

Remark 3. Theorem 1 also implies that including a covariate will not change the asymptotic variance if
and only if the corresponding element in 7,q; is zero. Note that the (true) projection coefficients 7,q; are
the probabilistic limits of the regression coefficients of Z; in the “long” regression (6) including all covariates.
Consider the partition Z = (Zir, Z;—)T of Z and let 'y;j = ('V;ZJ,D 7;[11',2) ! be the conformable partition of 7ag;
such that the dimension of 'V;Lj, i coincides with that of Zy, k = 1,2. Using Theorem 1 and the representation
on the right hand side of the second equality of (7), then writing ), Var|g [Z (k)] as a block matrix and
inverting it, we can easily show that 7' is equal to the asymptotic variance of the CCFT (EL) covariate

adjusted estimator using only Z; if and only if 7.q;2 = 0. In this case, Z> is irrelevant in the sense that

11Such an argument is analogous to that of Hirano et al. (2003), which explains the puzzling phenomenon that the inverse
probability weighting estimator using the nonparametrically estimated propensity score has a smaller asymptotic variance
relative to that uses the true propensity score. Hirano et al. (2003) shows that the former is equivalent to an EL estimator that
incorporates the side information from knowing the true propensity score efficiently.
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dropping Z, has no first-order impact: it neither leads to efficiency loss nor changes the leading asymptotic
bias. In conclusion, if we say that an estimator achieves efficiency gain when its asymptotic variance is
smaller than that of the standard estimator without covariates, then both EL and CCFT estimators achieve

efficiency gain as long as the coeflicients of some covariates are nonzero.'?

The following theorem establishes uniform-in-bandwidth validity of the EL confidence set. Let £*° (&)
denote the space of all bounded functions f : & — R endowed with the sup-norm ||f||g = sup,eg |f (5)]-
Let H := [h,h] be a compact bandwidth set where h = h,, > 0 and h = h,, > 0 (b < h) are bandwidths
that depend on the sample size. The following theorem parallels the main result of AK and is a substantial
extension of the standard Wilks theorem which states that LR, (9o | h) —4 x3. Our result incorporates
covariates and accommodates unbounded outcomes. The proof techniques we use differ from those employed

by AK.

Theorem 2. Suppose that Assumptions 1, 2 and 3 hold. Suppose that (ﬁ,ﬁ) satisfy nﬁ2p+3 =o0(1l) and
nl/12/ (n@)l/Q—&—(nﬁ)fl/6 =o0 (log (n)fs). There exists a zero-mean Gaussian process {I'c (s) : s € [1,h/h]}

which is a tight random element in £>° ([LE/Q]) with the covariance structure given by

BTG ()7 (] - 3 ot e DO )
o () dz

Then, Pr |LR, (Yo | h) < 2, (E/Q)2 ,Vh e H} —1—7, as n T oo, where z, (ﬁ/ﬁ) denotes the 1 — T quantile

of 176y -

Remark 4. Theorem 2 generalizes the standard Wilks theorem with a single bandwidth. It implies that
when h = h = h, Pr[LR, (99 | h) < ¢;] = Pr[¥y € CS; (h)] — 1 — 7. Le., with a single bandwidth, the EL
confidence set is asymptotically valid. The standard EL confidence set C'S; (h) may undercover if the band-
width is selected after specification search over H. As an example, suppose that h := argmaxy g LR, (0 | h) is
selected to maximize the p-value for the two-sided hypothesis test of ¥y = 0. AK shows that z. (E/ h)Q > cr
when h/h > 1 but z. (h/h) grows at a logarithmic speed as h/h 1 oco. It is clear from Theorem 2 that
Pr [190 e CS., (ﬁ)} — 1—7, where ¥ > 7 solves z; (ﬁ/ﬁ)g = ¢, if 99 = 0 and the test of ¥g = 0 does not have
asymptotically correct size. Theorem 2 justifies a simple correction for bandwidth snooping as AK by replac-
ing the critical value ¢, used by C'S (h) with 2, (E/h)Q. Let C'S% (h | E/ﬁ) = {90 LR, 6y | h) < 2 (E/Q)Z}
be the snooping corrected confidence set. Then, C'S° (h | h/h) has asymptotically correct coverage no matter

how h is selected from H, i.e., liminf, 1o, Pr [190 € 0S8 (h | E/b)] > 1—17 Vh € H. The critical value z, (E/ﬁ)

12Noack et al. (2021) shows that covariate adjustment for RD in an arbitrary way may not lead to efficiency gain. Their
optimal nonparametric adjustment leads to efficiency gain under an assumption that is more stringent than having nonzero
coefficients.
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can be easily simulated.'?

Remark 5. Theorem 4 shows that {C'S5 (h | h/h) : h € H} is an asymptotically valid confidence band for
the constant function H > h +— Jy. By using it for inference on 9y, we take multiple bandwidth choices
into account. Such an inference procedure is therefore more robust and less sensitive to bandwidth choice.
The uniform confidence band can also be used for analysis of the sensitivity of the result from the pointwise
confidence set to bandwidth choice. See AK for detailed discussion. AK’s argument can be extended to our
case. Let h,s denote a reference bandwidth and one computes C'S; (hf). In case of a statistically insignificant
result (i.e., 0 € CS; (hy)), it can be argued that using a smaller (larger) bandwidth is necessary due to
high bias (variance) incurred by h,s. However, the specification search or multiple testing issue undermines
the validity of a significant result (C'S; (k) C (0,00) or CS; (h) C (—00,0)) corresponding to some h # hys.
In such a case, with suitable lower and upper bounds (ﬁ, E) such that A < hys < h, one may follow AK’s
approach and use the band {CS% (h|h/h):h € H}. If 3h € H such that CS* (h|h/h) C (0,00) or
CSs (h | h/h) C (—o0,0), one may conclude that the RD LATE is different from zero and validity of such a
result is guaranteed by Theorem 2. On the other hand, if 0 € CS (h | h/h) Vh € H, we conclude that the
insignificant result is insensitive to bandwidth choice. In case of 0 ¢ C'S; (h), it is still necessary to examine
the sensitivity of such a significant result to bandwidth choice (Imbens and Lemieux, 2008). As AK, with
suitable (h,h), one may conclude that o > 0 in a robust sense if 3h € H such that CS: (h | h/h) C (0, 00)
and Vh € H, CS% (h | h/h) N (0,00) # 0. Compared with AK, our confidence band incorporates information

from covariates and the robust inference based on it is more powerful.

Remark 6. Theorem 2 also provides correction to obtain asymptotic validity under criterion-based data-
driven bandwidth selection. In practical implementation, one may take the bandwidth to be he [h, ﬂ , where
(ﬁ, E) are deterministic lower and upper bounds and % is the minimizer of some data-dependent criterion
function defined on [h, h]. Theorem 2 shows that snooping correction takes all noise in h into account, by
replacing the x? quantile with z;_. (h/ h)Q. By Theorem 2, asymptotic validity of the robust confidence set
S (/ﬁ | h/ ﬁ) is guaranteed without assuming that B fulfills any property such as the stochastic order of
h /h — 1 is sufficiently small so that the noise in B is negligible, where h is some deterministic bandwidth that

1 tries to capture.

Remark 7. As the main result of AK, Theorem 2 assumes deterministic upper and lower bounds. Let

13See the R package BWSnooping from github.com /kolesarm/BWSnooping. If E/Q T oo as n T oo, then z, (E/Q) can be

replaced by its asymptotic counterpart 22> (ﬁ/@), where 27¥_ (ﬁ/ﬁ) = —log(—log (1 — 7)) /an + bn with constants (an,bn)

that depend on E/Q and the kernel function. 2z3% (ﬁ/ﬁ is not recommended to be used in practice since its justification is

based on the asymptotic theory of suprema of stationary Gaussian processes, which converge at a slow speed. See AK for more
detailed discussion on the critical values.
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(E,E*) denote some deterministic bounds that some data-dependent bounds (@, E) capture. As argued by
AK, the conclusion of Theorem 2 still holds under data-dependent bounds, if the orders of i/h" — 1 and

h/h* — 1 are sufficiently small and (E,#) satisfy the assumptions of Theorem 2.

5 Robust corrected empirical likelihood inference

In this section, we investigate the second-order properties of the EL inference method. Theorem 3 provides
the distributional expansion of LR, (9 | k) and characterizes the leading term. By using this result, we drive
the coverage optimal bandwidth and propose a simple and feasible correction to the EL ratio that leads to
a fast coverage error decay rate. Theorem 4 provides the distributional expansion of the corrected EL ratio
under local perturbation to the covariate balance condition. By this result, we show that the corrected EL
confidence set enjoys a favorable property that its good coverage accuracy is maintained even if covariate

balance assumption is slightly violated. We assume the following assumptions hold.

Assumption 4. On a neighborhood around 0, gy iy3aa and goz(rysjqar are both Lipschitz continuous and

g\lm(k)\|2o\dd’ 18 bounded, vk € {0, 1}

Assumption 5. (1, Kpi+, IC]%H_, IC;"’)H_) are linearly independent as elements in the vector space of continuous

functions.

Assumption 4 is a stronger condition than Assumption 2(a). Assumption 5 is a mild condition which
is satisfied by all commonly-used kernels. Clearly, the same property also holds for (LICP;,, ICZ;f,IC;’,;f).
Assumptions 4 and 5 are used when establishing validity of the Edgeworth expansions in the proofs of
Theorems 3 and 4. Let tr (A) denote the trace of a square matrix A. Denote E; = ,uallﬂi, Hy =
(,uallﬂ’+ +NI;11JT,7>_17 U o= tr (EluU@)U(W)UUTi) and Wy = tr (EIMU(U)UUT,+51MU(W)UUT7+> -2

tr (Elﬂ’U(“)UUT,—Ell‘LU(W)UUT,-‘r) + tr (EllLLU(”)UUT,—ElNU(W)UUT,—)’ Let

2
04 0,3
1w, 1 (wp;Jr) 2
7/; — Z 1 g,;r EguW)\IIl{W _ 7725§UW)\:[];W + 4w2.’i -2 (wg.’i) tr (E122) p / (wgfigo) .
2w 3( 02 ; i i
uw=1,...,dy p;+ OJp;+

(10)
Let Vpi be defined by the same formula with U replaced by U := Z—15 and the range changed to u,w = 1,...,d.
accordingly. Let 7/pLR = ”I/pT — 7/}}. We write a,, < by, if a,, = O (b,) and b,, = O (a,). The following result
is similar to Calonico et al. (2020, Theorem 3.1) and provides an asymptotic expansion of the coverage
probability Pr [Jg € CS; (h)] = Pr[LR, (Yo | h) < ¢;]. The proof uses the method of Calonico et al. (2022)
and calculations in Matsushita and Otsu (2013); Ma (2017).
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Theorem 3. Suppose that Assumptions 1 - 5 hold. Suppose that h satisfies nh***3 = o (1) and (nh3)71 =
O (1). Then, Pr[LR, (Yo | h) < z] = F\2 (x) =%, (n,h) x f,z2 (x) +o (vy), where vy, = nh2P+3 4 hp+iy (nh)
©p (n,h) == nh* 38R + (nh)™" VR and BER = (%EL)Z /¥t Let the RCEL ratio be LRIS (6 | h) =
LRys1 (00 | h)/ (1 + (nh) ! 7/;5). Then, Pr [LRIE (9 | h) < 2] = Fyz (2) + O (n~Y), if h =< n~ 1/ (@42,

Remark 8. Theorem 3 shows that the coverage error Pr[dy € C'S; (h)] — (1 — 7) is approximately equal to
—%p (n,h) e, fx% (¢;). In the leading coverage error term, nh2p+3%;R is the “bias” term that is brought by
the smoothing bias and (nh)fl ”VPLR is the “variance term” that stems from the stochastic variability. Note
that typically the distributional expansion corresponding to a nonparametric kernel-based Wald or likelihood
ratio statistic (e.g., Calonico et al., 2020, Theorem 3.1) involves another “bias-variability” interaction term of
order h?*1. In our case, such a term is of order h?*2 and partial Bartlett correctability (Chen, 1996) crucially
relies on this fact. In addition, because the moment conditions W, ® (Y — 6D — 61,27 — 9;—)1— (with 0 = 9)
is asymptotically uncorrelated with the derivatives with respect to (61,62) at 6 = ¥, the coefficient ”VpLR of

the variance term has a simple expression given by the matrix formula (10).

Remark 9. Since h < n~Y/®+2) gives the best coverage error decay rate, we restrict our attention to
bandwidths that satisfy h = H - n=Y/(®*2) for some H > 0. Now the leading coverage error is proportional
to —n~PHD/PHICEL (), where CE- (H) = #LRH+3 4 v "RE~114 Parallel to Calonico et al. (2018),
we define the optimal constant H., as the minimizer of the absolute value of the leading coverage error:
Heo == argminy .o |CE (H)|, Hence the coverage optimal bandwidth is given by heo = Heon ™t/ (P+2) 1% Note
that heo in our EL approach is independent of the nominal coverage probability 1 — 7. This property is not

shared by the coverage optimal bandwidth for the Wald-type approach.

Remark 10. It is shown in the proof that if A = n~%/®*2) the remainder term in the expansion of
Pr[LR, (Y | h) <] is O (n™'). Let LRE (6 | h) := LRy, (6o | h) / (14 %, (n, h)) be the Bartlett corrected
EL ratio. One can show that Bartlett correction removes the leading coverage error: Pr [LR;’)C (Po | h) < x] =
F2 (z) + o(vy). The infeasible Bartlett corrected EL confidence set {60 : LR (0o | h) < ¢+ } has coverage
accuracy with error rate O (n‘l). However, (%'Z;R, ”VPLR) depend on unknown parameters. One can replace

these unknown quantities with their consistent nonparametric estimators to get the feasible Bartlett corrected

14The coverage expansion for the EL confidence set takes a much simpler form than its Wald-type counterpart. Let WSy (6o | h)
denote a Wald-type statistic using the p-th order LP regression estimator (Calonico et al., 2020). If h = H - n=1/(P+2)  which
leads to the best coverage error decay rate, the first-order approximation to the coverage error of the Wald-type confidence set
is of the form C (H,z)n~®+1)/(»+2) where C (H,z) = (C1 (H)z + C5 (H) 2> + C5 (H) z°) fy2 (z), Cx (H) = cp 1 H*?+3 4
ck,ngJrl + ck,gH’l and (Ck’l,Ckyg, Ck’g) are constants. The distributional expansion corresponding to the EL ratio is similar
but much simpler. Its leading error term satisfies C3 (H) = Cs (H) = ¢1,2 = 0.

!5Note that 2R > 0. If 7R > 0, CE- (H) > 0 and clearly limp oCE- (H) = limpg10oCE- (H) = oo. The unique minimizer

H, satisfies the first-order condition. An explicit solution is available from solving it: Heo = (”VPLR/ ((2p +3) %‘;R))l/@erZl),

If 7/p'-R < 0, it is easy to see that Hco, = (—“//pLR/%'];R)l/<2p+4) and C"f" (Heo) = 0. In this case, the first-order coverage error
vanishes at the optimal bandwidth.
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EL confidence set. Note that %;R involves higher-order derivatives up to the order p 4+ 1 while ”I/pLR depends
only on conditional expectations. Hence the latter can be estimated by a simple plug-in estimator ”IZ,LR that
is based on local linear regression with standard rule-of-thumb (ROT) bandwidths (Hansen, 2021, Chapter
21.6). By standard theory, “I/ - ¥R =0, (n=%/°). On the other hand, a fully nonparametric estimator
@;R of ‘%)Iz;R is highly variable. As a result, the practical performance of the feasible Bartlett corrected EL
confidence set is highly dependent on the estimation error for %"};R and for this reason, its coverage error

decay rate can be much slower than O (n=!).1¢

Remark 11. To avoid estimating 93'1;R, we follow Chen (1996)’s partial Bartlett correction approach. We use
the “partial” rescaling factor 14+(nh) -t ”fZ,LR and then choose h optimally to reduce the effects from the smooth-
ing bias on the coverage accuracy. Since the bias-variability term is small in our case, such an approach delivers
a coverage error of smaller order.!” We also use internalized bias removal by increasing the order of LP by one
in the spirit of Calonico et al. (2014) and exhaust the smoothness.!® Note that Assumption 2(a) parallels the
smoothness assumption of Calonico et al. (2020, Theorem 3.1). Under Assumption 2, the smoothing bias is
now of order h?*2. EL automatically accounts for the change in variability by implicit studentization. In the
proof of Theorem 3, we show that Pr[LR,11 (o | h) < z] is equal to the sum of Fyz () — (nh)~" %Ifleﬁ (x)
and a remainder term that absorbs effects from the smoothing bias. The leading “variance” term becomes
(nh)~* 7/pL+R1 and rescaling the EL ratio by (1 + (nh)~ 7/p+1)_1 eliminates it. Essentially this approach
trades bias for variance, as the latter can be estimated with good accuracy. In the proof we show that the
rate optimal bandwidth (h =< n~'/(*+2)) balances the terms of order nh?**5 (bias) and hP*3 (bias-variability
interaction) so that effects from the smoothing bias are made negligible. The remainder is now O (n’l).
Let the feasible RCEL ratio be LR (6y | h) := LRp11 (6o | h) / (1 + (nh)~ “I/pfl), where ”f/;L_‘_Rl is a plug-in
estimator of ¥, Since 7, =V =0, (n ~2/5), the distributions of LR;,rc (o | h) and LR (Yo | h) differ
by an error of order o (nfl) and the second conclusion of Theorem 3 holds for Pr [LR;'C (9o | h) < x] Then
it follows that the feasible RCEL confidence set C'S™ (h) == {6, : R;’C (60 | h) < ¢;} has a coverage error
of order O (nil). Following Gelman and Imbens (2019), we recommend using lower order local polynomials

and setting p = 1 or p = 2. In both cases, C’Sﬂc (h) has coverage error decay rate O (n’l). The rate optimal

bandwidth obeys h < n='/3 (p = 1) or h < n='/* (p = 2). In the former situation, we require a weaker

161t follows from standard theory that the best possible rate for @;R is given by @;R — %};R =0y (n’l/(2p+5)) under our
smoothness assumptions. The coverage error of the feasible Bartlett corrected confidence set is of order n=(1/(2p+5)+(p+1)/(p+2))
if h < n~1/(®+2),

7In case of a typical distributional expansion with leading terms of order nh2P+3 (bias), (nh) ™! (variability) and AP+1
(bias-variability interaction), the best coverage error decay rate of the remainder stays unchanged even if the variability term is
removed.

18Calonico et al. (2014, Remark 7) shows that subtracting the p-th order LP estimator by the nonparametric estimator for
the leading bias term with the same bandwidth is the same as a (p + 1)-th order LP estimator. By increasing the order of LP
by one, this approach makes the order of bias smaller but brings one more term that contributes to the stochastic variability.
Calonico et al. (2014) proposed bias-correction-aware standard errors that account for the change in variability.
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smoothness assumption, achieve the same fast coverage error decay rate but use a smaller effective sample of

size nh. In this situation, the length of C'Sf® (k) is of larger order of magnitude.

Remark 12. We now compare the feasible RCEL to CCFT’s inference method with p = 1. CCFT proposes
Wald-type inference using their local linear estimator with bias correction and standard errors that take into
account estimation of the bias. CCFT’s bias-corrected local linear estimator with common bandwidths is
equivalent to the augmented local quadratic regression estimator. It is well-expected that an extension of
Calonico et al. (2020, Theorem 3.1) holds and CCFT’s confidence interval admits a similar distributional
expansion. Hence for p = 1, CCFT’s method with a bandwidth A that obeys the optimal rate (i.e., h =<
n~1/%) has coverage error decay rate n—3/% (see Calonico et al., 2020, Theorem 3.1(a)). As CCFT, we
use local quadratic moment conditions (p + 1 = 2) in (4) to reduce the smoothing bias. Meanwhile, our
method analytically accounts for the effect of stochastic variability on the coverage error and then chooses
the bandwidth rate optimally (i.e., setting h =< n~'/3) so that a faster O (n‘l) coverage error decay rate is
achieved. Note that the same smoothness assumption underlies such comparison. If more smoothness (thrice
differentiability in Assumption 2(a)) is available (see Calonico et al., 2020, Theorem 3.1(b)), we can further
increase the LP order by one (i.e., local cubic). Partial Bartlett correction takes the increase in variability into
account. The length of the resulting C'S™® (k) with p = 2 and the rate optimal bandwidth (i.e., h =< n~1/4)
has the same order as CCFT’s confidence interval but C'Sf (k) enjoys a faster O (n‘l) coverage error decay

rate.

Remark 13. Like most existing results on second-order properties of kernel-based nonparametric inference,
Theorem 3 and our previous discussion assume a deterministic bandwidth. In practical data-driven imple-
mentation of the corrected confidence set, one selects a deterministic bandwidth of the form h = H-n~1/(#+2)
replaces H with a consistent estimator H and reports CSi'C (iAL) where h = H - n~Y/®+2)_ Calonico et al.
(2020) (see Section 5.3 therein) proposes an approach that takes the estimated AMSE optimal bandwidth
and rescales it to make it obey the coverage optimal rate (see Section IV(C) of CCFT). We can follow this
approach to use the rescaled versions of CCFT’s bandwidth. Alternatively, we can use a simpler ROT band-
width proposed in Hansen (2021, Chapter 21.6). The partial Bartlett correction we take makes the coverage
accuracy less sensitive to the choice of the constant part of the bandwidth. In simulations, we find that
C Sfre (ﬁ) with % taken to be any of the aforementioned data-driven bandwidth selectors has good coverage

accuracy.

Remark 14. By using the AK-type correction proposed in Theorem 2, we can also construct a confi-
dence band that uses a continuous range of bandwidths to analyze the sensitivity of the result from the

RCEL confidence set CSfr (ﬁ) to bandwidth choice. It can be easily verified that the conclusion of The-
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orem 2 with p changed to p + 1 still holds when LR,;1 (9o | h) is replaced by LR;rC (Yo | h) since they
are first-order equivalent, uniformly in A € H. We can take the lower and upper bounds in H to be pro-
portional to any of the reference bandwidths % discussed in the preceding remark. Let CSfrc (h | h/ Q) =
{00 : LR;rc (6o | h) < 2 (h/ Q)Q} be the “doubly corrected” confidence set and we construct the RCEL con-
fidence band {C’Sﬂc (h | h/ ﬁ) che H} accordingly for sensitivity analysis. We also expect a small coverage
error for the RCEL confidence band.'® Our method thus serves as a very effective tool for AK-type robust

inference that explicitly takes multiple bandwidths into account.

We have shown that the RCEL confidence set has superb coverage accuracy, under the covariate balance
assumption. We now consider scenarios in which covariate balance fails to hold and analyze the sensitivity
of the coverage accuracy to this assumption. Cattaneo and Titiunik (2022) note that “the principle of
covariate balance can be extended beyond pre-determined covariates to variables that are determined after
the treatment is assigned but are known to be unaffected by the treatment...” Such extension of the scope
of covariate is more than welcome in our GMM framework because LP moment conditions (4) allow for any
7 with 7 = 0, regardless of whether Z is a pre-determined covariate or an “unaffected” outcome. While
expanding the set of covariates may improve the efficiency of estimation and inference, it bears the risk that
the prior belief .77 = 0 is actually wrong for some “unaffected” outcomes included in (4). If the falsification
test in the first stage rejects the balance hypothesis for such “unaffected” outcomes, we can exclude it from
covariate adjusted estimation. However, the usual falsification test sets 77 = 0 as the null hypothesis and
may fail to reject if .77 is close to the hypothesized value 0 under the null hypothesis.?’ Another possibility is
that Assumption 1 is indeed satisfied by the true probability law but our sample observations are subject to
data contamination or measurement errors that occur after treatment (Kitamura et al., 2013). 71, ..., Z,, may
be drawn from some perturbed probability law which slightly violates pz + = pz,—. CCFT shows that the
covariate adjusted estimator is inconsistent and the confidence interval fails to have asymptotically correct
coverage probability in both situations when pz 4 # pz,—. When implementing covariate adjustment, the
researcher may mistakenly include covariates that slightly violate the assumption pz + = pz —. Theorem 4

shows that our method is useful when our prior belief about the “unaffected” outcomes is imperfect or the

19In the proof of the asymptotic validity result Pr [190 e C’Sf_rc (h \ E/ﬁ) , Vh € ]HI] — 1 — 7, we show that the distribu-
tion of supheHLRgc (Yo | h) is approximated by the distribution of HF@\% i/n] = suppeplc (h/Rh)? with a vanishing error,

where I' (h/ﬁ)2 follows the X% distribution Yh € H. We expect that the distributional approximation of sup,cylc (h/@)2
to suphEHLR;rc (90 | k) inherits the good accuracy of the pointwise-in-bandwidth distributional approximation of I'g (h/h)? to
LR (99 | h).

20F.g., Ludwig and Miller (2007) found no discontinuity in child mortality from injuries near the cutoff that divides the
treatment and control groups, where the treatment refers to high participation and funding rate for the Head Start program.
Therefore, child mortality from injuries can serve as a covariate Z when the interested outcome is the effect on child mortality
rate from causes affected by Head Start. However, the fact that the balance condition involving Z is not empirically rejected
may be caused by lack of sufficient power. Hence, there is a risk of covariate imbalance.
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data on covariates are contaminated but the incurred imbalance is slight.

By using local asymptotic analysis, we analyze the performance of our RCEL confidence set in the
framework of local misspecification (see, e.g., Armstrong and Kolesar, 2021). We assume that 9 approaches
the hypothesized value 0 under covariate balance at the rate of (nh)fl/ % 5o that the coverage probability
Pr[¥o € CS™™ (h)] = Pr [LR;'C (Jo | k) < ¢;] has a limit in (0,1 — 7), which captures the phenomenon that
covariate imbalance results in undercoverage in finite samples. We assume that the bandwidth for our RCEL
confidence set has been set to obey the optimal rate that minimizes the coverage error, i.e., h = H -n~1/(P+2)

~1/2 " As the standard

for some constant H > 0, when covariate balance holds. Let [, := n~(P+1/r+4) = (np)
Pitman approach to analyzing power properties of tests of parametric hypotheses, we think of the local
imbalance hypothesis 9 = §l,, as reparametrization of values of 7 that lie in a small neighborhood around 0,
where § € R% denotes the localizing parameter.?! 7, = 4l,, is equivalent to iz, = pz + —(up.+ — pip,—) 6ly,
under Assumption 1 (a), (b) and (c¢). Then it is clear that then the moment conditions (4) are locally
misspecified in the sense of Armstrong and Kolesar (2021) since E [A™ W), (Z — ¥2)] = O (I,). Our result
differs from Armstrong and Kolesar (2021) and focuses on the coverage performance of the RCEL confidence

set when § is close to 0.22 This is in accordance with the fact that local imbalance with a large § can be

detected with a high probability in the first-stage RD falsification test.

We now consider Pr [190 € OSfre (h)} as a function of § under local imbalance. Theorem 3 shows that if
6 =0, Pr [190 € OSfre (h)] =1-7+0 (n‘l). A measure of sensitivity of the coverage accuracy to local
imbalance (i.e., how the coverage probability drops relative to that under § = 0) is given by the slope of
Pr [0y € CS™ (h)] as a function of § at § = 0. We extend Theorem 3 and derive a two-term asymptotic
expansion for Pr [0y € C'S™ (h)] and take the sum of the leading terms, denoted by R (6), as approximation
to Pr [0y € CS™ (h)] in finite samples. We show that R(0) = 1 — 7 and the gradient VR (6) := R (6) /06
of R(d) at 6 = 0 is equal to 0, so that R () is locally constant around 6 = 0. This shows that coverage
accuracy of the RCEL confidence set is relatively unaffected by local imbalance in finite samples. We note
that this is indeed a unique property of the RCEL confidence set (Remark 16) and any other inference
method does not have the same property in general. We get the same conclusion in case of local imbalance
due to data contamination, when Zi,...,Z, are drawn from a locally perturbed population that satisfies

Wz+ — pz— = Ol,. Let F(-|n) denote the CDF of a x? (n) (non-central x? with one degree of freedom

210ur specification follows Gallant and White (1988, Chapter 7)’s “fixed data-generating process (DGP), drifting hypothesis”
approach. 97 = dl, is understood as the assumption that our hypothesized value 0 for the true RD LATE .7 is chosen in
such a way that O lies in the ||§|| [, neighborhood of 7, which is assumed to be fixed. For the alternative “fixed hypothesis,
drifting DGP” approach, we fix a DGP for the latent variables and the score that satisfies Assumptions 1, 2 and 4. Iz = dl,
is understood as the assumption that the latent variables and the score follow a joint distribution that is given by the given
DGP with a location shift. By taking this alternative approach, we can show a result similar to Theorem 4 and get an identical
conclusion. The proof requires more complicated arguments and suitable modification of the assumptions.

22The approach of Armstrong and Kolesar (2021) specifies a set in which § possibly lies and then adjust the critical value to
take into account the maximal misspecification bias. We take a very different approach in this paper.
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and non-centrality parameter 7 > 0) random variable. Let F(*) (z | ) := 0*F (z | n) /on* be the k-times
partial derivative of F' (z | n) with respect to n. The following result gives a second-order approximation to

the distribution of LR (o | h) under Jz = 6l,,. The same result holds for LR;rc (9o | h).

Theorem 4. Suppose that Assumptions 1 - 5 with Assumption 1(d) replaced by Tz = dl,, hold. Suppose that h
satisfies h = H-n="P*2) for some constant H > 0. Then, Pr [LRS (9 | h) < z] = F (33 | H (725/617“)2) +
P(z,8) 1, + o(l,), where P(z,8) == 2, (5) FV) (m | H (716/6]0“)2) + Py (6) FP (x | H (716/5,,“)2),
YA — Vadj and 6§+1 — 7/},'1"1 as n T oo and (L1, P2) are homogeneous cubic polynomials with constant

coefficients. The expressions of (7A76g+1, P, ,9”2) are in the appendiz.

Remark 15. In the approximation to Pr [y € CSF(h)] = Pr[LRT(J | h) < ¢,], the first-order term
F (cT | H (726/6p+1)2) is an even function of §, OF (cT | H (’ygé/&p+1)2> /85‘620 = 0 and the second-
order approximation P (c,,0) is an odd function of 6. Theorem 4 also implies that OP (c;,d) /00|5_, =
0 and P (c,,-) is locally constant around the origin. Let R (4) = F (cT | H (725/6p+1)2) + P(cr,0)1n.
Then we have VR (0) = 0 and this shows that the coverage accuracy of the RCEL confidence set is highly
insensitive to local perturbation to covariate balance (§ = 0). If ||[VR(0)| is large in magnitude, a slight
perturbation would incur severe undercoverage. To see that the slope is a measure of sensitivity to local
imbalance, we consider the approximate minimal coverage minges, R (J) on S,, where v denotes a positive
constant and S, = {§ € R% : ||§]| = v} represents perturbations with equal magnitude v in all directions.
0% = argmingcg R (J) corresponds to the direction in which the perturbation results in the most severe
undercoverage. Clearly, R (6},) < 1 —7 and we have the approximation R (05) = (1 —7)—|[|[VR(0)|| v +o0(v)

when v is small.?® Therefore, the RCEL confidence set has minimal sensitivity due to [|[VR (0)| = 0.

Remark 16. Having a locally constant second-order approximation (as a function of §) is a unique property.
Let pc () = (75— 1) /{s (1 +¢)} for ¢ € R. We interpret the special case py (x) = —log(z) (EL) as the
limit of p¢ (x) as ¢ — 0. The nonparametric likelihood (NPL) criterion function £ (6 | ) is defined by (5)
with 3=, po (n - w;) = — 3, log (w;/n~') replaced by the more general Cressie-Read divergence Y, p (n - w;).

The NPL ratio LRS

~+1 (0o | h) and confidence set are defined analogously. Under the same assumptions as in

Theorem 4, we can show that Pr [LRc

* 1 (U0 | h) < 2] admits a similar two-term asymptotic expansion.* The

first-order term in the expansion for Pr [LRS, | (9o | h) < z] is still given by F (x | H (’yZ(S/&pH)Q). The
second-order term is of the form (P (z,d) + P. (z,9)) l,,, where P. (x,0) is an odd function of §, P. (x,6) =0

if ¢ = 0 and OF; (x,0) /0|;_, # 0 in general if ¢ # 0. In this case, there can be perturbation associated

23By using the Lagrange multiplier method to solve the constrained minimization problem mingeg, R (§) and mean value

expansion, 6% = — (VR (6}}) / Hé;‘%H) v and therefore, R (6;‘{) =1-7)— (VR <5R)T VR (5;‘%) / HVR (6}})”) v, where §g is

the mean value that lies between 07, and 0. Clearly, VR (5R>T VR(5%)/ HVR (6%) H —|[VR(0)|| =0,as v | 0.

24The proof of this result is omitted for brevity but available from the authors.
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with a large drop in coverage probability of the NPL confidence set. Let R, (9) := F (cT | H (vAd/ 6p+1)2) +
(P (2,0) + P (2,6)) I, and 63 = argmingeg R (6). Then by similar arguments, R (5}%) =1-7) -
IVR. (0)|| v 4+ o (v), which is highly sensitive if ¢ # 0 and ||[VR. (0)|| > 0 is large. In contrast, the RCEL

confidence set exhibits good coverage accuracy uniformly in all § € S, when v is small.

6 Monte Carlo simulations

We conduct simulations to evaluate the finite sample performance of the proposed RCEL inference for sharp
RD designs with covariates. The DGP of the outcome variable Y;, the score X; and the first covariate Zi(l)
is based on the simulation design of CCFT. Incorporation of additional covariates Z;Q), e ZZ-(Z) follows that

of Arai et al. (2021). Le., Y; = py, (Xi, Zi(l)> + 2222 Wj_lzl-(j) +¢e,,; and ZZ-(I) = . (X;) + €24, where

0.36 4+ 0.96z + 5.47x2 + 15.2823 + 15.87z* + 5.142% +0.22z; if x < 0,
:u’y (.’L', Zl) =
0.38 + 0.62z — 2.84x2 + 8.4223 — 10.242* + 4.312° +0.282; if z > 0;
(@) 0.49 4+ 1.06z + 5.74x2 + 17.1423 + 19.752* + 7.472° if x <0,
Mz (T =
0.49 + 0.61z — 0.2322 — 3.4623 + 6.432* — 3.482° if x > 0.

Error terms (e, ,,€,,;) are bivariate normal with mean 0, standard deviation 1 and correlation coefficient
p = 0.269. Additional covariates (Zi(z), e Zg”) have a multivariate normal distribution with mean zero and
covariance matrix given by Cov [Zi(j),Zi(k)} = 0.50=* vj k > 2. We take 7 = 0.2. We consider three
scenarios with [ = 0, 2,4, which correspond to the total number of covariates d, = [+ 1 being 1,3,5. We take

the LP order p = 1 or 2. The sample sizes are n = 500, 1000, 2000. The number of Monte Carlo replications
is 2000.

Table 1 presents the empirical coverage rates of the feasible RCEL confidence set CSfre (iAz) proposed in
Remark 11. The nominal coverage 1—7 is set as 0.90,0.95,0.99. Following Remark 13, we consider bandwidths
in the form of h = H-n~Y®+2) and two choices of the constant part H: ROT in the table corresponds to the
ROT bandwidth recommended in Hansen (2021, Chapter 21.6) and CCFT corresponds to rescaled CCFT’s
bandwidth.2> Both ROT and CCFT bandwidths used for RCEL obey the coverage optimal rate discussed

in Remark 11. For comparison, Table 1 also includes results from CCFT’s method that uses a bandwidth

25As Remark 12 notes, CCFT’s coverage optimal bandwidth has the rate n=1/4 for p = 1. For each simulation replication,
let hccpr be the CCFT bandwidth computed from R function rdrobust with the options p=1, rho=1, and bwselect="cerrd".
Then in Table 1 and Figure 1, our CCFT bandwidth used for “RCEL, p = 1” is hccpr - n—1/12 (rescaled to the coverage optimal
rate n=1/(P+2) discussed in Remark 11). The CCFT bandwidth used for “RCEL, p = 2” is hccpr itself, as now the coverage
optimal rate for RCEL is n~1/4.

22



with the coverage optimal rate and restricts p = h/b = 1, where b stands for the pilot bandwidth used for
bias estimation. For each (n,7) combination, the number most close to the nominal coverage probability is
bold-faced. We observe that both RCEL and CCFT yield coverage probabilities close to their nominal levels
for all the considered scenarios. For RCEL, both ROT and (rescaled) CCFT bandwidths perform reasonably
well. When the sample size is small (n = 500), RCEL exhibits a small advantage over CCFT, which is in line
with the theoretical result that RCEL achieves a faster coverage error decay rate than CCFT. See Remark
12. We then examine how the coverage rate of RCEL confidence set changes when the covariate balance
assumption is slightly violated. We consider the case with one covariate (d, = 1) and modify the DGP of

Zi(l) in the following way that the imbalance is characterized by a perturbation parameter 9:

0.49 + 1.06z + 5.74x2 + 17.142% + 19.752* 4+ 7.472°  if x <0,
p (@] 0) =
0.49 + 6 + 0.61z — 0.232% — 3.462° + 6.432* — 3.482° if z > 0.

Figure 1 plots the simulated coverage rates of RCEL and CCFT as a function of § € [—0.4,0.4] for different
combinations of sample size n and nominal coverage 1 — 7. We observe that the coverage rate of RCEL is
less sensitive to the change of §, which parallels the theoretical finding discussed in Remark 15. Overall, our

simulation results show that RCEL inference method can be a useful addition to practitioners’ toolkit.

7 Empirical illustration

We apply the RCEL inference method to analyze the individual incumbent advantage in Finnish municipal
elections, which was first studied by Hyytinen et al. (2018). In the RD framework, the binary outcome
variable Y indicates whether the candidate is elected in the next election, and the score X is the vote share
margin in the previous election. Two covariates are included: candidates’ age and gender. The main results
are presented in Table 2. The ROT bandwidth is computed in the same way as the simulation exercise. For

—1/12 deseribed in

p = 1, the CCFT bandwidth and its rescaled version correspond to hccpr and hccpr - n
Footnote 25. For p = 2, the rescaled CCFT bandwidth corresponds to hccer (for p = 1) in Footnote 25,
and the CCFT bandwidth is equal to the one used by CCFT for p = 2. The columns of Table 2 present
the estimates of RD LATE ¢y, p-values for testing Hy : 99 = 0, the 95% confidence intervals and the
selected bandwidths. The dataset also includes 1351 candidates “for whom the (previous) electoral outcome
was determined via random seat assignment due to ties in vote counts” (Hyytinen et al., 2018, Page 1020),

which constitutes a experiment benchmark to evaluate the credibility of the RD treatment effect estimated

from the non-experimental data (candidates with previous electoral ties are excluded from the RD sample).
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As reproduced as “Experiment benchmark” in Table 2, Hyytinen et al. (2018) find zero treatment effect
(see their Table 2, Column 4, the p-value is imputed by us). We notice that RCEL and CCFT methods
using different bandwidths presented in Table 2 deliver non-significant inference results comparable to the
experiment benchmark, except for CCFT (p = 2) that does not restrict p :== h/b (p-value = 0.028).2% This
is not due to the larger bandwidth (h = 1.103) used by CCFT when p = 2, as RCEL (p = 2) using the same

bandwidth does not reject the null hypothesis (p-value = 0.229).

The robustness of RCEL is further confirmed by Figure 2, which conducts sensitivity analysis of the RCEL
inference method with respect to the bandwidth choice. Figure 2 plots the RCEL confidence band (Remarks
5 and 14) over a continuous range of bandwidths h € [ﬁ, E]. Here we choose the lower bound h = 0.12, which
would include about 3% of the sample. The upper bound h = 0.72 is approximately two times the ROT
bandwidth in Table 2 and includes 17% of the total sample. The snooping corrected critical value (2.413)” for
the triangular kernel and bandwidth ratio h/h = 6 is calculated from R package BWSnooping. In Figure 2, the
solid (or dotted) line corresponds to 95% uniform (or pointwise) confidence band. The vertical dashed lines
indicate the first two bandwidths used for RCEL in Table 2. For small bandwidth (say, less than 0.2), the
RCEL uniform confidence band is wide. However, as long as the bandwidth is not so small, the confidence
band looks quite stable. Moreover, the confidence band includes zero over the entire bandwidth range we
consider, which demonstrates the robustness of the finding of no incumbency advantage with respect to the

bandwidth choice. Overall, our example illustrates the practicality of the RCEL inference method.

8 Conclusion

This paper proposes a novel EL approach to covariate adjustment for regression discontinuity designs. Our
approach incorporates covariates through over-identifying restrictions which represent the covariate balance
condition. We derive the first-order and second-order asymptotic properties of our method. We show that the
widely-used regression estimator of Calonico et al. (2019) is never less efficient than the standard estimator
without covariates. It achieves efficiency gain as long as the true projection coefficients of some covariates are
nonzero. By establishing the first-order equivalence between our EL estimator and Calonico et al. (2019)’s
regression estimator, we show that the efficiency gain can be attributed to incorporating the covariate balance
condition as side information. We show a uniform-in-bandwidth Wilks theorem, which can be used for
sensitivity analysis and robust inference along the lines of Armstrong and Kolesar (2018). We derive the

distributional expansion for the EL ratio statistic under the covariate balance condition and show that it

26This is in line Hyytinen et al. (2018, columns (2) of Table 4)’s results that the CCT (without covariates) using the MSE-
optimal bandwidth (p not restricted) rejects the null hypothesis of zero treatment effect, while the one restricting p = 1 does
not reject.
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admits a simple data-driven correction that substantially improves the coverage performance. We also derive
the distributional expansion for the robust corrected EL ratio statistic under the local imbalance condition.
It shows that the robust corrected EL confidence set is self-guarded against undercoverage in case of slight

perturbation to covariate balance.
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Table 1: Sharp RD with covariates: robust corrected EL (RCEL) inference using ROT and CCFT bandwidths
(h) and CCFT Wald-type inference using the bandwidth with coverage optimal (CO) rate and p == h/b =1,
d, = the number of covariates, p = the polynomial order, 1 — 7 = nominal coverage probability, n = sample

size.

1-—7=0.99 1—-7=0.95 1—-7=0.90
d, Methods h n=>500 1,000 2,000 500 1,000 2,000 500 1,000 2,000
1 RCEL,p=1 ROT .9805 9825 .9840 9265 9430 9450 8750 8795 .8900
RCEL,p=1 CCFT 9825 9850  .9865 9350  .9420 .9505 8765 .8905  .9000
RCEL, p =2 ROT .9880 9865  .9885 9400  .9500  .9475 8870 .8960  .8960
RCEL, p =2 CCFT L9885 .9900 .9900 L9490 9495 9580 .8960 .8980  .9080
CCFT,p=1 CO,p=1 .9760 9825 .9905 9315 9420 9535 8815 .9005  .9130
CCFT,p=2 CO,p=1 .9740 9760  .9890 9265 9340 9525 8745 8925 9015
3 RCEL,p=1 ROT .9780 9680  .9745 9155 9090  .9250 .8560  .8470  .8780
RCEL,p=1 CCFT 9785 9740  .9830 9195 9195 .9360 .8680  .8660  .8905
RCEL, p =2 ROT .9840 9765 9825 9325 9290 9395 8730 8715 .8835
RCEL, p =2 CCFT 9870 .9790 .9865 .9450 9310  .9430 .8925 .8735 .8925
CCFT,p=1 CO,p=1 9670 9767 .9860 9130 .9320 .9500 .8580  .8695 .9015
CCFT,p=2 CO,p=1 .9640 9750 .9850 9130 .9240  .9430 .8520  .8695 .8985
5 RCEL,p=1 ROT .9645 9720 .9765 9035 9145 9125 8525  .8515  .8510
RCEL,p=1 CCFT 9730 9690  .9820 9150 9125 .9200 8665  .8515  .8495
RCEL, p=2 ROT .9800 9810  .9810 9185 .9320 9180 8620  .8655  .8675
RCEL, p =2 CCFT 9775 9815  .9815 .9245 .9320 .9270 8710 8745  .8630
CCFT,p=1 CO,p=1 .9590 9740 9795 8960  .9245 .9345 .8420 .8820 .8805
CCFT,p=2 CO,p=1 9630 9690  .9760 9060 9185  .9295 8475 8745  .8745
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Table 2: Incumbency advantage in Finnish municipal election: 1% = RD LATE estimator, h = bandwidth.

Methods Bandwidth selector g  p-value 95% CI CI length h

RD with covariates

n = 154, 543 RCEL,p=1 ROT -.003 .896 [-.054, .047] 101 .406
RCEL,p=1  CCFT, rescaled  -.066  .587  [-.319, .171] 490 144
RCEL,p=1 CCFT -.007  .807 [-.059, .046] 105 .391
CCFT,p=1 CO .024 161 [-.010, .059] .069 391
CCFT, p=1 Co,p=1 012 671 |-.068, .044] 111 391
RCEL, p=2 ROT .023 234 [-.014, .060] .074 1.098
RCEL, p =2 CCFT, rescaled -.045 .346 [-.140, .048] .188 391
RCEL, p =2 CCFET .023 .229 [-.014, .060] .074 1.103
CCFT,p=2 CO .033 .028 (003, .062] .065 1.103
CCFT, p =2 Co,p=1 017 402|023, .057] 801 1.103
Experiment -.010 516 [-.060, .040] .100
benchmark (Hyytinen
et al., 2018)
n=1,351

Figure 2: Robust corrected EL inference applied to Finnish municipal election: 95% uniform (solid) and
pointwise (dotted) confidence bands over the bandwidth range [0.12,0.72]. p = 1. Corrected critical value
= (2.413)2. Vertical lines indicate two bandwidth choices in Table 2: ROT bandwidth hArot = 0.406 and
rescaled CCFT bandwidth Accpr = 0.144.
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Appendix A Proofs of Theorems 1 and 2

For a sequence of classes of R-valued functions §, defined on . (a compact set in a finite-dimensional
Euclidean space), let || f[|g o = (f f2dQ) Y2 and N (s,&n, H||Q2) denote the e-covering number, i.e., the
smallest integer m such that there are m balls of radius € > 0 (with respect to ||-[|5 ,) centered at points in
§n whose union covers §,. A function Fg, : % — Ry is an envelope of §, if supscz, |f| < F3,. We say
that §,, is a (uniform) Vapnik—Chervonenkis-type (VC-type) class with respect to the envelope Fk, (see, e.g.,
Chernozhukov et al., 2014b, Definition 2.1) if there exist some positive constants (VC characteristics) Az, > e

)

(Ag, /e)V3" Ve € (0,1] where Q%9 denotes the collection of all finitely discrete probability measures on .77, <

IN

and Vz, > 1 that are independent of the sample size n such that supQEQf;N (s ||Ff§n||Q o Sns ||
denotes an inequality up to a universal constant that does not depend on the sample size or the population.

For a real sequence {a,} -, we denote b,, o a,, if b, = ¢ a,, for some constant ¢ > 0. Proofs of all lemmas

n=1"

are in the supplement available at ruc-econ.github.io/supplement RD.pdf.

Lemma 1. Let V denote a random variable and {Vi,...,V,} are i.i.d. copies of V. Let B(0) denote an
open neighborhood of 0. Suppose that (h,h) satisfy h = o(1). V(s,k) € {—,+} x N, the following re-
sults hold uniformly in h € H: (a) if gv is Lipschitz continuous on B(0), for k > 2, E [h_lwk. V} =
ql)vsw(”“ + O( ) (b) if gv is (p+ 1)-times continuously differentiable with Lipschitz continuous g(pH)
on B(0), B[R WpeV] = v + wlt P et/ (p 4 1)1 + 0( ”*2) and B [h™Wp1.V] = vy +
0 (Epﬁ); (c) if gjv|~ is bounded on B (0) for some integer r > 2, (nh)71/22 (VV’C Vi—E [Wk V]) =

Oy ( log (n) + log (n) {(nﬁ)l/r / (n@)l/z}).

Let 05« denote the J x K matrix in which all elements are zeros. Let Ix denote the K x K identity
matrix. Let 0; denote the J-dimensional vgctor in which all elements are zeros. Let G; == 9U; (0) /00T =
{ Goi Gy }, where Gg; = { D; 0] } and Gy; =14,. (G, Go,Gt) are defined by the same formulae
with D; replaced by D. Denote U; (6) i= Wy @ Uy (6) and Uy i= Wis @ Uy (0, ). Let Us = Wy @ Uy,
Gi = Wy ® Gy, Goi = Wp; ® Go; and Gi; = Wy,; ® Gt;. (U, G,Go,G+) are defined similarly. Let
Ds == WpsD. Denote Ay :=E [h_lwp.s] and Ay = E [h_lA] for a random variable/vector/matrix A. Let
Ay = (nh) PSS UUT, Dy = (nh) ™S, Ul and Ag = (nh) ' Y2, Gi. Let U == (nh)” ">, U; and
U= (nh)*S, U

Denote S (A, 0) :=23";log (1+ AT, (9)) and 51, = 51, (99). Note that the dual form of the EL criterion
function is £, (0 | h) = supycz(9)S (A, 0), where L (0) == {X e R¥ : XTU; () > —1, Vi}. max; is understood
as maxj<;<n. For square matrices A and B, diag (A, B) denotes the block diagonal matrix. ||A|| is understood

as the spectral norm of A and gmin (A) denotes the smallest eigenvalue of A. In the remaining proofs in
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Appendix A, whenever applied to quantities that depend on h, O, (), 0, (-), O (:) and o(-) notations are
understood as being uniform in h € H. For notational simplicity, denote 7 := nh, n = nh, Np = ﬁp -4
and 7, = 51, — ;. “With probability approaching one” is abbreviated as “wpal”. The proof of the following

lemma follows the arguments in Newey and Smith (2004).

s _ = 0O(1) and

Lemma 2. Suppose that Assumptions 1, 2 and 3 hold. Suppose that (@,E) satisfy nh
log (n) (ﬁl/w/ﬂl/z) = 0(1). Then, the following results hold uniformly in h € H: (a) vVnhij, = O, ( log (n)),
(b) :\\p = argmax, ¢ (g )S (/\ 9 ) exists wpal and vVnhA, = O, ( log (n)), (c) Vnhi, = O, ( log (n)),

(d) Xy = argmaerﬁ(ﬁoﬁp)S ()\,190,{%) exists wpal and \/nh\, = O, ( log (n))

Denote O = (Ag AuuTAg> , N = A" AgO and Q = AuuT NATA ! Let (O4,N4,Q4) be

UUT uuT "

defined by the same formulae with Ag replaced by Ag, .

Lemma 3. Suppose that the same assumptions as Lemma 2 hold. Then, the following results hold uniformly
) ST —T —T

in h € H: (a) \/nh(/\;,n;) = U [ Q N } o (vh); (b) Vnh (Ap,np) U [ QN ] +0, (v1),
where v}, == log (n) //L + log (n)?’/2 (ﬁl/ﬁ/@).

Proof of Theorem 1. Let M, = Wy (M — 1), Zs = Wy (Z — 02), My == (nh) /23, Wi (M; — 91),
Zo= (nh) A Wi (Zi — 0) and ya = (Az, 2, /A2 + Az 5 JAZ) ' (Az, i, /AL + Az JA2).

Also denote Us == W, U, Us == (nh)~ 1/22 Whis.iUi, ®oo = A WA Agys Pot = A WA A, Pro =

UMT UMT

Dfi, Byy = Ag Ay Ag, and @4 = Au+uI/A+ + Ay 47 /A% Then we have

UMT
B e -1 _ 2 2 2 2
Sa = (ed, 1®5 eann) = (A /A2 + Az A2) = (Apg 27/A3 + Ap_27 /A2 ) 74

= Ay zTa) A F Au_zraay/AL (D)

where the second equality follows from writing &4 as a block matrix and inverting and the third equality

follows from simple algebra. And similarly,
1 — — — —= = T
e 1@t Uy /AL U JA ) = {(M+/A+ ~M_JA) = (Z1/AL —Z_/A) 'YA} /XA (12)

-1
By simple algebra, (@00 — CIDOJr(I)*l(I)TO) = YA/ (AD+/A+ —Ap_ /A,)Q. Then, by this result, writing

A—grAuuTAg as a block matrix and inverting,

) YA —Yap 0!

(AJALLAg) T = (Ap, /AL —Ap /A (13)

-1 -1 —1 -1
—<I>H I IYN (I)TT + <I>JrJr @TOZNI)OT‘I)H
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By straightforward algebraic calculation,
(Ago - @OT%IA&) AT = (Ap, JAL —Ap A Yey (&7 (U /Ay —U_JA ). (14)
Then, by this result, (12) and (13),

ed9 1 (Ag AuuTAg)_l (Ag AuuTu) = (AD+/A+ —Ap_ /A*)_z XA (Ago - (I)OT(I)ﬁlA—grf) Aublﬁu

My /A M JA) = (Z4/A —zf/Af)TWA (15)
= Ap, JA; — Ap JA_ '

It follows from Lemma 1 with i = h = h that ya = 7a¢j+O (h), Ap, = p+0 (hP11) and Ay = p+0 (RPT1)
Vs. By Lemma 1 with o = h = h and Markov’s inequality, Ms = O, (1) and Z5 = O, (1) Vs. Then, it follows
from Lemma 3 with h = h = h and these results that

Vih (Do = 90) = el 1 (AFA ) (AFALLT) + 0, (1)

{(My = Z7a4) = (M- = Z_7a4) } / WD+ —¥p,—) + 0, (1)
= nh 1/22 Pt p—?)(ei *.us)/(wD& 7wD,—)+Op (1)a (16)

where ¢; := M; — Z Vadj- Let & == (Wp4i — Wy ;) (6, — pe) and € be defined similarly. Then,

Vil (B0 =t = 525 ) = ) (L -[Z|) /e —vorram a7

follows from subtracting both sides of (16) by vVnhAg/ (¥p + —¥p,—). By Lemma 1 with h = h = h, Ag =
(Cpit — Cpi—) RPTH/ (p+ 1)1 + O (hPT2) and Ag2 = wg;’i Yse{ot1 Yie—py2s + O (). 1t follows from simple

algebraic calculations that 3 o 4y ¥, 2= 0245- Then, Var {S/f] Agz—hAZ = wp +Uang0—|—O (h).
By LIE and change of variables, Ags = O (1). Then,
4
> E EVih B[R] || aeriag ;=0 ((nh)), (18)

i Var [5/\/5} - (nh) (Var [8/\/5})

where the inequality follows from Loéve’s ¢, inequality and the equality follows from Var [5 / \/E] = wg;’iafdjg@—k
O (h), Aga = O(1) and Ag = O (hPT1). (18) verifies Lyapunov’s condition. By Lyapunov’s central limit

theorem, ", (5 /vnh —E [5/\/ D /+/ Var {5/\[} —a N(0,1). The conclusion follows from this result,
(17), Var [E/I} = wg iafdjgo + O (h) and Slutsky’s lemma. [
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The following lemma shows that {LR, (Yo | h) : h € H} can be approximated by the square of an empirical
process indexed by h € H. Denote P} f :==n"' Y, f(T;, X;), P f = E[f (T, X)] and G| := \/n (P} —PT),

where T, == (Y;, D;,Z]) " (similarly, T == (¥, D,27)"). Denote |Fllpr, = (P |F|")"/". Let & () =

r

B[(e—p)” | 1X] =] and q(- | k) be defined by q(T;, X; | h) i= h=2€:/\[€ (1Xi]) fix) (1X]) bt where
fix| denotes the PDF of | X].

Lemma 4. Suppose that the assumptions of Lemma 2 hold. Then, uniformly in h € H, LR, (9o | h) =
2 7 —
{6Ta (-1 1)} + 0, (log () + log (n)*/* (@1/12/n!/?)).

Proof of Theorem 2. Denote Zg, = suprQiG,TLf = HGZHD Since Fgq is also an envelope of Q4 =
QU (-Q) (—Q = {—f: fe€Q}) and the covering number of Q. is at most twice that of Q, Q4 is also
VC-type with respect to Fq. By standard calculus calculations (see, e.g., the proof of Chernozhukov et al.,
2014b, Corollary 5.1) and Chernozhukov et al. (2014b, Lemma 2.1), there exists a zero-mean Gaussian
process {GT (f): f € Q4} that is a tight random element in £*° (Q4) and also satisfies E [GT (f) GT (9)] =
Cov [f (T, X),g(T,X)], Vf,g € Q4+.2" By Giné and Nickl (2015, Theorem 3.7.28), almost surely the sample
paths Q1 > f +— G7T (f) are prelinear and therefore, almost surely, Vf € Q, GT (f) + GT (—f) = 0,
and sup;eq, GT (f) = HGTHQ. Let I'c (h) == GT (q(- | h)) and therefore, the zero-mean Gaussian process
{I'c (h):h€H} is a tight random element in > (H) and has the covariance structure E [I'; (k) ¢ (W)] =
Covg(T,X | h),q(T,X | h)], ¥ (h,h') € H:. By definition, |||, = HGTHQ. By change of variables and
LIE, sup ;e qP” 17> = sup, ek [|q (T,X | h)ﬂ < h™Y? and similarly sup s o7 IfI* < h7L. Also, PTFY <
h/h®. By Chernozhukov et al. (2016, Theorem 2.1) with B (f) =0, F = Q+, ¢ = 12, K,, = log(n), 0 = 1,
b< h™'? and v = log (n)*l7 there exists Zgi =y suprQiGT (f) = ||GT||Q which satisfies Zg, — Zﬂi =
O, (v}), where “=4" is understood as being equal in distribution and v} = {log (n) (log (n) n)l/lz} /nt/? +
log (n) /n'/%. By Dudley’s entropy integral bound (Giné and Nickl, 2015, Theorem 2.3.7), Chen and Kato
(2020, Lemma A.2) and standard calculus calculations (see, e.g., calculations in the proof of Chernozhukov

et al., 2014b, Corollary 5.1),

- [HGTHQ} < /OUDan/QHth»Tg \/1 +log (N (8’97 H'HIPTQ))dE
< (00 VY2 | Fallsr ;) Viog () = O (Viog (m)) . (19)

By Lemma 4, sup, ey LR, (Vo | ) = HGZH; + 0, (log (n) h + log (n)?’/2 (ﬁl/m/ﬂl/z)). By (19) and the fact

2"Tightness of 9 is equivalent to the condition that Q endowed with the intrinsic pseudo metric (f,g) — ||f — gllpr 5 =

1/2
(IP’T (f = g)2> is totally bounded and almost surely the sample paths f + G7 (f) are uniformly continuous with respect to
the intrinsic pseudo metric. By Kosorok (2007, Lemmas 7.2 and 7.4), {GT (f):fe Q} is also separable as a stochastic process.
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that E [HGZHD] =0 ( log (n))7 we have Zg —Zgi =0, (\/log (n)v;) Therefore, sup,cy LR, (9o | h) =
7%, +0, ( Tog (n)v, + log (n) E). By Dudley (2002, Theorem 9.2.2) and supy,cuLR, (9 | h) — Z3, =

suppeL Ry (9o | h) = Z4, | > 2u/log (n)] <

Op (log (n)_1>7 there exists a null sequence ¢, | 0 such that Pr [
e, and by the fact that (a —b)* < |a® — b%| Va,b >0,

o

It is easy to check that for random variables (V, W) and constants r1,72,¢ > 0 such that Pr[|[V — W| > r] <

\/subnesLRy (9o | h) — Za,

> e, /log (n)} < eén. (20)

T2,

[Pr[V <t]—Pr[W <t]| <Pr[|[W —¢t| <ri] + ro. (21)

Then, by (20) and (21),

Pr [suppeslRy (0o | h) < 217 (B/0)°] = Pr[Z3, < 21s (R/B)’]|

< Pr [|Za, — 1 (W/0)| < VEnSloB W] +en (22)

Since Zgi =q HGTHD and {G7 (f): f € Q} is a centered Gaussian process with E [GT (f)ﬂ =1, Vf, by

using the Gaussian anti-concentration inequality (Chernozhukov et al., 2014a, Corollary 2.1) and (19),

|

Za, =21+ (W/D)| < Ve log )] < Veullog(n) (B [|G7]l4] +1) =O(/En).  (28)

It then follows from (22) and (23) that Pr {LRP (0o | h) < 21, (B/B)*,Vh € H} = Pr[|| Tl < 21- (B/R)]+
0(1). Let N be an N(0,1) random variable that is independent of {I'c (h):heH}. Let Iz (h) =
I'c(h) +E[q(T,X | h)]- N. By change of variables, sup,cy |E[q (T, X | h)]| = O (51/2). {fg (h):he H}
is a zero-mean Gaussian process which satisfies HquH = ch;HH + 0, (51/2) and has the covariance
structure E [fG (h) Ie (h')] = E[q¢(T,X | h)q(T,X | k)], ¥(h,h') € H2. By LIE and change of vari-
ables, E[q(T, X | h) (T, X | )] = /R/W [ Kpir (2) Kpis (h/R') 2) dz/wii . Let I (s) = I (s-h), s €
[1,7/h]. Then it is easy to see that the zero-mean Gaussian process {I (s) : s € [1,h/h]} has a covariance
structure given by (9) and ||Fg|\[17ﬁ/h} = HngH. By Dudley (2002, Theorem 9.2.2) and HFGHH - ||FGHH =
Op (log (n)*1/2>, there exists a null sequence &, | 0 such that Pr HHngH — HFGHH’ > én/\/M] < &,.
By similar arguments, we have Pr [HngH <zi_r (ﬁ/ﬁ)} — Pr [HFGHH < zi_r (E/ﬁ)] = 0(1). By the def-
inition of 21—, (h/h) and \|Fg||[1ﬁ/ﬂ] = Hfg‘

. Pr [HngH < zi_, (ﬁ/@)} = 1 — 7. It then follows that
Pr [LRp(ﬁo|h)§zl_T (E/@)Z,Vheﬂﬂ —1-7+0(1). n
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Appendix B Proofs of Theorems 3 and 4

*

We denote 71 := nh for notational simplicity and write § = O}

(a,) for some bounded sequence a,, if there
exists some positive constants c1,co > 0 such that Pr[|§] > cra,] < co (log (n) /n3/2). Tt is straightforward
to check that if §; = O} (an) and 09 = Oy (bn), then 6165 = 0; (anby) and 01 + Jo = o, (an + by), i.e., the

algebra of the Oy notations carry over to Oy notations. We say that an event occurs wp* if its probability is

1 -0 (log (n) /n3/?).

Lemma 5. Suppose that the same assumptions as Lemma 1 hold with h = h = h. If g 1S bounded on

pis,e

B (0), n Y25, (Wi Vi — B [WhV]) = 05 (Vlog (0)), ¥ (k,s) € N x {—, +}.

The following result is an analogue of Lemma 2. Its proof essentially follows similar arguments.

Lemma 6. Suppose that the same assumptions as Theorem 3 hold. (a) /i, = O} ( log (n)), (b) Xp =
argmaerL(lgp)S()\,ﬁp) exists wp* and \/EXP = O;( log (n)), (c) Vin, = O;( log (n)), (d) Xp =
argmax)\eﬂ(%ﬂ;p)S (Aﬂ?Ov&p) exists wp* and ﬁﬁp =0, (\/log (n))

T
Consider the singular value decomposition of A;;/f (—Ag): STA;;/TQ (—Ag) T = [ A Ogyxd. ] , where
STS =1Iy4,, T'T =14, and A is a dy-dimensional diagonal matrix with the square roots of the eigenvalues

of AgA;ﬁF Ag being on its diagonal. We follow Chen and Cui (2007) to rotate the moment conditions by

= STA;;TQ so that results from Chen and Cui (2007); Ma (2017) can be applied. Let V; () = TU; (0),
Vi =TU;, H; =T (-G;), H+; =T (—G;s;) (V,H,H; defined similarly) and V; == TU;. Denote Ayt =
n~tS. ViV and Ay == 'Y, H;. Note that the EL criterion function is invariant to such a rotation,

ie., £, (0| h) =supy2),log (1 4+ ATV;(6)). For notational simplicity, we still use Ap and A, to denote the

Lagrange multipliers. Clearly, (b) and (d) of Lemma 6 still hold. Let IT := AT and © := II"!. Then,
T

T
Ava ZIgdu, AH IZF(—AQ) = [ g Odﬁxdz :| and AHT = F(_AQT) = l: H;— Odfxdz :l , where HT is

a dy x dy matrix collecting the last di columns of II. Denote J := (HTTHT> HTT, P :=1I4Jand M := —Ig, +P.

Then, by inverting the block matrices,

-1

_ _ _ -1 _ _ _ -1
—AyyT A _ _Awlﬂ + AV\IJT A (AI{AV\IJT AH) AILAml;T Amlﬂ A (ALAV\IF AH)
- _ -1 _ _ -1
AI{ Odyxdy (A'ILAmlﬁ A"H) A?TLAml)T (AI{Amlﬂ AH)

Odyxdy Odyxa. QT 3 3
B —@n)tert —(@T)7'N
= Oaxdy —la. Od.xdy | = (24)

-NTT! o)
Q  Ogyxa. QQF
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and

—1 T
7AVVT AHT M OdﬂXdZ ! — (FT) - QTF71 — (FT)il NT
= | Odoxdy —la.  Oa.xay | = - (25)

Tr—1
A;_FLT OdTXdT J O JJT 7NTF OT
tXdz

By similar arguments as in the proof of Lemma 3, the first order conditions ), Vi/ (1 + X; ]71) = 0 and
S HS Ap/ (1 + X;— ]71) = 0 hold wp*. Expanding the left hand sides yields
4
- e fereN2 ferend (/\;Vz')
0 — Zv L=+ (%) = (0) v
™ NES NEAY (A;Vi)

0 = S HIL{1-2 Vi+</\ vl-) R 2
; P P P 1+/\;,'—Vi (26)

= 03 (7'/%), max; [\ V;

By Lemma 6 and max;

<[5 (o 5

%

) =0y (\/M/ﬁg/m). There-

= O, (1), which follows from bound-

i

fore, max; TAi < 1/2 wp*. By this result, Lemma 6 and 1~
P

edness of ©, Markov’s inequality and If; = Ui—Gitlp, >, <X;]72)4/ (1 + X;ﬁl) = Oy <log (n)2 /ﬁ) Similarly,
> 'H;'—Xp (X;]/}l)3/ (1 + X;ﬁ) = O; <log (n)2 /ﬁ) By 91 = Vi+MH;7p and Lemma 6, ), X;]Z => X;Vﬁ—
S A S (M0 = S () + S (Grra,) 2 (3w (Tae,) e 5, (A7) =
> (X;—Vi)B +3>, (X;'—Vi)Q (X;Hiﬁp) + O, (log (n)S/2 /ﬁ3/2). By plugging these results into the right
hand side of (26),
Ayt A + Ay, = —% Vit % Z Vi (A My ) - % Z V; (X;vi)Q - % Z V. (\vi) (A )
+% >V (X;v) ZHmp (Ravi) + Zﬂmp (A iy )
—% Z Hinp (X;Vi) + (Apyr — Apyr) )\p — (Ay — Aw) 1 + O} ((log (n) /ﬁ)2>
AT, = %ZHJXP ( ) ZHT (AT mp) - ZHT (X;VZ)Q
~(Br-27) % +0; ((log (n) /%) (27)

By fifth-order Taylor expansion and max; PNAY

o (\/m/ﬁ3/10)7 l, (517 | h) can be written as the

— N2 N3 SUEPRN
sum of 23, ATV — Y, (A;Vi) +2%, ()\;—Vi) /3=, ()\;VZ) /2 and a remainder term bounded up to

s\p

5 A~
=0 (log (n)5/2 /7_13/2) wp*. By V; = V; + H;7j, and Lemma 6,
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A~ A~

> ()\;—Vi)4 =3, (X;V¢)4 + O (log (n)5/2 /ﬁ3/2) and therefore,

o (5 10) = A L () ()2 () ()

(2

L) ) () - 35 (7)o (e ).

A stochastic expansion (e.g., Newey and Smith, 2004) is understood as an approximation that is a poly-
nomial of centered sample averages and has an approximation error of desired order of magnitude. We
use (24) to invert (27) and get higher-order approximations for (Xp,ﬁp) We then replace all sample
averages except 7~'Y_,V; which is approximately centered (|Ay| = O (hP*!)) with the sums of their
population means and their centered versions. By iteratively replacing (Xp,ﬁp) on the right hand side
of (27) with the approximations, using Lemmas 5 and 6 and dropping terms that are O} ((log (n) /ﬁ)Q),
we get cubic stochastic expansions of (:\\p,ﬁp). By the same steps and plugging stochastic expansions
of (Xp,ﬁp) into the right hand side of (28), we have a stochastic expansion of 14, (1?’\1, | h) so that
n=1e, (ﬁp | h) =+ Oy (log (n)*/? /7‘15/2), where the leading term ¢* is a quartic polynomial of centered
sample averages. Similarly, by using Lemmas 5 and 6, the first-order conditions and (25), we get cubic stochas-
tic expansions of (Xp, ﬁp) and a quartic stochastic expansion of £, (00, J, | h) so that i1, (190, | h) =
o + o, (log (71)5/2 /ﬁ5/2>. The same algebraic calculations have been done in Chen and Cui (2007); Ma
(2017) so that we use them directly here. We switch to coordinate notations and apply the calculations
from Chen and Cui (2007); Ma (2017). In the rest of the proofs, summation over repeated indices is
taken implicitly with the “Y"” notation suppressed and ranges of indices fixed: k,l,m,n,o0,v,q = 1,...,dy,

k,l,m,n,o,v=1,...,2d,,u,w=1,...,ds,a,b,c,d,e,f =1,...,2d, s,t,a,b,c,de=1,...,d, andu,w =1, ..., d,,.

Ko Kim . Kimn . ko . Kln .

Let o = Apwypn, o™ = Apwpopm, ™ = Apopopmym, YO0 = Agan, 7" = Apwyin,
n . __ k __ k)1

AREMR = A0 by YO = Ay ggier, A = 7 12']}1_() A — 5 12']}_( )V-() — oM, AKm

__ k)11 __ k __ ( :

n-t ZV( )V-()V-(m) —aMm Ckn =ty ’H( n) Aon and CKI =Tty V n) — 4%bn. By Lemma

’ ﬁ_l E V(k)v(l V(m)vz(”) _ aklmn’ ﬁ_l Zl Vz Vzl)Hzmn) _ ,yk;l;m,n and ﬁ_l Z H kn)H (lo) kn,l,o are all
o; ( log (n) /ﬁ) We can show that (Xp,ﬁp) and 1714, (3,, | h) admit stochastic expansions with lead-
ing terms that are polynomials of (Ak7Ak',Ak'm,Ck’",Ck”’") with coefficients given by (ak',ak'm7ak'm“),

k, ksl, k;lsm, k,n;l,
(lom, yfslm llimn Akenilo)

and 2. Formally, their expressions are the same as those given in the special case
of Chen and Cui (2007) (see (2.6) and (2.8) therein) when the moment restrictions are linear in parameters
and terms that depend on the second and third derivatives of the moment restrictions are removed. Similar

stochastic expansions of ( p,np) and n14, (190,{9;, | h) that are polynomials of (Ak, AKX AKIm Ckon C’k?"")

can also be obtained. Formally, their expressions are the same as those given in the special case of Ma (2017)
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when the moment restrictions and the null restrictions are both linear in parameters and hence omitted. See

Ma (2017, (C.4)). Let LR* == (Z* - Z*) so that LR, (9o | h) = LR* + O} <1og (n)/? /ﬁ3/2).

Let (Tk', Ykim, Tk'm”) be defined by the same formulae as those of (a akm ak'm”) with V replaced by
U. Let (F?’u,I‘l;;l’“,I";‘l;m’“,Fl;’“;l’w) be defined by the formulae of (y*m,~kbn klmn yknilbo) with (V, H)
replaced by (U,G;:). Denote U (03) == Z — 0y, U == U (¥2) and G = —9U (02) /00, = I;.. Also let
UB) =W, U (62), U =W,®U, G:=W,®G and (U; (02),U;,G;) be defined by the same formulae
with (X, Z) replaced by (X;, Z;). Let (O,N, Q) be defined by the formulae of (O,N,Q) with (AyT,Ag)
replaced by (Agyt,Ag). Let (Tab,Tabc,Yade) and (f‘a*s,f‘a?bvs,f‘a;b?cvs,favs?b*t) be defined by the formu-
lae of (a aXm k'm“) and (ykvn pkiln ykilimn 'yk*”?'*") with (V,H) replaced by (L?,Q). Let T* :== Ay

and T2 = Ag(a). Let (@Z’r) — erk')TkT' 7/T — Tklan(kl)Q(mn)/Q a//T — _TkImQ(kn)Q(lO)Q(mV)Tnov/g
k;lsm,w g (kw) ~ (1 k w;l,w ~ (Kl uw
7ty = arm Nt ang #f, = Q0. et (B4, 7,11, 7,5 Vs Va) be defined by

the same formulae with (Qt, Ny, O3, T4, T) replaced by (Q,N,O,I,T). Let € (n,h) = n (B} — B}) +

nl Z =1 ( -7, i ) denote the pre-asymptotic coverage error.

Lemma 7. Suppose that the same assumptions as Theorem 3 hold. Then, Pr[LR* < x] = Fye (x) —
EP (n,h) fye (2)+0 (vh), where vf, = (log (n) [| Ay ]]) /v +1og (n)*/? /732 + R | Ay +n 1 +72 || Ayl|* +
_ 3
Ayl

Q Q
Proof of Theorem 3. By simple algebra, Qi = i 2 , where Q11 = Af@;l, Q22 = A:z@f,

Qi1 Q22

,
Quz = Qo == ~AT'ATIOT!, 05 = (a24y, L T AZA Lr)  and N; = [ NI, NG ] , where Ny =

ALA u, uTOT and N .= A_A_ ", +O;. For simplicity, denote Il := A w,, ,+ and II§" = A

u_ uT U U U

s € {—,+}. First, write Tk'm“QTkl Q%mn) = ngl)tr (Qt+Ayoysmyym). Then it is easy to check that

THmQIIQI™ = QY tr (QinTIY) + Qfay tr (Q211™)
Tklngkn)qulo)QJ(rmv)Tnov = QTLlwf)tl“ (Qr1a 1T Q11 ITY) + QT;VQV tr (Qta2I1Y QpoI1Y) + 2QTUW)tY (Qt12IT Q421 11Y)
pimugm g (QﬂlAWMmuINﬂ) Ftr (QTZQAWP;_M_MINTQ)
phutuq®olm)  — g (AWLQTHOT) Ftr (AW;iQmOT) .

By Lemma ].7 QTll = El/ (@Wg:i) + O(h), QTQQ = El/ (gowgi) + O(h)7 QT21 = —El/ (gowp +> + O( )

Oy = (wgzi /go) =2+ 0 (h), N = pgbe ,Ea/0+ O(h) and Nip = puilr Za/p+ O (h). Tt follows that
2

¥l = (( 1 )Eg“whpgw) /(2@,};3) +0(h), %y = <— (wggi /wogi) () g /(3¢wp+) +O(h),

yt - (4wp;’+tr (5152)> / (cpwgi) +0O (h) and 7/1;[4 = (—pr;’itr (5152)) /40 (h). Similar results hold for

p,3

[1]
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(”f/i VANE AN 4 ) By tedious algebra, it can be verified that %]:g = QUTkY!. By (S7) in the supplement

p,1» “p,2> "p,37 “p,4

(ruc-econ.github.io/supplement RD.pdf) and simple algebra,

BB = {(Daa. /Dy = D [A) = (Az, /Ay — Az /A M}2 /Sa = (BEHNY Y ELLO (n2H3)
(29)
It follows that €' (n, h) = €, (n, h)+O (ﬁ | AylI® b+ n_l) and Pr[LR* <a] = F\2 (2)=%, (n,h) 2 f,2 (2)+
0 (vg + 7| Aul? h) By LRy, (Yo | h) = LR* 4 O} (log (n)*/? /ﬁ3/2) and (S17) in the supplement with
(LR*JL (Ro + R)2) replaced by (LR, (¥ | h),LR*), we get the first conclusion. By using the same ar-
guments, we can show that Pr[LR,41 (Jo | h) <] = Fe (z) — ‘f;ffl (n,h)xfyz () + O (vf). Then by
Lemma 1 and similar calculations, Pr[LRp11 (Jo | h) < 2] = Fiz () — (nh)~! %Iflexﬁ () + O (vg), where
v = (log (n) ||AWp+1®UH) /@i + log (n)5/2 /n32 +n HAWp+1®UH2 +h HAWP+1®U|| +n~!. By Lemma 1,
H Aw,  oU H = O (h?*?). Tt is easy to check that the decay rate of (log (n) || Aw,,,eu H) /v/n+log (n)s/2 /324
n ||AWp+1®UH2 +h ||AWp+1®UH is minimized if h is chosen to balance n ||AWp+1®UH2 and h HAWPHQ@UH. In

this case, we have h < n="/®*+2) and v = O (n’l). The second conclusion follows from applying Taylor

expansion to Pr [LR (9o | h) < z] = Pr [LRPH (Po | h) <z (1 + (nh)~" ”//pol)]. |

Proof of Theorem 4. Let 93 = pz_. Now Jz = 6l, is equivalent to V9 — U3 = 4, where §, =
(tp,+ — ptp,—) 01, for simplicity. We redefine some notations for notational simplicity: 6 = (6y, 01, 62,63),
9 i= (90,01, 02,03), Us (0) = (Wips14.405 (00,61,02) ", Wi, iU (90,191,03)T)T and U; = Uy (9) (U de-
fined similarly). Let I', (V;(0),V;,V) and (H;, H,H+,:, H+) be redefined accordingly using the redefined
(U; (0) ,U;,U). Also let (Ak,Ak',C'k’"), (ak,ak',ak'm,fyk’”,vk”*”), (M, J,P,w, Q) and (Q;, N4, O+, Q,N,O) be
redefined accordingly. As in the proof of Theorem 3, we apply the rotation by I' so that £,41 (0| k) =
sup 2>, log (L+ ATV, (6)). Let Vs; = V; (Jo,91,02,02). It is easy to check that Lemma 6 still holds
for (ﬁp+1,Xp+1,ﬁp+1,Xp+1) under Fy = 6l,. (27) and (28) hold for (ﬁp+1,X,,+1) with V; replaced by
Vs, under Iz = 6l,,. Similarly, (27) and (28) with (V;, H;) replaced by (Vs,,H;+,:) hold for (ﬁp+1,xp+1)
and ﬁ_lfpﬂ (?90,{9;;.1,.1 | h) under 77 = 6l,,. Let (R‘f,ﬁig) be defined by the formulae of (Rl,R2> in the
proof of Lemma 7 with V; replaced by Vs;. By arguments as in the proof of Lemma 7 and calculations
in Ma (2017), LRy1 (9o | h) = 7 (R{ n Rg)2 +0; <log (n)? /n) under 7 = l,. Let A% ==y, v
and AY = n"1Yy", Vg?ng —aM. Let H; = 9V;(0) /00T and let (C’k’m,ﬁk’m,C'k”’m,’yk;"m) be defined by
the formulae of (Ck’”'yk’”,Ck”’",fyk;"”) with (H;, H) replaced by (7:[“7:[) It is easy to see that A(‘; =
Ak + 5@ (ék,do-i-a_,’_,?k,d,o-i-a) and AKX = AX 4 5 (ka;l,d,g—i-a_i_,?k;l,do-i-a) [k,1] + O% (i2). Note that by
Lemma 1, of = e;dmkI‘Au =0 (n_l). By using these results and replacing AX with Ak 4 aX, we de-

compose R} = R}, + R}, + O (I2h), where R}, = w®*) (Ak +5£;’)ékadﬂ+a) and RS, = wakdo+as(®)
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Similarly, we write R} = R3, + RS, + Ra + 03 (log (n)I3), where

Rgo — {;w(m)M(nZ) (,Vn;mdw-‘ra[Tn7 nD :Yl,dﬂ-‘rb _ w(")fyn;dﬁ+C,dro+b,?dro+c7d0+a
1 .
+ <3w(k)M(mv)M(nl)akmn _ w(n)M(m'u)P(ol),ym,ka(k:o)> ,?v7d19+a,?l7d19+b

+ ((,}/d,ﬁtc;v,m[d19 +e, ’U]) Q(mO)P(Ok)w(U) — o™ d19+cM(vk)w(m)) ,~>/k,d,9+b,~yd,9+c,d19+a} 67(:1)57(:)), (30)

RS, is defined by the sum of c(™M®*) (ymin-do+a[m p) AR§( 12— () (totandotbdy + a, n]) Ado+as)
and the right hand side of (S11) in the supplement with o* replaced by akvdﬁadﬁf) and Ry is defined in
the proof of Lemma 7. Let R} = R}, + R}y, R} = R}, + R}, and R’ = R} 4+ R, so that we have
LRys1 (99 | h) = @ (RS + R%)® + O} (I,h). Denote ig? = —MEDFhdotaghdott  go . prabs® ) and

o2 =3a/ (D4 — uD7_)27 where XA is defined by (11) with p changed to p+ 1. By (24) and (25),

T(S 2 12
’YAzi)n’ (31)

R8b6£ba)5£bb) = (upy — ﬂD,—)2 (Q — Q)(dﬂ+a dy+b) 5(d’9+a)§(d’9+b)A2_li _ ( >
p+1

where ya is redefined by replacing p and Z_ with p + 1 and Wpi1,— (Z —¥3), ya = 7aqj + O (k) and

T T
a2, = Yh + O(h). By (24), (25), the fact QP = [ 04, J ] , tedious algebra and Lemma 1, (R8)2 =

Ravos oY) 4 Rgbesi V66l + o (13) where

R({,bc — _ gamnkM(kl)M(mv)M(no)&v,de +a,§/o,d19 +b;yl,d,9+c + 2™ dy +dM(mU)M(no) ,?U,dﬂ +a5/0,d19 +b;?d19 +d,dy+c
3

_ kdy+eds+dyrklzdo+e,dystazdy+d,dy+bsl,ds+c
2a M™~ ot ~ .

Let 7§ = amFMGEmIN(DFbdota 3 go = _gybidotbkQkmN(mDgdothdota 8 = 1 1 (R§ + &) 5y
and R§ = 2yomlQv) plvo)\[(nk) 3k dvta By calculation using arguments in the proof of Lemma 7, we have
K1 (\/ﬁR‘s) = R1n +0(ln), Ko (\/ﬁR‘S) = Rg’n +o(ly) and k3 (\/ﬁR‘;) = o(l,), where Ry, is defined in the
proof of Lemma 7. Then, 2v/AR}%,, = (—RS$ + &) s+ 0 (12). By arguments used to show (S13) and

(S14) in the supplement (i.e., Skovgaard, 1981 with s =p=¢ =3, Bsn =, and A\, = O (I,,)),
_ e 52 =65 —né | = s
Pr [n (Ry+R°)" < x] =F|x/R, | (\/ﬁRO + ""'l,n) [Ron | +o(ln). (32)

Then by Taylor expansion,
2
P o/ | (VARG 4 710) 70) = F 2/ 5)
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+ {rRgresl@oWo) — 8 (R + ) 8L + (—R5 + &9 80 FD (2| 83) +0(la) . (33)

Let f(-|n) denote the x? () PDF. By using the recurrence properties of non-central y? (Cohen, 1988),

—xf (x| n)=20F® (x| n)+ (n+1) FO (x| ). By these results and Taylor expansion,

F(2/R3, | B) = F (x| 8y) +af (2] 5) (1/R&3, - 1)+ O (17) = F (x| 8)
+ (285 (5 + &5) 0% ) FO) (2 | B7) + (B3 (5 + #5) 0 + (=5 + #) 84 ) FO (2| 83) +0(la) . (34)

By arguments as in the proof of Lemma 7 and Lemma 1,
(H + R )5(11) _ (ND,Jr _ MDﬁ) A ( F uN(ku Q(I dy+a) + fa;b,sN(as)Q(bdZ+a)) 6((1)[” -0 (lnh),
and similarly, Rg&(la) = O (I,h). Tt then follows from these results, (33) and (34) that

Pr [n (R} + R°)®

8
—

=F (x| 8) + (mgbcag%;b)(sgc)) FO (2] 8) + ( 230 746 a>) FO (2] 82) +o(l).
(35)
By (24), (25), simple algebra and Lemma 1, we can find constants #,%*¢ and %5 such that nnabcé(a)é(b)é(c)
H0be§@ 5O 5O, 40 (I,h) and 7865 = H#;26@1,+0 (I,h). By (31) and Lemma 1, 82 = H (’yadJ ) JVEL+
O (h). Let 2y (0) = K220 @505() and Py (8) := 2H~ )7 5] #576@50)6() /%EL . The conclusion follows
from these results, (35), the fact that LRI (Jo | h) = @ (RS + R°)” + O3 (I,h) under Tz = 6l, and (21). W
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Supplement for “Empirical Likelihood Covariate

Adjustment for Regression Discontinuity Designs”

Jun Ma* Zhengfei Yu'

Proof of Lemma 1. (a) follows from LIE and change of variables. (b) is a straightforward extension of
Bickel and Doksum (2015, Proposition 11.3.1), which follows from LIE and (p 4 1)-th order Taylor expansion.
For (c), denote ¢ (V,X | h) == h™'/2?WEV and Q = {q(- | h) : h € H}. Denote P} f :=n=1Y, f (V;, X),
PVf =E[f(V,X)] and G} = /n (P}, —P"). Then we have

1G4 = sup Wi Vi~ E[WEV])].

1
b | 2

Let 0125 = supfe,jIP’Vf2. It follows from LIE and change of variables that a% = supp el [h_leQf;gvz (X)] =
O (1). Assume s = + without loss of generality. By definition and the assumption that K is supported
on [-1,1], g(v,z | h) = IC’I‘;F (x/h)h=1/21(0 < x < h)v. Since Assumption 3 also implies that IC’;? has
bounded variation Vk € N. By Giné and Nickl (2015, Proposition 3.6.12), {z — IC’;;7 (z/h): h € H} is VC-
type with respect to a constant envelope and its VC characteristics are independent of n. By Kosorok
(2007, Lemma 9.6), {(z,v)+— h~Y?1(0 <z <h)v:h € H} is VC-subgraph with an envelope (z,v)
h %1 (0 < < h)|v| and VC index being at most 3. By Kosorok (2007, Theorem 9.3) and Chernozhukov
et al. (2014, Corollary A.1), 9 is VC-type with respect to an envelope Fg (v,z) o i (O <x< E) [v].
By Chen and Kato (2020, Corollary 5.5), E {HGXHQ] < 0q+/1og (n) +log (n) (PY |Fa|") Y n/" /\/n, where
PV |Fa|” = O (E/y/ 2). (c) follows from Markov’s inequality. n

Proof of Lemma 2. Let £; := {)\ € R%u ;||\ < log(n) /\/nh}. By

1/12
max; [|[U;]| /vVnh < max;1 (|X;] < R) |Us]| /y/n < (Zl (1X:| <) ||Uz-||12> /i

%

This version: May 7, 2022
*School of Economics, Renmin University of China
TFaculty of Humanities and Social Sciences, University of Tsukuba

S1



and Markov’s inequality, we have max; [|U;]| /v nh = O, (ﬁl/u/@l/z)‘ It follows that max;supyc, AT | =
O, (log (n) (@12 /n'/?)) and max;supyez, |ANTU;| < 1/2 Vh € H wpal. Therefore, £; C L(9), Vh € H
wpal. Since S (-,9) is continuous and £y is compact, Ay = argmaxyc, S (A, ) exists Vh € H wpal. By the

definition of A4 and second-order Taylor expansion,

0=S(o2du,z9)gS(Aﬁ,ﬁ):Q(mM)Tﬁ—(\/%A,i)T ’;Lz(luAuTTu)Q (MM)
B + AU

_ U
= HMMH e = (\/TE/\u)T % zz: (1 + maxiszz:iez:n |)\TU¢‘)2 (M)\ﬁ) o

where }\ﬁ is the mean value that lies on the line joining 024, and Ay. Since max;sup e, |)\TZ/{Z-| <1/2VheH

wpal, by (S1),

. T T
0<S(\,0) <2 H\/%AﬂH ]| - % (\/%Au) (B — D) (\/@Au) - g (\/%Au) A (\/%Aﬂ) ,
Vh € H wpal and therefore,

2
)

[Vamx||" < 3 Vi 12l + e — v | |[VaRg

Omin (AL{Z/IT) (SQ)

Vh € H wpal. Since U = (nh) ? 27, (U — E[U]) + vnhAy, it follows from Lemma 1 that U] =
O, ( log (n)) It also follows from Lemma 1 that Ay — Ay = O, (\/log (n) /n+log (n) (ﬁl/G/@)> and
Ay = diag (Yyur 4, Yuur .~ ) + O (h). Since diag (Yypr 4, Yyyr ) is positive definite, gmin (Aggy7) is

bounded away from zero when n is sufficiently large. By assumption, ||vnh\; H <log (n). It follows from these

results and (S2) that vnh)y = O, ( log (n)) By this result, Pr [\/%)\ﬁ <log(n) /2, Vh € ]HI] — 1 and
therefore, wpal, Vh € H, A4 is in the interior of Ly and the first-order condition is satisfied: 9.5 (A, ) /8)\|)\:/\'i =
024, - Since S (+,9) is concave, Ay attains supycz(9)S (A, ) Vh € H wpal and therefore, supycz(9)S (A, ) =
S (A, 0) <2 H\/ﬁ)\ﬁH ||| = Op (log (n)). Denote Ay = \/WLA{/ HLA{H It can be shown by us-

ing similar arguments, boundedness of © and ZZ = U; — G;7)p that max; LA{l /vnh = O, (ﬁl/u/ﬂl/Q). By
second-order Taylor expansion,
~ T T 1 U
$ (A 9y) =2(Vihag) A= (Vi) | =S " | (Vahay)
nh 2
i (1 + AJZ/{i
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T T uiuiT
- (MAH) “ (M)\h) % ; (1 — /log (n) / (nh) (maxi U ))2 (\/%)\h) -
where }‘h is the mean value that lies on the line joining 024, and A;. Then, \/WHZ:{\H <S ()‘h75p> +
2 ()" %,

(nh)il >
Since sup ez 9)S (A, ¥) = O (log (n)), it follows that U= O, ( log (n)) Since U = U — Ag v nhi),, then,

Us

2 .
> log (n), Vh € H, wpal. By U; = U; — G;7j,, Lemma 1 and boundedness of ©, we have

~ 112 ~ ~ ~
Ui|| = Op(1). By the definition of ¥,, S (Ah,ﬁp> < sup)\eﬁ(gp)s ()\,19P> < suprep()S (A, 9).

] e (5552) = [ < ]« . o

By Lemma 1, Ag = [ D }T + O, (\/IOg(T/E—f—E). { WL ul }T has full column rank,
if up.+ # pp,—. By using the fact that |opin (A) — Onin (B)| < [|A — BJ|, Onin (Z;Zg) is bounded away
from zero Vh € H, wpal. (a) follows easily from this result, (S4) and the fact that HZ/AIH and [[U|| are both
Op( log (n)) By max;
O, (log (n) ('/*?/n'/2)) and therefore max;supye z, ‘)\TLAli

Us

/Vnh = O, (@'/*?/n'/?) and the definition of Ly, Max;Sup e, ’/\TLAQ

< 1/2 Vh € H wpal. Therefore, £y C L (@),
Vh € H wpal. Since S (-,1/9\,,) is continuous and Ly is compact, Xﬁ = argmax)\eLnS (A,@;) exists Vh € H
|
|V | Since Aur = Buarr = (nh) ™ S {GiaUT + Ui G + il 61, it
follows from Lemma 1 and (a) that Ay — Dyt = Op( log (n) /Q) and therefore, Ayyr — Ayt =
Oy (V1o () i +log () (7/°/n) ). Since Va3,

that vnhAy = O, (\/log (n)) Wpal, Vh € H, Xti is in the interior of £y and the first-order condition

wpal. By the definition of Xﬁ and similar arguments used to show (S2), we have omin (Ay7)

o]+ [Buar = v

‘ <log (n) by construction, it follows from these results

is satisfied: 05 </\,1/9\p) /8)\‘/\ 5 = 024,. It follows from the concavity of S (~,1§p) that Xti also attains
=Ag
sup)\eﬁ(gp)s (A,@,,) Vh € H wpal. Then (b) follows from setting Xp = Xu. (c) and (d) follow from similar

arguments. |

Proof of Lemma 3. It is shown in the proof of Lemma 2 that :\\p satisfies the first-order condition which
/Vnh =
=0, (1). By Us = U; — Gillp,
- O, (1 +log (n) (7*/*/n)) and (nh)~" >
O, (1 +log (n) (7*/3/n)). By these results, Lemma 2 and simple algebra, (nh)~' Y, Ui/ (1 + X;—LZY -

can be written as ), @/ (1+X;ﬁi) = 0gq4, Vh € H wpal. We also showed that max; Z/A{Z

O, (7'/12/n!/?) and vnhX, = O, ( log (n)) Therefore, we have max;

AU

N 4
Lemma 1 and boundedness of ©, we have (nh) ™" > ||Us U;

Ayt +o0, (1). It is shown in the proof of Lemma 2 that Ay = diag (YuuT 4+ YuuT ) +0p (1). Therefore,
~ o~ ~ o~ 2
Onin ((nh)l > uu;/ (1 + )\;,FL{Z) > is bounded away from zero Vh € H, wpal. By the implicit function
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theorem, wpal Vh € H, there exists a continuously differentiable function A () defined on some open neigh-
borhood B (5,,) of 9, such that A, = A (3,,) and (nh) 1S, U; (0) / (1 2 0) U, (0)) = 0pq, V9 € B (3,,).
Since S (-, 0) is concave, S (A (0) ,0) = supye )5S (A, 0) and ﬁp = argminQEB(@))S (A (6),6). By the chain rule
and ), LA{Z/ (1 + X;LA{Z) = 0Og4,, the first-order condition for 1/9\1, can be written as ) ng,,/ (1 + X;ZZ) =

024, , which holds Vh € H wpal. By simple algebra we have

(S5)

MU =0, (1), (nh) ', 1t || = 0, (1), (nh) ™' S, ||t T O, (1 +log (n) (@/*/n)) and Lemma
2, () (@5,) )/ (14 358) = 0, (o) and (a2 5, {07R, () }/ (14 332) =
O, (v}), where v} = log(n) //0 + log (n)? (ﬁ1/4/ﬂ3/2). By these results and Uf; = U; — GiTp, (S5) can be
written as Ayt \/mp +AgVnhij, = U+ O, (v}) and Zg \/7%3\\1, = O, (log (n) /\/n). By Ay — Ay =

Op (er log (n) (ﬁl/G/Q)), Ag —Ag =0, (\/M) and Lemma 2, we have

By max;

Ay Vnh, + AgVnhij, = U + 0, (v}) and AfvVnhA, = 0, (v}) . (S6)

-
Since it follows from Lemma 1 that A;q,m = diag ('ll)UUT7+7 d)UUT7_) +0 (E) and Ag = { né N ue } +

(0] (EPH), Ay and AgA;&TAg are invertible Vh € H, when n is sufficiently large. (a) follows from

-1

Ayt Ag Q N
AL Odyxdy NT -0
and (S6). (b) follows from similar arguments. [ |

S N N N2
Proof of Lemma 4. By Taylor expansion, S (/\p, ﬁp) is equal to the sum of 2\ ] (ZZ Lli) -3, (A;L{i) and

|3 A \3 -
aremainder term that is bounded up to a constant by Y-, [AJ U;| / (1 — |\ U ) . By using (nh) ™" Yol =
~ o~ |3 ~ o~
O, (1 +1log (n) (ﬁ1/4/n)) and Lemma 2, Y-, (A U;| = O, (\/log (n)vi) By these results and max; |\ U;| =

0p (1), 8 (N, 0,) = 247 (Z.th) - i (M) z/?i)2 + 0, (Viog (n)u} ). Tt was shown in the proof of Lemma
3 that U = Ay~ (\/%Xp) + 0, (vi). Tt follows from these results, Lemma 2 and Ayyr — Ayger =
Op (\/erlog (n) (ﬁl/G/ﬂ)) that 5 (Xpﬁp) = ( "h)‘p)TAuuT (\/mp) +0p (\/mvl) By
Lemma 3 and I = O, ( Tog (n)), S (Xp, 5p) =U' QU+0, (\/mv;). Similarly, we have S (X,,, 9o, 5p) -
U' QiUd+0, (v/log (n)v},). By definition, L, (o | h) = § (X, 90,3, ) =5 (3., ). Therefore, LR, (9o | k) =
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u' Qi — QU+ O, («/1og (n)UL) Then, by straightforward algebraic calculations,

UuuT uuT (21788 uuT

_ — -1 - - o
Q-Q = A {Ag (AGATAG) A — Ag, (AETA y Ag‘r) A;}A 1

-1
= Al (86, — A6, 071010 ) (@00 — P @7 r0) (G, — P07 ) Ar. (ST)

-1
Then by this result, (12), (14) and (@00 — (I)OT(I)T_TI‘I’TO) =3A/ (AD+ /AL — Api/A_)Q

{eq, 195" (U+/AL — Hf/A—)}Z Xa

— {(H+/A+ —M_JA) = (/A —Z AL M}2 /SA. (S8)

u' Qi -Qu

By using 7a = 7aqj+O () and (11), £a = Ag2/p*+0 (h). By HHH =0, ( log (n)) and YA = Yaqj+O (h),
the numerator on the right hand side of the second equality in (S8) is {(nh)71/2 > &-}2 +0, (log (n) k). Let
G (T, X; | h) == h~/2&;/\/Bgz and Q = {G (- | h) : h € H}. Then it is clear that {(nh)_l/Q ) gi}Q /Agz =
{GLq(-| h)}2 and therefore, LR, (99 | h) = {GLq(- | h)}2 + Oy (log (n)h+ \/MUL). Also denote
Q= {q(|h):heH} and © = {q(-|h)—G(-| h): h€H}. By similar arguments as in the proof of
Lemma 1, 9 and Q are both VC-type with respect to the envelopes (FQ,FQ) satisfying Fg (T}, X;) o
E21(1X:| < Rl — pel /v/inFrendBez and Fo (T3, X;) o< B 21 (IXa] < B) e — pel //E XD Fixe) (KD,
respectively. By change of variables, PTF 5%22 =< PTFL = O (h/R°). By Chernozhukov et al. (2014, Lemma

A.6), D is VC-type with respect to the envelope F'p = Fg + Fq. Let
0% = supP” 2 = supE | (¢ (T, X | h) = 4 (T, X | n))*].

fe® heH

By LIE and the fact that (W, + Wp._)* = Kyt (|X| /R),

E

E[(a(T, X [h) = §(T.X | )]

S| =

2 2 1 1
(Wi + Wy )™ (€ = hie) -
) (\/A£2 \/5(\X|)f|X| (|X|)w2{i)

x e e ) 2
[ G (220 ) o

Note that Agz = [~ A7 Kpy (z/h)* € (2) fix| (z)dz and therefore, it follows from mean value expansion

and (S9) that 03 = O (EQ). By Chen and Kato (2020, Corollary 5.5), E[[|GZ||5] < oov/log(n) +

log (n) || Fo |[pr 15, n'/*?/y/n and therefore, E [||GL | 5] = O (\/log (n) - h + log (n) (ﬁ1/12/ﬂ1/2)). Let 03 =
suprQIE”Tf2 and 0 = sup;cqP? f2. It is easy to see that PTf? = 1,if f € Qor f € 9 and therefore,

S5



orf:l = 04 = 1. Similarly, E [HGZHQ] < 05+/log (n) + log (n) ||FDH]P7T b n!/12/, /7 and a similar inequality

with 9 replaced by 9 holds. Therefore, E {H } { } ( log (n)) Then it follows from
Markov’s inequality that {GZq(-|h) } —{GLq(-| h)} = 0, (log (n) T + log (n)*/? (ﬁ1/12/@1/2)). The
conclusion follows from this result and LR, (9o | h) = {GLq (- | h)}2 + 0, (log (n) h + +/log (n)v};) [ |

Proof of Lemma 5. Let r, := \/n/log (n), V; = Vi1 (V; > r,), V, == V;1(V; <r,) and (K, V) be defined
similarly. Then write n=Y/2 Y, (W}, ,Vi — E [WEV]) = WHW, where W .= n~Y/2 Y, (WE,V; — E [WEV])

pisi pis,i
and W= n"12%, (WE .V, —E [W’f V]). Let o}, == Var [h='2W}V]. By o}, < E[h'W2kV?], LIE
and change of variables, 0‘2,\, =0(1 | p iV —E [Wk ” is bounded by an upper bound that is pro-
portional to r,. Let ¢ > 0 denote an arbitrary positive constant. By Giné and Nickl (2015, Theorem 3.1.7
and Equation 3.24) with v = log (n¢), Pr Uw\ > ( 2002ﬂ+c/3) log (n)} < 2n7° By oy, = O(1) and
taking c to be sufficiently large, W = Oy ( log (n)) By Markov’s inequality, the fact that v’ < v’ |V/7“n|3
and change of variables, Pr UW‘ > /log (n)} <E [h_le%’;VQ} Jlog (n) < E {h_lW;’; |V|5} /(r3 -log(n)) =
O (log (n) /7*/?) and therefore, W = O}, ( log (n)) [ |

Proof of Lemma 6. By Markov’s inequality, Pr [ I 1° > Ajs + c} is bounded above by the fourth
central moment of i1 Y, |[24:]| divided by ¢*, where ¢ > 0 is an arbitrary positive constant. By straightfor-
ward calculation and change of variables, its fourth central moment is bounded above by 3n =2 (E [h_Q ]| 10} ) 2+
n—3E [h*‘* ||U||2°] — O(n2). Therefore, n=' Y, U] = O3 (1) and by max; |t < (Zi ||ul-||5)1/5,
max; |[U;]| = O, (n'/%). Then, by this result and the definition of Ly, Pr {maxisup)\eﬁu INTU| > 1/2} is
bounded above by Pr [max; [[;|| > (v//log (n)) /2] = O (n~2). Therefore, £; C L£(J) wp* and Xy =
argmaxyc ., S (A, V) exists wp*. By using U=0; ( log (n)) and Ay — Ay = O} ( log (n) /ﬁ), which
follow from Lemma 5, and repeating the steps in the proof of Lemma 2, v/ii\; = Oy ( log (n)) Then,
Vi < log(n) /2 wp* and S ()\ﬁ, V) = supeg )5 (A, 9) = Oy (log( )). By similar arguments, boundedness
of © and U; = U; — GiTlp, max; =0} (n 1/5) and 7 = O (1). By repeating the steps in the

1,

proof of Lemma 2, y/log (n) HZ,{H < Supyep(9)S (A, 9) +2 (n—l Zz

from (S4), U = O} ( log (n)), U= o, ( log (n)) and the fact that omin (Z;Zg) is bounded away from

log (n) = O;; (log (n)). (a) follows

zero wp*, which follows from Lemmas 1 and 5. The proof of (b) parallels that of Lemma 2(b) and uses the

fact Ay — Mgy = Oy ( log (n) /ﬁ) (c) and (d) follow from similar arguments. [

Proof of Lemma 7. A decomposition LR* = n (R% +2R1Ry 4+ 2R Rs + Rg) can be derived. Ry is a
homogeneous k-th order polynomial of (Ak,Ak',Ak'm,Ck7”7C’k§"") so that Ry = o, ( log (n) /T_L)7 Ry =
Oy, (log (n) /n) and R3 = Oy ((log (n) /ﬁ)g/z). —M is a projection matrix onto the orthogonal complement

of the column space of 1I;. Let wy be a vector spanning the one-dimensional orthogonal complement of
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the column space of Il; so that —M = wj (wOTwo)fl wOT. Let w = wo/\/ng—wo. Then, w'w = 1 and
—M = ww'. The expressions of (Rl,Rg,Rg) can be readily obtained in a special case of Ma (2017).

Algebraic calculations in Ma (2017) show that by setting Ry = w® A¥,

RQ — EM(mk)w(n)AmnAk7w(n)And19+aAd19+a+ {]‘avmnM(vl)M(mk)w(n) _ ,Ym;v,OQ(on)P(nk)M(ml)w(v)}
2 3
> AlAk + {(,Yd,9+a;v,m[d19 + a,v]) Q(mo)P(ok)w(v) o a'umd79+aM(vk)w(m)} AkAd79+a o Q(ko)P(om)w(l)

% Cl7kAm + {av dy+a dg—&-bw(v) _ ,yd19+a;d19+b7m9(mn)w(n)} Ad19+aAd19+b + Q(km)w(m)cdg-i-mkAdg-i-a’ (SlO)

where y®+@v My + a,v] denotes %0 TaVm 4 Avidotam and Rs to be given by the formula provided in
Ma (2017, Appendix D.3), we have LR* = @ (Rf + 2R Ry + 2R Ry + R%) (510) is formally the same as
Ma (2017, (D.2)) with terms that depend on the second derivatives removed. The expression of Rs is also
essentially the same as that of Rz in Ma (2017, Appendix D.3) with terms that depend on the higher-order
derivatives removed and hence omitted for brevity.

Let ok = Ay and Ak = Ak ok, By replacing A¥ with Ak + a®, we have Ry = Ry + RH, where
Rlo = w®a* and Rn = k) Ak, Similarly, we replace Ak with Ak +ak to decompose Rg = Rzz +R21 —|—R20

so that Ry, is a homogeneous (2 — k) —th order polynomial of o', ..., a2%:

RQl — EM(mk)w(n)Amnak_w(n)And19+aoéd19+a+gavmnM(vl)M(mk)w(n)Alak_,ym;v,OQ(on)P(nk)M(ml)w(U)
2 3
« (/ﬂllak[l, k]) + {(,qu9+a;v,m[d19 +a, 1}]) Q(mo)plok) o (v) _ avmd,9+aM(vk)w(m)} (ak/old“’Jra[k,dﬂ + a])
o Q(kO)P(Om)w(l)Cl’kam + {OZU dy+a d0+bw(v) o ,ydg-l-a;dg—i-b,mQ(mn)w(n)} (adﬁ-i-ajidﬁ-ﬁ-b[dﬁ +a, dy + b})

+ Q(Icm)zv(m)Ccl@—',-a,koédﬂ+a7 (Sll)

Rso is defined by the right hand side of (S10) with A* replaced by A% and Rog == Ry— Roy— R = O (||AZ,{H2)
Let Ry = Rw + Rgo, R, = ]:211 + ]:221 and Ry = Rgg. We decompose ]?3 = ]?33 + ]?32 + Rgl + 1?30 in
a similar manner and let R := Rss. Rj is given by the formula of R with Ak replaced by Ak, Then,
let R = R, + Ry + Rs. By Lemma 5, Ry + Ry + Ry = Ry + R + O, (| Ayl/log (n) /) and therefore,
LR* =7 (Ro + R)* + Of (vh).

Let F = (Wp @ U, Wy, (WI?;JF, WZ?;,)T ® (U,U?%), (W;’;+, W;’;,)T ® U3). F. is defined analogously and
let d; denote the dimension of . It can be shown that /iR := h,, (F), where F :=n~ /2" (F; — E[F]) and
hn is a cubic polynomial. BE.g., v/fw® AF = Z%TAZ;;/TQ (=123, (U; — E[U])), where &7 := S [ @' 0] ]T.

It can be shown that other terms on the right hand side of (S11) can also be written as linear functions
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of F. Similarly, it can be shown by tedious algebra that /nRy; and \/nR3 are homogenous quadratic
and cubic polynomials of F. A more lucid proof of this fact uses the observation that ¢, (1/9\,, | h) =
infg,supy,2 >, log (1+ A; Ui (62)). Let M; (6o,61) = Wp; @ (Y; —6pD; — 01). By rearranging the mo-
ment conditions, £, (3,, | h) = infg, 0,.0,5UPx, 1,23, 108 (1+ AT M; (B, 61) + AT (65)). Let Wi (6) =
(/\/li (0o, 61) ,U; (92)). 5,, and \ = (Xl, Xg) satisfy the first-order conditions wp*:

o

M (D0, 9) U (9,2) (Wi ® (Di 1)) Xy Gl
2 () () e ) )

The third condition implies that A; = 05 wp*. Therefore, £, (51) | h) =25, log (1 + AU (5,,,2)) and the
second and fourth conditions are ), U; (3,),2) / (1 + X;L_{z (@,’2)) =024, and ), G;'—Xg/ (1 + X;—Z/_{i (3,),2)) =
04, , which coincide with the first-order conditions of infg,sup,, >, log (14 AJU; (62)). Therefore, we have
4y (1% | h) = infg,sup,,2 ), log (1 + Aold; (92)). By expansion and Lemma 6, we get approximations for /):2,
@,’2 and £, (1% \ h) which are similar to (27) and (28). Then it is clear that by replacing sample averages
with sums of their centered versions and population counterparts we can get further approximations which
are polynomials in n=1/23", (F; — E [F]), where (F;, F) are defined by the formulae of (F;, F) with (U;, U)

replaced by (Ui, U ) Similarly, the stochastic expansion of ¢, (190, 51, | h) should involve only terms in F.

Let x; (V') denote the j-th cumulant of a random variable V. We follow arguments in the proof of Calonico
et al. (2022, Theorem S.1) and apply Skovgaard (1986, Theorem 3.4) with s = 4 to S, := B~'/2F where
B := Var [F] /h. For any t € R% with ||| = 1, by change of variables and calculation of the moments (see,
e.g., DiCiccio et al., 1988, Page 12), k3 (tTSn) =E [(tTSn)S} O (_ 1/2), K4 (tTSn) =E [(tTSn)4] —
3(E [(ﬂsn)ﬂ)z =0 (17") and oo (8) = max { |3 (¢750)] /3L /Tra (7 S)[ 741} = O (7 1/2), wniformly
in t. Condition I and II of Skovgaard (1986, Theorem 3.4) are satisfied by taking a,, (t) o< v/ and €, = 7~3/2.
Let Wy (t) == E [exp (itV)] denote the characteristic function of a random vector V, where i = /L.
Let Fy == (WpU, Wy, W2, (U, U2) , W3 .U3), s € {—,+}. Then, ¥r (t) = E [exp (it]F,) 1(X > 0)] +
E [exp (itj}"_) 1(X < 0)]7 where (t_,ty) denote corresponding coordinates of ¢. By change of variables,
E [exp (it{ F4) 1(X > 0)] = h(fx (0) E4 (t4) + O (h)) +Pr[X > h], where E, is the characteristic function
of Kpoy (V) (U, 1), Kpiy (V)? (U, U?), Kp+ (V) U3, where (V,U) has the joint density given by (v,u) —
1(0<v<1) fyx (u]0). A similar result holds for E [exp (it! F_) 1 (X < 0)] with E_ (t_) defined similarly.
Therefore, Ux (t) = 1—Pr[—h < X < hl+hfx (0) (Ey (t) + E_ (t_))+0 (h?). By Assumption 5, the vector-
valued functions (v,u) — (1, (le;Jr (v), Kp.t (U)2 it (v)3) ® (1,u,u2,u3)) are linearly independent. By
invoking the same arguments as in the proof of Calonico et al. (2022, Lemma S.9), Ve > 0, Je. > 0 such

that supjy . [E+ (t4)] <1 —cc. A similar result holds for E_. Then by these results, Ve > 0, 3¢, > 0 such
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that sup . Tr (t)‘ < 1 —cch, when n is sufficiently large. It follows from this result and arguments in the

proof of Calonico et al. (2022, Theorem S.1) that V§ > 0, Jes > 0 such that SUD|j¢||>6v/7

g (t)‘ < (1—csh)"

when n is sufficiently large. It is also easy to see that V§ > 0, (1 — csh)" < elr/2+2

, when n is sufficiently
large. Therefore, Condition III7 of Skovgaard (1986, Theorem 3.4 and Remark 3.5) is satisfied with o = 1.
Verification of Condition IV of Skovgaard (1986, Theorem 3.4) follows from essentially the same calculations
and arguments in the proof of Calonico et al. (2022, Theorem S.1). Now all conditions for Skovgaard (1986,
Theorem 3.4) are verified. It shows that S,, admits a valid Edgeworth expansion, i.e., conditions (3.1), (3.2)
and (3.3) of Skovgaard (1981) are satisfied with U,, = S,,, s = 4, Bs,, = "' and the Edgeworth expansion
holds uniformly over the class of all convex sets in R4 . Note that we can write /AR = hy, (Bl/ 2,S’n). Then
we apply Skovgaard (1981) to show that the Edgeworth expansion is preserved by smooth transformations.
Condition (3.4) of Skovgaard (1981) is satisfied with g, taken to be x + hy, (B!/?z) whose the gradient
at zero Vg, (0) is given by Vg, (0) = B/? (@TA;;/TQ, ng_Qdu)T + O (||Ay|l) by the chain rule. Then we
apply Skovgaard (1981, Theorem 3.2) to f, (Sy) := B 1gn (Sn), where B2 := Vg, (0)" Vg, (0). Then, B2 =
@TAZ;;/E (Var [U] /h) A;;/ffv—i-O (1Ax]]) = 1+0 (J|Aul|)- Condition I of Skovgaard (1981, Assumption 3.1)
is satisfied with p = 4. Condition II of Skovgaard (1981, Assumption 3.1) is satisfied with A\, = O (ﬁ_1/2) SO
that A2~1 = o (7'). Now all conditions for Skovgaard (1981, Theorem 3.2) are verified. It is left to compute

the approximate cumulants.

Then we calculate the formal cumulants of f,, (S,) = B, 'v#iR. In the calculations, we repeatedly use
formulae for moments of products of sample averages (e.g., DiCiccio et al., 1988, Page 12) and Lemma 1. By
definition, E [R;] = 0. We calculate E [Ry], let the remainder term absorb the terms that involve !, ..., 2%
and get E[Ry] = 2~ %1 + O (| Ay|| /n) where &y = o*M k) (7)) /6 — Qko)plom) (D ymibk - By formulae
for third moments and Lemma 1, E [R3] = O (R=2). Therefore, 1 (VAR) = &1, +0 (272 || Ay || h + n=3/?)
with & ,, == 7~ Y/?; . For the second cumulant, by definition, x5 (R) = E [R?] — (E [R])* and by formulae for
fifth and sixth moments and Lemma 1, E [R?] =E [R?] +2-E[R1Ro] +2-E[R1 R3]+ E [R3] + O (n®). By
Ry = Ryy + Ry and caleulation, B [R?] = E [R%l} 2. [Rgléu} 4o (ﬁfl ||Au||2), E[RiRs] +E[RiRs) =
E |:R11R2:| +E {RHR;;} + O (772 |Ayl]). Then by calculation, E {Rfl] =nt+0 <||Au||2/n) and 2 -
E [Rmén} = i g+ O <||Au||2 /n), where fiop . == @M o F /3 — 94lidotakqy(km) \[(m) g do-+a,
Then, B [R?] = a1 (1 + fig1 ) +O (ffl ||Au||2>. Calculation of 2-E {RHRQ} +2.E [RuRg} +E [R2] follows
from replication of calculations in Ma (2017) and we can directly use the results therein. By calculations in

Ma (2017), we have

8
2-E [RHRQ} +2-E {RHR;),} +E[R}] =n"? Z Roj +O (072 || Ayllh+77?%),
j=1

S9



for some bounded constants Ko1, ..., Rog, €.8., ko1 ‘= a”m”M(”o)M(ml)M(”k)aklo/i%fa”m dy+ap[(vo)\f(mn) qondytay
andotadotbypnm)gmdotadstb and the O (72 ||Ay|lh+n~3) remainder collects terms that depend on
al, ..., a?® and higher-order terms from the fourth moment calculation. The expressions of Rag, ..., Reg are also
easily obtained from Ma (2017) and hence omitted. Therefore, k3 (vVAR) = Rgn+0 (||A1,{||2 + 07| Aull + 7‘f2),
where o = 1+ Rt + Fag and figa = 171 (X5 oy — 7). By definition, s (R) = B [RY] - 3.
[R|E [R?] +2(E[R])? and by E[R] = E[Ry] + O (a2), E[Rs] = O ('), E [R?] = E[R?] + O (7~2) and
[R?] =E [R}] +3-E [R2R}] + 0O (7n~?), which follows from formulae for higher moments, we have r3 (R) =
R3] =3 (E [Ra R3] — E[R:] B[R2]) +0 (2?). Tt is easy to check that B[R] = E [%,] +0 (72 | Aull),
[RyR2] =E [RQR } O (72 || Ayll). By these results and E [R?] = E [R%l} +0 (i | Ayll), 53 (R) =
{RH} -3 (E [RQR%} —E[Ry)E {R%D +0 (773 + 12| Ayl|). Calculation and expansion of E [R:fl} -
(E [Rg]%%l] —E[R:|E [R%ID follows from replication of calculations in Ma (2017). For example, by cal-

culation using formulae for moments (DiCiccio et al., 1988),
- 3 3
E |:R£131i| _ n—2 (E |:(h—1w(k‘)v(k) _ w(k)ak‘) :|) — n_2E {(h—lw(k)v(k)) :| + 0] (ﬁ—Q ||AZ/{H h) ;

and the O (772 | Ay|| h) remainder collects all terms in the expansion of the third moment which depend
on o', ...,a?%. Note that we can write E [hil (w(k)])(k))g} = wRWwgMakm in coordinate notations.
Similarly, we calculate E [RQR%1:| —E[R2]E {R%l} . We note that coefficients of terms of order n=2 in E [Rifl} —
3 (E |:R2R%1:| —E[R:]E [R%D are formally the same as those of the leading terms in the calculation of the
formal third cumulant in Ma (2017). Calculations in Ma (2017) show that the sum of these coefficients
are exactly zero and therefore, the leading term vanishes so that r3 (vVaR) = O (||Ay| /vA +7~%/2). By
this result, the fact that x4 (R) = E[R*] — 3(E [RQ])Q —4-E[R]r3(R) + 2(E[R)*, E[R] = O (n1),

R = Rn + égl + Ry 4+ R3 and standard calculations,

ra(R) =B [RY] =3 (B[R*])" +0 (n° | au] +77") = {E LRI [R%DQ}
4 {E [RQR%] —-3-E [Rzéu} [Rn} } +6 { [RQR } E (R3] E {Rfl}}

4 {E [Rzzizil} - [ ] E [R%l] } +0 (73| Ayll +77Y) . (S12)

And by standard calculations,

B[R] -3 (E {R%DQ —n3 (E {(h_lw(k)v(k) = w““)a’“)j 3 (E [(h—1w<k)v<k‘> - w(’f)ak)Q] ) 2)
— 3 (E [(h—lw““)v(’“))j ~3 (E {(h—lw“)V(k))QD) +0 (7 | Ayl h) |
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L ..., a2%  Similarly, we also calculate

and the O (772 [|Ay|| k) remainder collects all terms that depend on «
E [RQRH _3.E [321%11} E [R%l}, E [R%R%l} ~E[RYE [R%l} and E [RQR‘%J _3.E [RQRM] E [R%l] on
the right hand side of the second equality in (S12), ignore small-order terms that depend on a!,..., a2
and take the sum of the leading terms. We do not need to rework on the calculations since they are for-
mally the same as those done in Ma (2017). Calculations in Ma (2017) show that the sum of the leading
terms on the right hand side of (S12) is exactly zero so that it follows from this result and (S12) that
ks (VAR) = O (7! || Ayl + 7~2). By previous calculations and B,, = 1+ O (||Ay||), we get the approxi-
mate cumulants for f,, (S,): k1 (fn (Sn)) = By tfin + O (Y2 | Ayl h +77%/2), ko (fn (Sn)) = By 2Ra,n +

O (18ull® + 77 | Aull +7172), 55 (fa (S)) = O (I8l [V +1?) and s (f (Sa)) = O (27" [[Aue]| +272).

Let ¢ (- | p, 0?) denote the PDF of N (u,0?). By applying Skovgaard (1981, Theorem 3.2) to f, (Sn) =

B, ViR,

Pr {n (Ro+ R)® < x} - 6 (t| By R n, By o) di+0 (||AuH Vi + ﬁ_3/2> , (S13)

/|t+(\/ﬁRo)/Bn

<Vz/Bn
uniformly in 2 > 0. By using the recurrence properties of non-central 2 (Cohen, 1988) and mean value
expansion, we have OF (z | A) /OA|,_x = —zf2 (2) + O (X). By this result, B2 = 1+ O (|[Ay]|), change of
variables and mean value expansion,

6 (t| By Ry, By o) dt = / P (t | (\/ﬁRo + Fn,n) N 1) dt

/2+(¢%R0LULJSVE/Bn [tI<v/2/R2n
2
iRy + Fim N T
_F (m | M) = Fys (v) — afys (4) ((\/ﬁRw i) ot mn> O (). (S14)

R2.n R2.n

By (S13) and (S14),
Pr [n (Ro+ R)? < x} — F (2) =€ (n,h)afy2 () + O (V) , (S15)

where %ifre (n,h) = ﬁR%O + Qﬁélokl,n + Ro1p + 07t 2?21 Roj. By tedious and lengthy algebra, we
, = 8 4 —h

can directly show that Rf, = 2} — %} and D=1 R = 2 (7/1:[]- - A//;j) + O (h) and 2v/ARi0R1 ., +

Ro1n = O (h||Ayll). By calculating E[LR*] with arguments used repeatedly in previous proofs, we find

that ‘éfre (n,h) is just the leading term in the expansion E[LR*] — 1 = %;ﬁ”e (n,h) + o (v5), where v =

Ayl + 7 || Ay||* + 2. We use the fact that £, (51, | h) = infg,sup,,2 >, log (1 + AJ U; (62)) and an alter-

native expression for LR* = n (Z* — Z*) to get a more lucid proof.
B B T
We consider the singular value decomposition of A~ /2 (—Ag) such that STA M2 (—Ag) T = [ A 04, xd, ]

auT auT
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where STS = Iy, T'T = I;. and A is a d.-dimensional diagonal matrix. We apply the rotation by
Vi (62) = TU; (65) where T = STAéé/TZ so that ¢, (1/9;, \ h) = infg,sup,,2>";log (1 + A V; (62)) and calcu-
lations from Matsushita and Otsu (2013) can be applied. Also denote V, =TU;, H; =T (fg]) (]7 and H

defined similarly) and € = (/&TT)A. Then it follows that Apyr = Iog, x24. and

-1 Od.xd. Oa.xa. QT _ _ _ _
—Apyr Ay -(fM)7ert —(07)7'N
. = | Od,xa, —la, Oa,xa, | = S _ . (S16)
N ’ - _NTT 0
QO Ouxa Q07

Let (A?;,Azb,A;bC,C';’S,C’;;b’S), (a%,a%b,aibc,azbc‘i) and ('y;’s,fy;;b’s,fy;’S;b’t,'y;;b;c’s) be defined by the same
formulae as those of (Ak’Akl’Aklm’Ck,n7ck;l,n)’ (O(k,OZkI,O(klm,Oéklmn) and (,yk,n7,yk;l,n’,Yk,n;l,o’,ykql;m,n), with
V. H, Vi, H;) replaced by (V,H,V;,H;). The leading terms in the stochastic expansion of n=1¢, (9, | h
p \Vp
is given by n~10* = Rf{*“}?gf” + 21??{”1??5” + 2}??{“}??5“ + ng“]?‘fgﬂ, where the expressions of
Rt Rd=ta pdata)) are readily obtained in a special case of Matsushita and Otsu (2013) when the moment
11 12 13

conditions are linear in parameters. E.g., R?f*“ = A?z+“,

~ 1 1 _ _ .
dota _ _ L gdotb gdotado+b | L dovaditbd4e qdo4b qdite _ (st) datass gt G(st) . detasdatbis gd.4b gt
R = 2Ai Aj + 0% ATUAY Qv ey A + QY ATV AL

and the expression of R%"‘a is omitted for brevity (see Matsushita and Otsu, 2013, A.1). Let A; = A} —of.
We again replace A3 by Az + af to obtain R‘;{*‘a = Rfﬁ"a + R?fg'a, Rf;"’a = R?g;a + R_f:;fa + Rfﬁ;a
and ]%gg"‘a = ﬁi_f:g;a + R?g;a + Eggfa + R;igara. Then by standard calculations, E [ﬁ’lg*] is equal to
the sum of Rf5i“RES", RGSE (R | B | RGTRES | B [RGTRf| and 2B R RY5e +2-
E [Rgff' “R‘fg; “} + B [Rgg; “R‘f;; “} with an o (UEL) remainder term. By inverting using the second equality
of (S16), R?f;aﬁ‘;f;“ — a‘;f"“afﬁa = Q@P)T2Yb, By calculation and Appr = Iag. x24., B [Rfff‘aégfra] =
ntd, + O (||A1,,||2 /n) It is easy to calculate that E [R‘ii;;“} = fﬁ’lagﬁa detbdatb /6 _ Q(St)'y?dz+a’s +

O (Al /n). Then by (S16),
~ ~ 1_- _ _ _ - _ _
RgfaLaE |:Rg§;ra:| _ —ﬁ_l <6Tach(ab)Q(Cd)Td + Fa,b,sN(as)Q(bc)Tc> +o (Ui/ﬁ) )

By calculation and using (S16), E [R‘;ffaR‘;;ra] = n~1YPeQE) QY /6 + o (vf/n). By calculation in
Matsushita and Otsu (2013, A.4),

8
2B [RGTRG| 2B [RETRET| 4 B[R RE ] =272 Rpay + 0 (v /7))
j=1
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where the constants are defined by

1. ~ ~ 1 obe s ~ ~ -
(RT217 Rt22, R123, Ri24, Ri25, Ri26, Ri27, Ri28) = (2'I‘abch(ab)Q(cd)7 —gTach(ad)Q(be)Q(Cf)Tdef,
2]_i\a;b;<:,31§I(as)Q(bc)7 _fwa;b,sQ(ac)Q(bd)N(es)Tcde’ _f\a,s;b,tQ(ab)o(st)

f\a;c,sQ(ab)Q(cd)o(st)f\b;d,t’ _I_wa;c,sN(at)Q(cd)N(bs)f\b;d,t, fwa;c,sN(as)Q(cd)N(bt)f\b;d,t) )

Note that (RT21; Ki22, K23, R125> = (7/;,1, 7/;’2, 7/;3, A//piA> Therefore,

8
E [ﬁ?*} =d, + n%t — TP NEIQEITe 4 7~ Z Fia; + 0 (V).

j=1

(Ryo1, Ria2, Rio3, Ros) = (7/,;[17 7/1;[2, ”//pT,g, "//pTA). By following the same steps, we get a similar expansion for

E {ﬁz*] And, then we have E [ﬁ (Z* - Z*)} -1= ‘525"6 (n,h) + o (vh)

8
(g;re (n’ h) -5 (%IJE o (@;ﬁ) - Fjlf;l,uNgrku)Qgrlm)Tm + fa;b,sN(as)Q(bc)Tc + ﬁfl Z (RTQj _ RIQj) .

j=1

It is easy to see that by Lemma 1, F?I’u = T3 = O (h). Therefore, Ffl’“N?m)Q?m)Tm = T2bsN(as) Qb Ye —
O (HAU” h), Kio4a X Kioqg = O (h) and Kioe X Kior X Kyag X Rige = Kior X Kiog = 0] (h2). It follows from

these results that (f;?re (n,h) =€ (n,h) + O (| Ayl h +n71).

It is easily seen that the result (S13) with the weak inequality replaced by a strict inequality still holds
(see Skovgaard, 1981, Theorem 3.2). By LR* = i (Ry + R)* + O3 (v}) and the fact (21),

Pr[LR* < ] — Pr [ii(Ro + R)* < x} ‘ <Pr Hﬁ (Ro + R)? — x’ < cwg} Y <log (n) /n3/2) —0(vh),
(S17)
where the equality follows from (S13) and boundedness of ¢ (- | K1,n, R2.n). The conclusion follows from (S15),

(S17) and P (n, h) = € (n,h) + O (|| Ay h +n7L). |
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