
Homework 2

Problem 1. Let Y ∈ {1, 2, 3, 4, 5, 6} be the face number showing when a die is rolled. Define X as

X =

{
Y if Y is even,
0 if Y is odd.

Find the best linear predictor P (Y |X) and the conditional expectation E (Y |X). Calculate E
[
(Y − P (Y |X))

2
]

and E
[
(Y − E (Y |X))

2
]
.

Problem 2. Suppose that

Y =X ′β + e

E (e|X) =0

E
(
e2|X

)
=σ2 (X) .

Consider two approximations to the conditional variance σ2 (X):

γ1 minimizes E
(
σ2 (X)−X ′γ

)2
and

γ2 minimizes E
(
e2 −X ′γ

)2
.

Show: γ1 = γ2.

Problem 3. The Mean Trimmed Squared Error (MTSE) is defined by

T (θ) = E
((
Y −X ′θ

)2
τ (X)

)
,

where τ (X) is a known, scalar-valued, non-negative, bounded, function.

1. Give an explicit formula for the value of θ which minimizes T (θ).

2. Define e = Y −X ′θ, where θ is the minimizer defined above. Show: E (Xτ (X) e) = 0.

3. Under what condition (other than τ (X) = 1) will this minimizer equal the Best Linear Predictor?

Problem 4. The conditional PDF of Y given X is

fY |X (y|x) = y + x
1/2 + x

,

for 0 < y < 1. Find E [Y |X = x].

Problem 5. For any given two random variables X and Y , we define

Var [Y | X] = E
[
(Y − E [Y | X])

2 | X
]
.

Suppose that E [Y | X] = 1/4 and E
[
Y 2 | X

]
= 1/8. Then show that for any function g, Var [Y | g (X)] =

1/16. Use the following facts: for any function g, E [E [Y | g (X)] | X] = E [Y | g (X)] and E [E [Y | X] | g (X)] =
E [Y | g (X)].
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Problem 6. Let X be the matrix collecting all the n observations on the k regressors:

X =


X1,1 X1,2 · · · X1,k

X2,1 X2,2 · · · X2,k

...
...

. . .
...

Xn,1 Xn,k · · · Xn,k


n×k

.

Assume n > k and X is of full rank. Let A be a k × k singular matrix. Show that the columns of XA are
linearly dependent and S (XA) ⊂ S (X), where

S(X) =
{
z ∈ Rn : z =Xb, b = (b1, b2, . . . , bk)

′ ∈ Rk
}
.

Problem 7. Partition the matrix of regressors X as follows:

X = [X1 X2] .

Denote P 1 = X1

(
X ′1X1

)−1
X ′1 and PX = X

(
X ′X

)−1
X ′. M1 and MX are defined analogously:

M1 = In − P 1 and MX = In − PX . Prove:

P 1PX = PXP 1 = P 1 (1)

and
M1MX =MXM1 =MX . (2)

Problem 8. Use (1) to show that PX − P 1 is symmetric and idempotent. Show further that PX −
P 1 = PM1X2

by showing that for any z ∈ S (M1X2), (PX − P 1) z = z and for any y ∈ S⊥ (M1X2),
(PX − P 1)y = 0, where

S⊥(M1X2) = {z ∈ Rn : z′M1X2 = 0} .

Problem 9. In this question, use the hints to show “R2 increases by adding more regressors”. Suppose we
have n observations on regressors (Z1, ..., Zk) and (W1, ...,Wm) and dependent variable Y . Let Z be the n×k
matrix collecting the observations on (Z1, ..., Zk) and letW be the n×m matrix collecting the observations
on (W1, ...,Wm). Let X = [Z W ] . Assume that Z contains a column of ones so that R2 = 1−RSS/TSS
in both regressions.

Let

PX =X
(
X ′X

)−1
X ′ projection matrix corresponding to the full regression,

PZ = Z
(
Z ′Z

)−1
Z ′ projection matrix corresponding to the regression without W .

Define also

MX = In − PX ,

MZ = In − PZ .

Define

êX =MXY ,

êZ =MZY .

Show: ê′X êZ = ê′X êX and therefore

0 ≤ (êX − êZ)′ (êX − êZ) = ê′X êX − ê
′
Z êZ .

Hint: use (1) and (2). How can you argue that now we conclude that “R2 increases by adding more
regressors”?
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Problem 10. Let X be an n × k matrix (n > k) of full column rank. Partition X as X = [ X1 X2 ],
where X1 is n× k1 and X2 is n× k2, k1 + k2 = k.

1. Show that X2 has full column rank and therefore (X ′2X2)
−1 exists.

2. Define M2 = In −X2

(
X ′2X2

)−1
X ′2 and X̃1 = M2X1. Show that X̃1 has full column rank and

therefore
(
X̃
′
1X̃1

)−1
=
(
X ′1M2X1

)−1 exists.
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