
Homework 1

Problem 1. Consider the tossing a coin experiment. Suppose that Pr(H) = Pr(T ) = 1/2. Define random
variables X and Y as follows: X(H) = 1, X(T ) = 2, Y (H) = 2, Y (T ) = 1. Find CDFs of X and Y. Are X
and Y equal in distribution (do they have the same CDFs.)? What is Pr (X = Y )?

Solution. Two random variables, X and Y , are defined as follows:

X(ω) =

{
1 if ω = H;
2 if ω = T .

Y (ω) =

{
1 if ω = T ;
2 if ω = H.

Therefore, the CDF of X is:

FX(x) = Pr(X ≤ x) =

 0 if x < 1;
1/2 if x ∈ [1, 2);
1 if x ≥ 2.

Similarly, the CDF of Y is

FY (y) = Pr(Y ≤ y) =

 0 if y < 1;
1/2 if y ∈ [1, 2);
1 if y ≥ 2.

Thus, X and Y have the same distribution. However, Pr(ω ∈ Ω : X(ω) = Y (ω)) = Pr(∅) = 0.

Problem 2. Suppose that the average distance between a random variable X and a constant c is measured
by the function E (X − c)

2.

1. Show that E (X − c)
2
= E(X − E (X))

2
+ (E (X)− c)

2
.

2. What value of c does minimize E (X − c)
2?

Solution. For part 1:

E(X − c)2 = E(X − EX + EX − c)2

= E(X − EX)2 + (EX − c)2 + 2(EX − c)E(X − EX)

= E(X − EX)2 + (EX − c)2,

where the last equality holds because E(X −EX) = 0. For part 2, Since E(X −EX)2 does not depend on
c, minc(E(X −EX)2 + (EX − c)2) is equivalent to minc(EX − c)2. Since (EX − c)2 ≥ 0 for all c ∈ R, and
(EX − c)2 = 0 when c = EX, it follows that c = EX minimizes the whole expression.

Problem 3. Let X and Y be two continuously distributed random variables with the joint PDF given by

fX,Y (x, y) = 1(0 < y < x <
√
2),

where 1(A) is the so-called indicator function:

1(A) =

{
1, if condition A is true,
0, if condition A is false.

Thus,

1(0 < y < x <
√
2) =

{
1, if 0 < y < x <

√
2,

0, otherwise.
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1. Show that fX,Y is a PDF. Hint: Start by plotting the support of the distribution (the region where
the PDF is non-zero).

2. Are X and Y statistically independent?

3. Find the marginal PDF of X.

4. Find the marginal PDF of Y .

5. Find the conditional PDF of Y given X.

Solution.

1. First, fX,Y (x, y) ≥ 0 for all x’s and y’s. Second,
∫∞
−∞

∫∞
−∞ fX,Y (x, y)dxdy =

∫√
2

0

∫ x

0
dydx =

∫√
2

0
xdx =

1. Hence, it is a PDF.

2. Since fX,Y (x, y) cannot be written as fX(x)fY (y), X and Y are not independent.

3. For x ∈ (0,
√
2), fX(x) =

∫∞
−∞ fX,Y (x, y)dy =

∫ x

0
dy = x. Hence, fX(x) = x× 1(0 < x <

√
2).

4. For y ∈ (0,
√
2), fY (y) =

∫∞
−∞ fX,Y (x, y)dx =

∫√
2

y
dx = (

√
2 − y). Hence, fY (y) = (

√
2 − y) × 1(0 <

y <
√
2).

5. For x ∈ (0,
√
2) and y ∈ (0, x), fY |X(y|x) = fX,Y (x, y)/fX(x) = 1/x. Hence, for x ∈ (0,

√
2),

fY |X(y|x) = x−1 × 1(0 < y < x).

Problem 4. Let X, Y , and Z be random vectors. Show that:

1. Var (X) = E
(
XX ′)− E (X) E

(
X ′) .

2. Cov (X,Y ) = (Cov (Y ,X))
′
.

3. Var (X + Y ) = Var (X) + Var (Y ) + Cov (X,Y ) + Cov (Y ,X) .

4. Var(α+ ΓX) = ΓVar(X)Γ′, where X is a random n-vector, α is a non-random k-vector, and Γ is a
non-random k × n matrix.

5. Cov(AX + BY ,CZ) = A(Cov(X,Z))C′ + B(Cov(Y ,Z))C′, where A, B, and C are non-random
matrices.

Solution.

1.

V ar(X) = E(X − E(X))(X − E(X))′

= E(XX ′ −X · E(X ′)− E(X)X ′ + E(X)E(X ′))

= E(XX ′)− E(X)E(X ′)− E(X)E(X ′) + E(X)E(X ′)

= E(XX ′)− E(X)E(X ′).

2.

Cov(X,Y ) = E(XY ′)− E(X)E(Y ′)

using conclusion in part (1)
= [E(Y X ′)− E(Y )E(X ′)]′

= Cov(Y ,X)′.
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3.

3) V ar(X + Y ) = E(X + Y )(X + Y )′ − E(X + Y )E(X + Y )′

using conclusion in part (1)
= E(XX ′ +XY ′ + Y X ′ + Y Y ′)− E(X)E(X ′)

−E(X)E(Y ′)− E(Y )E(X ′)− E(Y )E(Y ′)

= [E(XX ′)− E(X)E(X ′)] + [E(Y Y ′)− E(Y )E(Y ′)]

+[E(XY ′)− E(X)E(Y ′)] + [E(Y X ′)− E(Y )E(X ′)]

= V ar(X) + V ar(Y ) + Cov(X,Y ) + Cov(Y ,X).

4.

V ar(α+ ΓX) = E[α+ ΓX − E(α+ ΓX)][α+ ΓX − E(α+ ΓX)]′

= E[ΓX − E(ΓX)][ΓX − E(ΓX)]′

= EΓ(X − EX)[Γ(X − EX)]′

= ΓE[(X − EX)(X − EX)′]Γ′

= ΓV ar(X)Γ′.

5.

Cov(AX +BY ,CZ) = E[(AX +BY )Z ′C′]− E(AX +BY )E(Z ′C′)

= E(AXZ ′C′)− E(AX)E(Z ′C′) + E(BY Z ′C′)− E(BY )E(Z ′C′)

= A[E(XZ ′)− E(X)E(Z ′)]C′ +B[E(Y Z ′)− E(Y )E(Z ′)]C′

because A, B and C are non-random
= A(Cov(X,Z))C′ +B(Cov(Y ,Z))C′.

Problem 5. Suppose that you had a new battery for your camera, and the life of the battery is a random
variable X, with PDF

fX (x) = k × exp

(
−x

β

)
,

where x > 0 and β is a parameter. Assume now that t and s are non-negative real numbers.
(a). Use the properties of a PDF to determine the value of k.
(b). Find an expression for Pr (X ≥ t).
(c). Find an expression for the conditional probability: Pr (X ≥ t+ s | X ≥ s). Hint: Use Pr (A | B) =

Pr(A∩B)
Pr(B) .

(d). Suppose that your battery has already lasted for s weeks without dying. Based on your above
answers, are you more concerned that the battery is about to die than you were when you first put it in the
camera?

Solution.
(a) We know that the PDF must integrate to 1:∫ ∞

0

fX (x) dx =

∫ ∞

0

k × exp

(
−x

β

)
dx

1 =k

∫ ∞

0

exp

(
−x

β

)
dx

1

k
=− β · exp

(
−x

β

)∣∣∣∣∞
0
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k =
1

β
.

(b) This expression is straightforward now that we have the integration constant, k:

P (X ≥ t) =

∫ ∞

t

1

β
exp (−x/β) dx

which can be simplified to
P (X ≥ t) = exp (−t/β) .

(c)

P (X ≥ t+ s | X ≥ s) =
exp (−(t+s)/β)

exp (−s/β)
= exp (−t/β) .

(d) If my batteries have lasted s weeks without dying, based on my answer to part 3, I should be just as
worried as I was before, since survival of the battery tells me nothing new about its likelihood of dying. The
exponential distribution (which this is) has this very special property, that no matter how long something
has lasted, its rate/probability of failure is constant at any given time.

Problem 6. If A is a symmetric positive definite k× k matrix, then I−A is positive definite if and only if
A−1−I is positive definite, where I is the k×k identity matrix. Prove this result by considering the quadratic
form x′ (I−A)x and expressing x as R−1z, where R is a symmetric matrix such that A = R2. Then,
extend this result to show that if A and B are symmetric positive definite matrices of the same dimensions,
then A − B is positive definite if and only if B−1 − A−1 is positive definite. Hint: A is symmetric and
positive definite, and therefore it can be written as A = CΛC′, where Λ is the diagonal matrix composed of
the positive eigenvalues, C is the matrix of eigenvectors, and C′C = I. Now, one can write A = RR, where
R = CΛ1/2C′. Furthermore, A−1 = R−1R−1.

Solution. (a) A is a symmetric positive definite n× n matrix.
Claim: I−A is positive definite ⇔ A−1 − I is positive definite.
First, we need to show that I−A is positive definite ⇒ A−1−I is positive definite. Since A is symmetric

and positive definite, A can be written as A = CΛC′ where Λ is a diagonal matrix of positive eigenvalues,
CC′ = C′C = I and C is the matrix of eigenvectors. One can write A = RR, where R = CΛ1/2C′. Also,
A1/2 = CΛ1/2C′, A−1/2 = CΛ−1/2C′, A−1 = CΛ−1C′ and C′ = C−1.

I − A positive definite means that for any x ∈ Rn, x ̸= 0, x′(I − A)x > 0. Let x = R−1z = A−1/2z

where z ∈ Rn, z ̸= 0. Notice that A−1/2 =
(
A−1/2

)′
since Λ−1/2 =

(
Λ−1/2

)′
(Λ is a diagonal matrix).

Then, x′(I −A)x = z′ (A−1/2
)′
(I −A)A−1/2z = z′A−1/2(I −A)A−1/2z = z′(A−1 − I)z > 0. Since z is

an arbitrary vector, where z ∈ Rn, z ̸= 0, the result follows.
Second, we need to show that A−1 − I positive definite ⇒I − A is positive definite. A−1 − I positive

definite means that for any y ∈ Rn, y ̸= 0, y′(A−1 − I)y > 0. Let y = Rw = A1/2w where w ∈ Rn, w ̸=
0. Notice that A1/2 =

(
A1/2

)′
since Λ1/2 =

(
Λ1/2

)′
(Λ is a diagonal matrix). Then, y′(I − A)y =

w′ (A1/2
)′
(A−1 − I)A1/2w = w′A1/2(A−1 − I)A1/2w = w′(I −A)w > 0. Since w is an arbitrary vector,

where w ∈ Rn, w ̸= 0, the result follows.
(b) A and B are symmetric positive definite matrices of the same dimension.
Claim: A−B is positive definite ⇔ B−1 −A−1 is positive definite.
First, we need to show that A−B is positive definite ⇒ B−1 −A−1 is positive definite. A−B positive

definite means that for any x ∈ Rn, x ̸= 0, x′(A−B)x > 0. Let x = R−1z = A−1/2z where z ∈ Rn, z ̸= 0.
Then, x′(A−B)x = z′ (A−1/2

)′
(A−B)A−1/2z = z′A−1/2(A−B)A−1/2z = z′(I−A−1/2BA−1/2)z > 0.

This means that I−A−1/2BA−1/2 is positive definite, or, by the result of (a),
(
A−1/2BA−1/2

)−1−I is positive

definite. Therefore, for any q ∈ Rn, q ̸= 0, q′
((

A−1/2BA−1/2
)−1 − I

)
q > 0. Notice that since A and B

are symmetric positive definite matrices, thus their inverse exists,
(
A−1/2BA−1/2

)−1
= A1/2B−1A1/2.
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Therefore, for any q ∈ Rn, q ̸= 0, q′ (A1/2B−1A1/2 − I
)
q > 0. Since this last inequality is valid for any

q ∈ Rn, q ̸= 0, it must hold for q = A−1/2z, where z ∈ Rn, z ̸= 0. Thus, q′ (A1/2B−1A1/2 − I
)
q =

z′A−1/2
(
A1/2B−1A1/2 − I

)
A−1/2z = z′ (B−1 −A−1

)
z > 0, so B−1 −A−1 is positive definite.

Second, we need to show that B−1 − A−1 is positive definite ⇒ A − B is positive definite. B−1 −
A−1 positive definite means that for any p ∈ Rn, p ̸= 0, p′(B−1 − A−1)p > 0. Let p = B1/2y, where
y ∈ Rn,y ̸= 0, then p′(B−1 − A−1)p = y′B1/2(B−1 − A−1)B1/2y = y′(I − B1/2A−1B1/2)y > 0. This
means that I−B1/2A−1B1/2 is positive definite, or, by the result of (a),

(
B1/2A−1B1/2

)−1 − I is positive

definite. Therefore, for any q ∈ Rn, q ̸= 0, q′
((

B1/2A−1B1/2
)−1 − I

)
q > 0. Notice that since A and

B are symmetric positive definite matrices, thus their inverse exists,
(
B1/2A−1B1/2

)−1
= B−1/2AB−1/2.

Therefore, for any q ∈ Rn, q ̸= 0, q′ (B−1/2AB−1/2 − I
)
q > 0. Since this last inequality is valid for any

q ∈ Rn, q ̸= 0, it must hold for p = B1/2y, where y ∈ Rn, y ̸= 0. Thus, q′ (B−1/2AB−1/2 − I
)
q =

y′B1/2
(
B−1/2AB−1/2 − I

)
B1/2y = y′ (A−B)y > 0, so A−B is positive definite.

Problem 7. Let A be a symmetric matrix.

1. Show that the determinant of A is equal to the product of its eigenvalues.

2. Show that the trace of A is equal to the sum of its eigenvalues.

3. Show that A is positive definite (positive semidefinite) if and only if all its eigenvalues are positive
(non-negative).

Solution.

1. Theorem: If A is a real symmetric n× n matrix, then there exists an orthogonal matrix P such that
D = P−1AP = P′AP where i) P is obtained by normalizing a basis of orthogonal eigenvectors of A
and ii) the diagonal elements of D are the n eigenvalues λ1, λ2, ...λn of A. Therefore, D = P−1AP ⇒
A = PDP−1. det(A) = det(PDP−1) = det(P)det(D)det(P−1) = det(D) =

∏n
i=1 λi.

2. tr(A) = tr(PDP−1) = tr(P−1PD) = tr(D) =
∑n

i=1 λi.

3. First, we want to prove that if A is positive definite, then all its eigenvalues are positive (necessary
part). A is positive definite ⇒ x′Ax > 0 or all vectors x ̸= 0. We can write: x′Ax = x′P′DPx =
v′Dv =

∑n
i=1 λiv

2
i > 0 where v = Px. The result follows as we choose x = P−1ei, i = 1, ..., n,

where {ei : i = 1, ..., n} are unit vectors (e.g., e1 = (1, 0, ..., 0)). Second, we want to prove that if all
the eigenvalues of A are positive, then A is positive definite (sufficiency part). If all eigenvalues are
positive, then x′Ax = x′P′DPx = v′Dv =

∑n
i=1 λiv

2
i > 0 for all vectors x ̸= 0. So A is positive

definite. Same idea to show that A is positive semidefinite.

Problem 8. Let B be a symmetric and idempotent n× n matrix: B′ = B and BB = B. Let λ1, . . . λn be
the eigenvalues of B.

1. Show that the eigenvalues of B are zeros and/or ones.

2. Show that rank (B) =
∑n

i=1 λi = tr (B).

3. Show that B is positive semidefinite.

4. Show that In −B is also symmetric and idempotent.

Solution.

1. B is idempotent ⇒ BB = B. Let λ be an eigenvalue of B and v be the corresponding eigenvector.
Then, ⇒ λv = Bv = B2v = B(Bv) = B(λv) = λBv = λ2v ⇒ λ2 = λ ⇒ λ = 1 or 0.
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2. We can write B = PDP−1. Then, rank(B) = rank(PDP−1) = rank(D) since P and P−1 are invertible
matrices. And rank(D) = tr(D) = the number of linearly independent columns (rows) in D which is
equal to the number of non-zero eigenvalues in D.

3. Since all the eigenvalues of B are either zeros or ones, it is clear that B is positive semidefinite.

4. Symmetric: (I−B)′ = I′−B′ = I−B. Idempotent: (I−B)(I−B) = I−B−B+B2 = I−2B+B = I−B.

Problem 9. Let Y ∈ {1, 2, 3, 4, 5, 6} be the face number showing when a die is rolled. Define X as

X =

{
Y if Y is even,
0 if Y is odd.

Find the best linear predictor P (Y |X) and the conditional expectation E (Y |X). Calculate E
[
(Y − P (Y |X))

2
]

and E
[
(Y − E (Y |X))

2
]
.

Solution. First we derive the joint distribution of (X,Y ):

1

6
=Pr ((X,Y ) = (0, 1))

=Pr ((X,Y ) = (0, 3))

=Pr ((X,Y ) = (0, 5))

=Pr ((X,Y ) = (2, 2))

=Pr ((X,Y ) = (4, 4))

=Pr ((X,Y ) = (6, 6)) .

It is easy to derive that the best linear predictor is:

P (Y |X) = E (Y ) +
Cov (X,Y )

Var (X)
(X − E (X)) .

We have

E (Y ) =

6∑
i=1

i

6
=

7

2

E (X) =
1

2
× 0 +

1

6
(2 + 4 + 6) = 2

Var (X) =
1

2
× (0− 2)

2
+

1

6

[
(2− 2)

2
+ (4− 2)

2
+ (6− 2)

2
]
=

16

3

E (XY ) =
1

6

(
22 + 42 + 62

)
=

28

3

Cov (X,Y ) =
28

3
− 2× 28

3
=

7

3
.

So
P (Y |X) =

21

8
+

7

16
X.

The conditional mean is:

E (Y |X) =

{
X if X = 2, 4, 6
1
3 (1 + 3 + 5) if X = 0.

Calculate:

E
(
(Y − P (Y |X))

2
)
=
1

6

[(
1− 21

8

)2

+

(
3− 21

8

)2

+

(
5− 21

8

)2

+

(
2−

(
21

8
+

7

16
× 2

))2
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+

(
4−

(
21

8
+

7

16
× 4

))2

+

(
6−

(
21

8
+

7

16
× 6

))2
]

=1.896

and

E
[
(Y − E (Y |X))

2
]

=
1

6

[
(1− 3)

2
+ (3− 3)

2
+ (5− 3)

2
]
= 1.333.

Problem 10. Suppose that

Y =X ′β + e

E (e|X) =0

E
(
e2|X

)
=σ2 (X) .

Consider two approximations to the conditional variance σ2 (X):

γ1 minimizes E
(
σ2 (X)−X ′γ

)2
and

γ2 minimizes E
(
e2 −X ′γ

)2
.

Show: γ1 = γ2.

Solution. By law of iterated expectation,

γ2 =
(
E
(
XX ′))−1 E

(
Xe2

)
=

(
E
(
XX ′))−1 E

(
XE

(
e2|X

))
=

(
E
(
XX ′))−1 E

(
Xσ2 (X)

)
= γ1.

7


