
Homework 2

Problem 1. The Mean Trimmed Squared Error (MTSE) is defined by

T (θ) = E
((

Y −X ′θ
)2

τ (X)
)
,

where τ (X) is a known, scalar-valued, non-negative, bounded, function.

1. Give an explicit formula for the value of θ which minimizes T (θ).

2. Define e = Y −X ′θ, where θ is the minimizer defined above. Show: E (Xτ (X) e) = 0.

3. Under what condition (other than τ (X) = 1) will this minimizer equal the Best Linear Predictor?

Problem 2. Let X be the matrix collecting all the n observations on the k regressors:

X =


X1,1 X1,2 · · · X1,k

X2,1 X2,2 · · · X2,k

...
...

. . .
...

Xn,1 Xn,k · · · Xn,k


n×k

.

Assume n > k and X is of full rank. Let A be a k × k singular matrix. Show that the columns of XA are
linearly dependent and S (XA) ⊂ S (X), where

S(X) =
{
z ∈ Rn : z = Xb, b = (b1, b2, . . . , bk)

′ ∈ Rk
}
.

Problem 3. Partition the matrix of regressors X as follows:

X = [X1 X2] .

Denote P 1 = X1

(
X ′

1X1

)−1
X ′

1 and PX = X
(
X ′X

)−1
X ′. M1 and MX are defined analogously:

M1 = In − P 1 and MX = In − PX . Prove:

P 1PX = PXP 1 = P 1 (1)

and
M1MX = MXM1 = MX . (2)

Problem 4. Use (1) to show that PX − P 1 is symmetric and idempotent. Show further that PX −
P 1 = PM1X2

by showing that for any z ∈ S (M1X2), (PX − P 1) z = z and for any y ∈ S⊥ (M1X2),
(PX − P 1)y = 0, where

S⊥(M1X2) = {z ∈ Rn : z′M1X2 = 0} .

Problem 5. In this question, use the hints to show “R2 increases by adding more regressors”. Suppose we
have n observations on regressors (Z1, ..., Zk) and (W1, ...,Wm) and dependent variable Y . Let Z be the n×k
matrix collecting the observations on (Z1, ..., Zk) and let W be the n×m matrix collecting the observations
on (W1, ...,Wm). Let X = [Z W ] . Assume that Z contains a column of ones so that R2 = 1−RSS/TSS
in both regressions.

Let

PX = X
(
X ′X

)−1
X ′ projection matrix corresponding to the full regression,

PZ = Z
(
Z ′Z

)−1
Z ′ projection matrix corresponding to the regression without W .
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Define also

MX = In − PX ,

MZ = In − PZ .

Define

êX = MXY ,

êZ = MZY .

Show: ê′X êZ = ê′X êX and therefore

0 ≤ (êX − êZ)
′
(êX − êZ) = ê′X êX − ê′Z êZ .

Hint: use (1) and (2). How can you argue that now we conclude that “R2 increases by adding more
regressors”?

Problem 6. Let X be an n × k matrix (n > k) of full column rank. Partition X as X = [ X1 X2 ],
where X1 is n× k1 and X2 is n× k2, k1 + k2 = k.

1. Show that X2 has full column rank and therefore (X ′
2X2)

−1 exists.

2. Define M2 = In − X2

(
X ′

2X2

)−1
X ′

2 and X̃1 = M2X1. Show that X̃1 has full column rank and

therefore
(
X̃

′
1X̃1

)−1

=
(
X ′

1M2X1

)−1 exists.

Problem 7. Suppose that assumptions of the Classical Linear Regression model hold, i.e.

Y = Xβ + e, β ∈ Rk

E(e|X) = 0,

rank(X) = k,

however,
E(ee′|X) = Ω,

where Ω is an n× n, positive definite and symmetric matrix, but different from σ2In.

1. Derive the conditional variance (given X) of the LS estimator β̂ = (X ′X)−1X ′Y .

2. Derive the conditional variance (given X) of the Generalized LS estimator β̃ = (X ′Ω−1X)−1X ′Ω−1Y .

3. Without relying on the Gauss-Markov Theorem, show that

Var(β̂ | X)−Var(β̃ | X) ≥ 0

(in the positive semidefinite sense). Hint: Show(
Var(β̃ | X)

)−1

−
(
Var(β̂ | X)

)−1

≥ 0

by showing that the expression on the left-hand side depends on a symmetric and idempotent matrix
of the form In −H(H ′H)−1H ′ for some n× k matrix H of rank k.

Problem 8. Consider the GLS estimator β̃ defined in the previous question.

1. Show that β̃ satisfies ẽ′Ω−1X = 0, where ẽ = Y −Xβ̃.
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2. Using the result in (i), show that the generalized squared distance function S(b) = (Y −Xb)′Ω−1(Y −
Xb) can be written as

S(b) = ẽ′Ω−1ẽ+ (β̃ − b)′X ′Ω−1X(β̃ − b).

3. Using the result in (ii), show that β̃ minimizes S(b).

Problem 9. Consider the following regression model:

Y = X1β1 +X2β2 + e,

E(e|X1,X2) = 0,

E (ee′|X1,X2) = σ2
eIn.

Let β̃1 = (X ′
1X1)

−1X ′
1Y be the LS estimator for β1 which omits X2 from the regression.

1. Find E(β̃1|X1).

2. Define
V = X2β2 − E (X2β2|X1) .

Find E
(
eV ′|X1

)
.

3. Find E (ee′|X1).

4. Assume that

E
(
V V ′|X1

)
= σ2

vIn,

and find Var(β̃1|X1).

5. Let β̂1 = (X ′
1M2X1)

−1X ′
1M2Y be the OLS estimator for β1 from a regression of Y against X1

and X2, where M2 = In − X2(X
′
2X2)

−1X ′
2. Compare Var(β̃1|X1) derived in part (iv) with

Var(β̂1|X1,X2). Can you say which of the two variances is bigger (in the positive semi-definite
sense)? Explain your answer.
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