Homework 2

Problem 1. The Mean Trimmed Squared Error (MTSE) is defined by

$$T(\boldsymbol{\theta}) = E\left(\left(Y - \boldsymbol{X}'\boldsymbol{\theta}\right)^2 \tau(\boldsymbol{X})\right),$$

where $\tau(X)$ is a known, scalar-valued, non-negative, bounded, function.

- 1. Give an explicit formula for the value of θ which minimizes $T(\theta)$.
- 2. Define $e = Y X'\theta$, where θ is the minimizer defined above. Show: $E(X\tau(X)e) = 0$.
- 3. Under what condition (other than $\tau(X) = 1$) will this minimizer equal the Best Linear Predictor?

Problem 2. Let X be the matrix collecting all the n observations on the k regressors:

$$\boldsymbol{X} = \begin{bmatrix} X_{1,1} & X_{1,2} & \cdots & X_{1,k} \\ X_{2,1} & X_{2,2} & \cdots & X_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n,1} & X_{n,k} & \cdots & X_{n,k} \end{bmatrix}_{n \times k}.$$

Assume n > k and X is of full rank. Let A be a $k \times k$ singular matrix. Show that the columns of XA are linearly dependent and $S(XA) \subset S(X)$, where

$$\mathcal{S}(\boldsymbol{X}) = \left\{ \boldsymbol{z} \in \mathbb{R}^n : \boldsymbol{z} = \boldsymbol{X}\boldsymbol{b}, \, \boldsymbol{b} = (b_1, b_2, \dots, b_k)' \in \mathbb{R}^k \right\}.$$

Problem 3. Partition the matrix of regressors X as follows:

$$X = [X_1 \ X_2].$$

Denote $P_1 = X_1 (X_1'X_1)^{-1} X_1'$ and $P_X = X (X'X)^{-1} X'$. M_1 and M_X are defined analogously: $M_1 = I_n - P_1$ and $M_X = I_n - P_X$. Prove:

$$P_1 P_X = P_X P_1 = P_1 \tag{1}$$

and

$$M_1 M_X = M_X M_1 = M_X. \tag{2}$$

Problem 4. Use (1) to show that $P_X - P_1$ is symmetric and idempotent. Show further that $P_X - P_1 = P_{M_1X_2}$ by showing that for any $z \in \mathcal{S}(M_1X_2)$, $(P_X - P_1)z = z$ and for any $y \in \mathcal{S}^{\perp}(M_1X_2)$, $(P_X - P_1)y = 0$, where

$$\mathcal{S}^{\perp}(M_1X_2) = \{ z \in \mathbb{R}^n : z'M_1X_2 = 0 \}.$$

Problem 5. In this question, use the hints to show " R^2 increases by adding more regressors". Suppose we have n observations on regressors $(Z_1, ..., Z_k)$ and $(W_1, ..., W_m)$ and dependent variable Y. Let \mathbf{Z} be the $n \times k$ matrix collecting the observations on $(Z_1, ..., Z_k)$ and let \mathbf{W} be the $n \times m$ matrix collecting the observations on $(W_1, ..., W_m)$. Let $\mathbf{X} = [\mathbf{Z} \ \mathbf{W}]$. Assume that \mathbf{Z} contains a column of ones so that $R^2 = 1 - RSS/TSS$ in both regressions.

Let

 $P_X = X (X'X)^{-1} X'$ projection matrix corresponding to the full regression, $P_Z = Z (Z'Z)^{-1} Z'$ projection matrix corresponding to the regression without W. Define also

$$egin{aligned} oldsymbol{M}_{oldsymbol{X}} &= oldsymbol{I}_n - oldsymbol{P}_{oldsymbol{X}}, \ oldsymbol{M}_{oldsymbol{Z}} &= oldsymbol{I}_n - oldsymbol{P}_{oldsymbol{Z}}. \end{aligned}$$

Define

$$\widehat{e}_{m{X}} = m{M}_{m{X}} m{Y}, \ \widehat{e}_{m{Z}} = m{M}_{m{Z}} m{Y}.$$

Show: $\widehat{e}_{\boldsymbol{X}}'\widehat{e}_{\boldsymbol{Z}} = \widehat{e}_{\boldsymbol{X}}'\widehat{e}_{\boldsymbol{X}}$ and therefore

$$0 \le (\widehat{e}_{\boldsymbol{X}} - \widehat{e}_{\boldsymbol{Z}})' (\widehat{e}_{\boldsymbol{X}} - \widehat{e}_{\boldsymbol{Z}}) = \widehat{e}'_{\boldsymbol{X}} \widehat{e}_{\boldsymbol{X}} - \widehat{e}'_{\boldsymbol{Z}} \widehat{e}_{\boldsymbol{Z}}.$$

Hint: use (1) and (2). How can you argue that now we conclude that " R^2 increases by adding more regressors"?

Problem 6. Let X be an $n \times k$ matrix (n > k) of full column rank. Partition X as $X = [X_1 \ X_2]$, where X_1 is $n \times k_1$ and X_2 is $n \times k_2$, $k_1 + k_2 = k$.

- 1. Show that X_2 has full column rank and therefore $(X_2'X_2)^{-1}$ exists.
- 2. Define $M_2 = I_n X_2 (X_2' X_2)^{-1} X_2'$ and $\widetilde{X}_1 = M_2 X_1$. Show that \widetilde{X}_1 has full column rank and therefore $(\widetilde{X}_1' \widetilde{X}_1)^{-1} = (X_1' M_2 X_1)^{-1}$ exists.

Problem 7. Suppose that assumptions of the Classical Linear Regression model hold, i.e.

$$egin{aligned} oldsymbol{Y} &= oldsymbol{X}oldsymbol{eta} + oldsymbol{e}, \ \mathbb{E}(oldsymbol{e}|oldsymbol{X}) &= 0, \ \mathrm{rank}(oldsymbol{X}) &= k, \end{aligned}$$

however.

$$\mathbb{E}(ee'|X) = \Omega$$
.

where Ω is an $n \times n$, positive definite and symmetric matrix, but different from $\sigma^2 I_n$.

- 1. Derive the conditional variance (given X) of the LS estimator $\hat{\beta} = (X'X)^{-1}X'Y$.
- 2. Derive the conditional variance (given X) of the Generalized LS estimator $\tilde{\beta} = (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}Y$.
- 3. Without relying on the Gauss-Markov Theorem, show that

$$\operatorname{Var}(\widehat{\boldsymbol{\beta}} \mid \boldsymbol{X}) - \operatorname{Var}(\widehat{\boldsymbol{\beta}} \mid \boldsymbol{X}) \ge 0$$

(in the positive semidefinite sense). Hint: Show

$$\left(\operatorname{Var}(\widetilde{\boldsymbol{\beta}}\mid\boldsymbol{X})\right)^{-1} - \left(\operatorname{Var}(\widehat{\boldsymbol{\beta}}\mid\boldsymbol{X})\right)^{-1} \geq 0$$

by showing that the expression on the left-hand side depends on a symmetric and idempotent matrix of the form $I_n - H(H'H)^{-1}H'$ for some $n \times k$ matrix H of rank k.

Problem 8. Consider the GLS estimator $\widetilde{\beta}$ defined in the previous question.

1. Show that $\widetilde{\boldsymbol{\beta}}$ satisfies $\widetilde{\boldsymbol{e}}' \boldsymbol{\Omega}^{-1} \boldsymbol{X} = 0$, where $\widetilde{\boldsymbol{e}} = \boldsymbol{Y} - \boldsymbol{X} \widetilde{\boldsymbol{\beta}}$.

2. Using the result in (i), show that the generalized squared distance function $S(b) = (Y - Xb)'\Omega^{-1}(Y - Xb)$ can be written as

$$S(\boldsymbol{b}) = \widetilde{\boldsymbol{e}}' \Omega^{-1} \widetilde{\boldsymbol{e}} + (\widetilde{\boldsymbol{\beta}} - \boldsymbol{b})' \boldsymbol{X}' \Omega^{-1} \boldsymbol{X} (\widetilde{\boldsymbol{\beta}} - \boldsymbol{b}).$$

3. Using the result in (ii), show that $\tilde{\beta}$ minimizes S(b).

Problem 9. Consider the following regression model:

$$egin{aligned} oldsymbol{Y} &= oldsymbol{X}_1oldsymbol{eta}_1 + oldsymbol{X}_2oldsymbol{eta}_2 + oldsymbol{e}, \ \mathbb{E}(oldsymbol{e}oldsymbol{e}'|oldsymbol{X}_1,oldsymbol{X}_2) &= oldsymbol{\sigma}_e^2oldsymbol{I}_n. \end{aligned}$$

Let $\widetilde{\boldsymbol{\beta}}_1 = (\boldsymbol{X}_1'\boldsymbol{X}_1)^{-1}\boldsymbol{X}_1'\boldsymbol{Y}$ be the LS estimator for $\boldsymbol{\beta}_1$ which omits \boldsymbol{X}_2 from the regression.

- 1. Find $\mathbb{E}(\tilde{\boldsymbol{\beta}}_1|\boldsymbol{X}_1)$.
- 2. Define

$$V = X_2 \beta_2 - \mathbb{E} (X_2 \beta_2 | X_1)$$
.

Find $\mathbb{E}\left(eV'|X_1\right)$.

- 3. Find $\mathbb{E}(ee'|X_1)$.
- 4. Assume that

$$\mathbb{E}\left(\boldsymbol{V}\boldsymbol{V}'|\boldsymbol{X}_1\right) = \sigma_v^2 I_n,$$

and find $Var(\tilde{\boldsymbol{\beta}}_1|\boldsymbol{X}_1)$.

5. Let $\hat{\boldsymbol{\beta}}_1 = (\boldsymbol{X}_1' \boldsymbol{M}_2 \boldsymbol{X}_1)^{-1} \boldsymbol{X}_1' \boldsymbol{M}_2 \boldsymbol{Y}$ be the OLS estimator for $\boldsymbol{\beta}_1$ from a regression of \boldsymbol{Y} against \boldsymbol{X}_1 and \boldsymbol{X}_2 , where $\boldsymbol{M}_2 = \boldsymbol{I}_n - \boldsymbol{X}_2 (\boldsymbol{X}_2' \boldsymbol{X}_2)^{-1} \boldsymbol{X}_2'$. Compare $\operatorname{Var}(\tilde{\boldsymbol{\beta}}_1 | \boldsymbol{X}_1)$ derived in part (iv) with $\operatorname{Var}(\hat{\boldsymbol{\beta}}_1 | \boldsymbol{X}_1, \boldsymbol{X}_2)$. Can you say which of the two variances is bigger (in the positive semi-definite sense)? Explain your answer.