Homework 2

Problem 1. Let $Y \in \{1, 2, 3, 4, 5, 6\}$ be the face number showing when a die is rolled. Define X as

$$X = \begin{cases} Y & \text{if } Y \text{ is even,} \\ 0 & \text{if } Y \text{ is odd.} \end{cases}$$

Find the best linear predictor $\mathcal{P}(Y|X)$ and the conditional expectation $\mathbb{E}(Y|X)$. Calculate $\mathbb{E}\left[\left(Y-\mathcal{P}(Y|X)\right)^2\right]$ and $\mathbb{E}\left[\left(Y-\mathbb{E}(Y|X)\right)^2\right]$.

Problem 2. Suppose that

$$Y = \mathbf{X}'\boldsymbol{\beta} + e$$
$$\mathbf{E}(e|\mathbf{X}) = 0$$
$$\mathbf{E}(e^2|\mathbf{X}) = \sigma^2(\mathbf{X}).$$

Consider two approximations to the conditional variance $\sigma^2(\boldsymbol{X})$:

$$\boldsymbol{\gamma}_{1}$$
 minimizes $\mathrm{E}\left(\sigma^{2}\left(\boldsymbol{X}\right)-\boldsymbol{X}'\boldsymbol{\gamma}\right)^{2}$

and

$$\gamma_2$$
 minimizes $\mathrm{E}\left(e^2-X'\gamma\right)^2$.

Show: $\gamma_1 = \gamma_2$.

Problem 3. The Mean Trimmed Squared Error (MTSE) is defined by

$$T(\boldsymbol{\theta}) = \mathbb{E}\left(\left(Y - \boldsymbol{X}'\boldsymbol{\theta}\right)^2 \tau(\boldsymbol{X})\right),$$

where $\tau(X)$ is a known, scalar-valued, non-negative, bounded, function.

- 1. Give an explicit formula for the value of θ which minimizes $T(\theta)$.
- 2. Define $e = Y X'\theta$, where θ is the minimizer defined above. Show: $E(X\tau(X)e) = 0$.
- 3. Under what condition (other than $\tau(X) = 1$) will this minimizer equal the Best Linear Predictor?

Problem 4. The conditional PDF of Y given X is

$$f_{Y|X}(y|x) = \frac{y+x}{1/2+x},$$

for 0 < y < 1. Find E [Y|X = x].

Problem 5. For any given two random variables X and Y, we define

$$\operatorname{Var}\left[Y\mid X\right] = \operatorname{E}\left[\left(Y - \operatorname{E}\left[Y\mid X\right]\right)^2\mid X\right].$$

Suppose that $\mathrm{E}\left[Y\mid X\right]=1/4$ and $\mathrm{E}\left[Y^2\mid X\right]=1/8$. Then show that for any function g, $\mathrm{Var}\left[Y\mid g\left(X\right)\right]=1/16$. Use the following facts: for any function g, $\mathrm{E}\left[\mathrm{E}\left[Y\mid g\left(X\right)\right]\mid X\right]=\mathrm{E}\left[Y\mid g\left(X\right)\right]$ and $\mathrm{E}\left[\mathrm{E}\left[Y\mid X\right]\mid g\left(X\right)\right]=\mathrm{E}\left[Y\mid g\left(X\right)\right]$.

Problem 6. Let X be the matrix collecting all the n observations on the k regressors:

$$m{X} = \left[egin{array}{cccc} X_{1,1} & X_{1,2} & \cdots & X_{1,k} \ X_{2,1} & X_{2,2} & \cdots & X_{2,k} \ dots & dots & \ddots & dots \ X_{n,1} & X_{n,k} & \cdots & X_{n,k} \end{array}
ight]_{n imes k}.$$

Assume n > k and X is of full rank. Let A be a $k \times k$ singular matrix. Show that the columns of XA are linearly dependent and $S(XA) \subset S(X)$, where

$$S(X) = \{ z \in \mathbb{R}^n : z = Xb, b = (b_1, b_2, \dots, b_k)' \in \mathbb{R}^k \}.$$

Problem 7. Partition the matrix of regressors X as follows:

$$X = [X_1 \ X_2].$$

Denote $P_1 = X_1 (X_1'X_1)^{-1} X_1'$ and $P_X = X (X'X)^{-1} X'$. M_1 and M_X are defined analogously: $M_1 = I_n - P_1$ and $M_X = I_n - P_X$. Prove:

$$P_1 P_X = P_X P_1 = P_1 \tag{1}$$

and

$$M_1 M_X = M_X M_1 = M_X. \tag{2}$$

Problem 8. Use (1) to show that $P_X - P_1$ is symmetric and idempotent. Show further that $P_X - P_1 = P_{M_1X_2}$ by showing that for any $z \in \mathcal{S}(M_1X_2)$, $(P_X - P_1)z = z$ and for any $y \in \mathcal{S}^{\perp}(M_1X_2)$, $(P_X - P_1)y = 0$, where

$$\mathcal{S}^{\perp}(M_1X_2) = \{ z \in \mathbb{R}^n : z'M_1X_2 = 0 \}.$$

Problem 9. In this question, use the hints to show " R^2 increases by adding more regressors". Suppose we have n observations on regressors $(Z_1, ..., Z_k)$ and $(W_1, ..., W_m)$ and dependent variable Y. Let Z be the $n \times k$ matrix collecting the observations on $(Z_1, ..., Z_k)$ and let W be the $n \times m$ matrix collecting the observations on $(W_1, ..., W_m)$. Let $X = [Z \ W]$. Assume that Z contains a column of ones so that $R^2 = 1 - RSS/TSS$ in both regressions.

Let

 $P_X = X (X'X)^{-1} X'$ projection matrix corresponding to the full regression, $P_Z = Z (Z'Z)^{-1} Z'$ projection matrix corresponding to the regression without W.

Define also

$$egin{aligned} oldsymbol{M}_{oldsymbol{X}} &= oldsymbol{I}_n - oldsymbol{P}_{oldsymbol{Z}}, \ oldsymbol{M}_{oldsymbol{Z}} &= oldsymbol{I}_n - oldsymbol{P}_{oldsymbol{Z}}. \end{aligned}$$

Define

$$\widehat{e}_{m{X}} = m{M}_{m{X}} m{Y}, \ \widehat{e}_{m{Z}} = m{M}_{m{Z}} m{Y}.$$

Show: $\hat{e}_X'\hat{e}_Z = \hat{e}_X'\hat{e}_X$ and therefore

$$0 \leq \left(\widehat{\boldsymbol{e}}_{\boldsymbol{X}} - \widehat{\boldsymbol{e}}_{\boldsymbol{Z}}\right)' \left(\widehat{\boldsymbol{e}}_{\boldsymbol{X}} - \widehat{\boldsymbol{e}}_{\boldsymbol{Z}}\right) = \widehat{\boldsymbol{e}}_{\boldsymbol{X}}' \widehat{\boldsymbol{e}}_{\boldsymbol{X}} - \widehat{\boldsymbol{e}}_{\boldsymbol{Z}}' \widehat{\boldsymbol{e}}_{\boldsymbol{Z}}.$$

Hint: use (1) and (2). How can you argue that now we conclude that " \mathbb{R}^2 increases by adding more regressors"?

Problem 10. Let X be an $n \times k$ matrix (n > k) of full column rank. Partition X as $X = [X_1 \ X_2]$, where X_1 is $n \times k_1$ and X_2 is $n \times k_2$, $k_1 + k_2 = k$.

- 1. Show that \boldsymbol{X}_2 has full column rank and therefore $(\boldsymbol{X}_2'\boldsymbol{X}_2)^{-1}$ exists.
- 2. Define $M_2 = I_n X_2 (X_2' X_2)^{-1} X_2'$ and $\widetilde{X}_1 = M_2 X_1$. Show that \widetilde{X}_1 has full column rank and therefore $(\widetilde{X}_1' \widetilde{X}_1)^{-1} = (X_1' M_2 X_1)^{-1}$ exists.