Homework 2

Problem 1. Let $Y \in \{1, 2, 3, 4, 5, 6\}$ be the face number showing when a die is rolled. Define X as

$$X = \begin{cases} Y & \text{if } Y \text{ is even,} \\ 0 & \text{if } Y \text{ is odd.} \end{cases}$$

Find the best linear predictor $\mathcal{P}\left(Y|X\right)$ and the conditional expectation $\mathbb{E}\left(Y|X\right)$. Calculate $\mathbb{E}\left[\left(Y-\mathcal{P}\left(Y|X\right)\right)^{2}\right]$ and $\mathbb{E}\left[\left(Y-\mathbb{E}\left(Y|X\right)\right)^{2}\right]$.

Solution. First we derive the joint distribution of (X,Y):

$$\frac{1}{6} = \Pr((X, Y) = (0, 1))
= \Pr((X, Y) = (0, 3))
= \Pr((X, Y) = (0, 5))
= \Pr((X, Y) = (2, 2))
= \Pr((X, Y) = (4, 4))
= \Pr((X, Y) = (6, 6)).$$

It is easy to derive that the best linear predictor is:

$$\mathcal{P}(Y|X) = \mathbb{E}(Y) + \frac{\operatorname{Cov}(X,Y)}{\operatorname{Var}(X)}(X - \mathbb{E}(X)).$$

We have

$$\mathbb{E}(Y) = \sum_{i=1}^{6} \frac{i}{6} = \frac{7}{2}$$

$$\mathbb{E}(X) = \frac{1}{2} \times 0 + \frac{1}{6} (2 + 4 + 6) = 2$$

$$\operatorname{Var}(X) = \frac{1}{2} \times (0 - 2)^2 + \frac{1}{6} \left[(2 - 2)^2 + (4 - 2)^2 + (6 - 2)^2 \right] = \frac{16}{3}$$

$$\mathbb{E}(XY) = \frac{1}{6} (2^2 + 4^2 + 6^2) = \frac{28}{3}$$

$$\operatorname{Cov}(X, Y) = \frac{28}{3} - 2 \times \frac{28}{3} = \frac{7}{3}.$$

So

$$\mathcal{P}(Y|X) = \frac{21}{8} + \frac{7}{16}X.$$

The conditional mean is:

$$\mathbb{E}(Y|X) = \begin{cases} X & \text{if } X = 2, 4, 6\\ \frac{1}{3}(1+3+5) & \text{if } X = 0. \end{cases}$$

Calculate:

$$\mathbb{E}\left(\left(Y - \mathcal{P}\left(Y | X\right)\right)^{2}\right) = \frac{1}{6}\left[\left(1 - \frac{21}{8}\right)^{2} + \left(3 - \frac{21}{8}\right)^{2} + \left(5 - \frac{21}{8}\right)^{2} + \left(2 - \left(\frac{21}{8} + \frac{7}{16} \times 2\right)\right)^{2}\right]$$

$$+\left(4 - \left(\frac{21}{8} + \frac{7}{16} \times 4\right)\right)^2 + \left(6 - \left(\frac{21}{8} + \frac{7}{16} \times 6\right)\right)^2\right]$$

=1.896

and

$$\mathbb{E}\left[\left(Y - \mathbb{E}\left(Y|X\right)\right)^{2}\right] = \frac{1}{6}\left[\left(1 - 3\right)^{2} + \left(3 - 3\right)^{2} + \left(5 - 3\right)^{2}\right] = 1.333.$$

Problem 2. Suppose that

$$Y = \mathbf{X}'\mathbf{\beta} + e$$
$$\mathbf{E}(e|\mathbf{X}) = 0$$
$$\mathbf{E}(e^2|\mathbf{X}) = \sigma^2(\mathbf{X}).$$

Consider two approximations to the conditional variance $\sigma^2(\boldsymbol{X})$:

$$\boldsymbol{\gamma}_1$$
 minimizes $\mathrm{E}\left(\sigma^2\left(\boldsymbol{X}\right)-\boldsymbol{X}'\boldsymbol{\gamma}\right)^2$

and

$$\gamma_2$$
 minimizes $\mathrm{E}\left(e^2-X'\gamma\right)^2$.

Show: $\gamma_1 = \gamma_2$.

Solution. By law of iterated expectation,

$$\begin{array}{rcl} \boldsymbol{\gamma}_2 & = & \left(\mathbb{E}\left(\boldsymbol{X}\boldsymbol{X}'\right)\right)^{-1}\mathbb{E}\left(\boldsymbol{X}e^2\right) \\ & = & \left(\mathbb{E}\left(\boldsymbol{X}\boldsymbol{X}'\right)\right)^{-1}\mathbb{E}\left(\boldsymbol{X}\mathbb{E}\left(e^2|\boldsymbol{X}\right)\right) \\ & = & \left(\mathbb{E}\left(\boldsymbol{X}\boldsymbol{X}'\right)\right)^{-1}\mathbb{E}\left(\boldsymbol{X}\sigma^2\left(\boldsymbol{X}\right)\right) \\ & = & \boldsymbol{\gamma}_1. \end{array}$$

Problem 3. The Mean Trimmed Squared Error (MTSE) is defined by

$$T(\boldsymbol{\theta}) = E\left(\left(Y - \boldsymbol{X}'\boldsymbol{\theta}\right)^2 \tau(\boldsymbol{X})\right),$$

where $\tau(X)$ is a known, scalar-valued, non-negative, bounded, function.

- 1. Give an explicit formula for the value of θ which minimizes $T(\theta)$.
- 2. Define $e = Y X'\theta$, where θ is the minimizer defined above. Show: $E(X\tau(X)e) = 0$.
- 3. Under what condition (other than $\tau(\mathbf{X}) = 1$) will this minimizer equal the Best Linear Predictor? **Solution.** Part (1). By expanding the square

$$T(\boldsymbol{\theta}) = \mathbb{E}\left(\left(Y - \boldsymbol{X}'\boldsymbol{\theta}\right)^{2} \tau(\boldsymbol{X})\right)$$
$$= \mathbb{E}\left(Y^{2} \tau(\boldsymbol{X})\right) - 2\mathbb{E}\left(Y \boldsymbol{X}' \tau(\boldsymbol{X})\right) \boldsymbol{\theta} + \boldsymbol{\theta}' \mathbb{E}\left(\boldsymbol{X} \boldsymbol{X}' \tau(\boldsymbol{X})\right) \boldsymbol{\theta}.$$

Differentiate:

$$\frac{\partial}{\partial \boldsymbol{\theta}} T\left(\boldsymbol{\theta}\right) = -2\mathbb{E}\left(\boldsymbol{X}Y\tau\left(\boldsymbol{X}\right)\right) + 2\mathbb{E}\left(\boldsymbol{X}\boldsymbol{X}'\tau\left(\boldsymbol{X}\right)\right)\boldsymbol{\theta}.$$

Setting it equal to zero and solving for θ :

$$\boldsymbol{\theta} = \left(\mathbb{E} \left(\boldsymbol{X} \boldsymbol{X}' \tau \left(\boldsymbol{X} \right) \right) \right)^{-1} \mathbb{E} \left(\boldsymbol{X} \boldsymbol{Y} \tau \left(\boldsymbol{X} \right) \right).$$

Part (2). Since $e = Y - X'\theta$,

$$\mathbb{E}\left(\boldsymbol{X}e\tau\left(\boldsymbol{X}\right)\right) = \mathbb{E}\left(\boldsymbol{X}Y\tau\left(\boldsymbol{X}\right)\right) - \mathbb{E}\left(\boldsymbol{X}\boldsymbol{X}'\tau\left(\boldsymbol{X}\right)\right)\boldsymbol{\theta}$$

$$= \mathbb{E}\left(\boldsymbol{X}Y\tau\left(\boldsymbol{X}\right)\right) - \mathbb{E}\left(\boldsymbol{X}\boldsymbol{X}'\tau\left(\boldsymbol{X}\right)\right)\left(\mathbb{E}\left(\boldsymbol{X}\boldsymbol{X}'\tau\left(\boldsymbol{X}\right)\right)\right)^{-1}\mathbb{E}\left(\boldsymbol{X}Y\tau\left(\boldsymbol{X}\right)\right)$$

$$= 0.$$

Part (3). If the conditional mean is linear: $\mathbb{E}(Y|X) = X'\beta$ then by the law of iterated expectation,

$$\theta = (\mathbb{E}(XX'\tau(X)))^{-1}\mathbb{E}(XY\tau(X))$$

$$= (\mathbb{E}(XX'\tau(X)))^{-1}\mathbb{E}(XY\tau(X)|X)$$

$$= (\mathbb{E}(XX'\tau(X)))^{-1}\mathbb{E}X\tau(X)\mathbb{E}(Y|X)$$

$$= (\mathbb{E}(XX'\tau(X)))^{-1}\mathbb{E}(X\tau(X)X')\beta$$

$$= \beta.$$

Problem 4. The conditional PDF of Y given X is

$$f_{Y|X}(y|x) = \frac{y+x}{1/2+x},$$

for 0 < y < 1. Find E[Y|X = x].

Solution.

$$E[Y|X = x] = \int_0^1 \frac{y(y+x)}{1/2 + x} dy = \frac{2+3x}{3+6x}.$$

Problem 5. For any given two random variables X and Y, we define

$$\operatorname{Var}\left[Y\mid X\right] = \operatorname{E}\left[\left(Y - \operatorname{E}\left[Y\mid X\right]\right)^2\mid X\right].$$

Suppose that $E[Y \mid X] = 1/4$ and $E[Y^2 \mid X] = 1/8$. Then show that for any function g, $Var[Y \mid g(X)] = 1/16$. Use the following facts: for any function g, $E[E[Y \mid g(X)] \mid X] = E[Y \mid g(X)]$ and $E[E[Y \mid X] \mid g(X)] = E[Y \mid g(X)]$.

Solution. By using the fact that $E[Y \mid g(X)] = E[E[Y \mid X] \mid g(X)]$,

$$\begin{aligned} \operatorname{Var}\left[Y \mid g\left(X\right)\right] &= & \operatorname{E}\left[\left(Y - \operatorname{E}\left[Y \mid g\left(X\right)\right]\right)^{2} \mid g\left(X\right)\right] \\ &= & \operatorname{E}\left[\left(Y - \operatorname{E}\left[\operatorname{E}\left[Y \mid X\right] \mid g\left(X\right)\right]\right)^{2} \mid g\left(X\right)\right] \\ &= & \operatorname{E}\left[\left(Y - \frac{1}{4}\right)^{2} \mid g\left(X\right)\right] \\ &= & \operatorname{E}\left[Y^{2} \mid g\left(X\right)\right] - \frac{1}{2}\operatorname{E}\left[Y \mid g\left(X\right)\right] + \operatorname{E}\left[\frac{1}{16} \mid g\left(X\right)\right] \\ &= & \operatorname{E}\left[\operatorname{E}\left[Y^{2} \mid X\right] \mid g\left(X\right)\right] - \frac{1}{2}\operatorname{E}\left[\operatorname{E}\left[Y \mid X\right] \mid g\left(X\right)\right] + \frac{1}{16} \\ &= & \operatorname{E}\left[\frac{1}{8} \mid g\left(X\right)\right] - \frac{1}{2}\operatorname{E}\left[\frac{1}{4} \mid g\left(X\right)\right] + \frac{1}{16} \\ &= & \frac{1}{8} - \frac{1}{8} + \frac{1}{16} \\ &= & \frac{1}{16}. \end{aligned}$$

Problem 6. Let X be the matrix collecting all the n observations on the k regressors:

$$m{X} = \left[egin{array}{cccc} X_{1,1} & X_{1,2} & \cdots & X_{1,k} \ X_{2,1} & X_{2,2} & \cdots & X_{2,k} \ dots & dots & \ddots & dots \ X_{n,1} & X_{n,k} & \cdots & X_{n,k} \end{array}
ight]_{n imes k}.$$

Assume n > k and X is of full rank. Let A be a $k \times k$ singular matrix. Show that the columns of XA are linearly dependent and $S(XA) \subset S(X)$, where

$$S(X) = \{z \in \mathbb{R}^n : z = Xb, b = (b_1, b_2, \dots, b_k)' \in \mathbb{R}^k \}.$$

Solution. Since A is a $k \times k$ singular matrix, there is at least one k-vector b such that Ab = 0, and the columns of A must be linearly dependent: let a_j denotes the j-th column of A; we have $0 = Ab = [a_1 \ldots a_k]b = b_1a_1 + \ldots + b_ka_k$. Next, the j-th column of XA is given by Xa_j , and $XAb = b_1Xa_1 + \ldots + b_kXa_k$. On the other hand, XAb = 0 since Ab = 0. Therefore, there is a k-vector b such that:

$$b_1 X a_1 + \ldots + b_k X a_k = 0.$$

It follows that the columns of XA are linearly dependent.

To show the second claim, suppose that $y \in \mathcal{S}(XA)$. Then there is $b \in \mathbb{R}^k$ such that y = XAb. Define c = Ab, and note that it is a k-vector. Hence, y = Xc, where $c \in \mathbb{R}^k$, and therefore, $y \in \mathcal{S}(X)$ by the definition of $\mathcal{S}(X)$. We have shown that any $y \in \mathcal{S}(XA)$ is also in $\mathcal{S}(X)$. Hence, $\mathcal{S}(XA) \subset \mathcal{S}(X)$.

Problem 7. Partition the matrix of regressors X as follows:

$$X = [X_1 \ X_2].$$

Denote $P_1 = X_1 (X_1'X_1)^{-1} X_1'$ and $P_X = X (X'X)^{-1} X'$. M_1 and M_X are defined analogously: $M_1 = I_n - P_1$ and $M_X = I_n - P_X$. Prove:

$$P_1 P_X = P_X P_1 = P_1 \tag{1}$$

and

$$M_1 M_X = M_X M_1 = M_X. \tag{2}$$

Solution. Since $P_X X_1 = X_1$,

$$P_X P_1 = P_X X_1 (X_1' X_1)^{-1} X_1' = X_1 (X_1' X_1)^{-1} X_1' = P_1.$$

Transpose:

$$P_1 = P_1' = (P_X P_1)' = P_1' P_X' = P_1 P_X.$$
(3)

Then,

$$M_X M_1 = (I_n - P_X)(I_n - P_1) = I_n - P_1 - P_X + P_X P_1 = I_n - P_X = M_X.$$

 $\boldsymbol{M}_1\boldsymbol{M}_{\boldsymbol{X}}=\boldsymbol{M}_{\boldsymbol{X}}$ follows from steps similar to (3).

Problem 8. Use (1) to show that $P_X - P_1$ is symmetric and idempotent. Show further that $P_X - P_1 = P_{M_1X_2}$ by showing that for any $z \in \mathcal{S}(M_1X_2)$, $(P_X - P_1)z = z$ and for any $y \in \mathcal{S}^{\perp}(M_1X_2)$, $(P_X - P_1)y = 0$, where

$$\mathcal{S}^{\perp}(M_1X_2) = \{ z \in \mathbb{R}^n : z'M_1X_2 = 0 \}.$$

Solution. We have to show that $(P_X - P_1)$ is symmetric and idempotent. a) symmetric: since both P_X and P_1 are symmetric, $P_X - P_1$ is also symmetric. b) idempotent:

$$(P_X - P_1)(P_X - P_1) = P_X P_X - P_X P_1 - P_1 P_X + P_1 P_1 = P_X - P_1 - P_1 + P_1 = P_X - P_1.$$

Take any $z \in \mathcal{S}(M_1X_2)$, then z can be written as $z = M_1X_2\alpha$ for some vector α .

$$(P_X - P_1) M_1 X_2 \alpha = (-M_X + M_1) M_1 X_2 \alpha = -M_X X_2 \alpha + M_1 X_2 \alpha = M_1 X_2 \alpha = z,$$

where we used $M_X M_1 = M_X$ and $M_X X_2 = 0$.

Suppose $y'M_1X_2 = 0$. Then,

$$y'M_1X = y'M_1[X_1 \ X_2] = [y'M_1X_1 \ y'M_1X_2] = 0,$$

since $M_1X_1 = 0$. Transpose to get

$$0 = X'M_1y = X'(I_n - P_1)y \Longrightarrow X'y = X'P_1y.$$

Then, premultiply by $X(X'X)^{-1}$:

$$X\left(X'X
ight)^{-1}X'y=X\left(X'X
ight)^{-1}X'P_{1}y\Longrightarrow P_{X}y=P_{X}P_{1}y\Longrightarrow P_{X}y=P_{1}y\Longrightarrow (P_{X}-P_{1})y=0,$$

where we used (1).

Problem 9. In this question, use the hints to show " R^2 increases by adding more regressors". Suppose we have n observations on regressors $(Z_1, ..., Z_k)$ and $(W_1, ..., W_m)$ and dependent variable Y. Let Z be the $n \times k$ matrix collecting the observations on $(Z_1, ..., Z_k)$ and let W be the $n \times m$ matrix collecting the observations on $(W_1, ..., W_m)$. Let $X = [Z \ W]$. Assume that Z contains a column of ones so that $R^2 = 1 - RSS/TSS$ in both regressions.

Let

 $P_X = X (X'X)^{-1} X'$ projection matrix corresponding to the full regression, $P_Z = Z (Z'Z)^{-1} Z'$ projection matrix corresponding to the regression without W.

Define also

$$egin{aligned} oldsymbol{M}_{oldsymbol{X}} &= oldsymbol{I}_n - oldsymbol{P}_{oldsymbol{Z}}, \ oldsymbol{M}_{oldsymbol{Z}} &= oldsymbol{I}_n - oldsymbol{P}_{oldsymbol{Z}}. \end{aligned}$$

Define

$$\widehat{e}_{X} = M_{X}Y,$$
 $\widehat{e}_{Z} = M_{Z}Y.$

Show: $\widehat{e}_X'\widehat{e}_Z = \widehat{e}_X'\widehat{e}_X$ and therefore

$$0 < (\hat{e}_{X} - \hat{e}_{Z})'(\hat{e}_{X} - \hat{e}_{Z}) = \hat{e}'_{X}\hat{e}_{X} - \hat{e}'_{Z}\hat{e}_{Z}.$$

Hint: use (1) and (2). How can you argue that now we conclude that " R^2 increases by adding more regressors"?

Solution. Note that since Z is a part of X,

$$P_X Z = Z$$

and

$$egin{aligned} oldsymbol{P_XP_Z} &= oldsymbol{P_XZ} \left(oldsymbol{Z'Z}
ight)^{-1} oldsymbol{Z'} \ &= oldsymbol{Z} \left(oldsymbol{Z'Z}
ight)^{-1} oldsymbol{Z'} \ &= oldsymbol{P_Z}. \end{aligned}$$

Consequently,

$$egin{aligned} m{M_X} m{M_Z} &= \left(m{I_n} - m{P_X}
ight) \left(m{I_n} - m{P_Z}
ight) \ &= m{I_n} - m{P_X} - m{P_Z} + m{P_X} m{P_Z} \ &= m{I_n} - m{P_X} - m{P_Z} + m{P_Z} \ &= m{M_X}. \end{aligned}$$

Assume that Z contains a column of ones, so both short and long regressions have intercepts. Define

$$\widehat{e}_{X} = M_{X}Y,$$
 $\widehat{e}_{Z} = M_{Z}Y.$

Write:

$$0 \le (\hat{e}_{X} - \hat{e}_{Z})'(\hat{e}_{X} - \hat{e}_{Z})$$
$$= \hat{e}'_{X}\hat{e}_{X} + \hat{e}'_{Z}\hat{e}_{Z} - 2\hat{e}'_{X}\hat{e}_{Z}.$$

Next,

$$\widehat{e}'_{X}\widehat{e}_{Z} = Y'M_{X}M_{Z}Y$$

$$= Y'M_{X}Y$$

$$= \widehat{e}'_{X}\widehat{e}_{X}.$$

Hence,

$$\hat{e}'_{Z}\hat{e}_{Z} \geq \hat{e}'_{X}\hat{e}_{X}$$
.

Note that $\hat{e}'_{\mathbf{Z}}\hat{e}_{\mathbf{Z}}$ is the RSS of the short regression and $\hat{e}'_{\mathbf{X}}\hat{e}_{\mathbf{X}}$ is the RSS of the long regression and the two regressions have the same TSS. Since $R^2 = 1 - RSS/TSS$, comparing R^2 is equivalent to comparing RSS.

Problem 10. Let X be an $n \times k$ matrix (n > k) of full column rank. Partition X as $X = [X_1 \ X_2]$, where X_1 is $n \times k_1$ and X_2 is $n \times k_2$, $k_1 + k_2 = k$.

- 1. Show that X_2 has full column rank and therefore $(X_2'X_2)^{-1}$ exists.
- 2. Define $M_2 = I_n X_2 (X_2'X_2)^{-1} X_2'$ and $\widetilde{X}_1 = M_2 X_1$. Show that \widetilde{X}_1 has full column rank and therefore $(\widetilde{X}_1'\widetilde{X}_1)^{-1} = (X_1'M_2X_1)^{-1}$ exists.

Solution. (i)Proof by contradiction: Suppose X_2 does not have full rank, then there exist a vector λ such that $X_2\lambda = 0$. Then we have:

$$\left(\begin{array}{cc} \boldsymbol{X}_1 & \boldsymbol{X}_2 \end{array}\right) \left(\begin{array}{c} \boldsymbol{0} \\ \boldsymbol{\lambda} \end{array}\right) = 0, \, \text{where} \left(\begin{array}{c} \boldsymbol{0} \\ \boldsymbol{\lambda} \end{array}\right) \neq \boldsymbol{0}.$$

This is contradict to the given condition that X has full column rank. Then $X_2'X_2$ is a $k_2 \times k_2$ matrix, and rank $(X_2'X_2)$ = rank (X_2) = k_2 , which is full rank, then $(X_2'X_2)^{-1}$ exist.

(ii). Proof by contradiction: Suppose $\widetilde{\boldsymbol{X}}_1 = \boldsymbol{M}_2 \boldsymbol{X}_1$ does not have full column rank, then there exist a nonzero vector $\boldsymbol{\beta}$ such that $\widetilde{\boldsymbol{X}}_1 \boldsymbol{\beta} = \boldsymbol{0}$, i.e.

$$\begin{split} & \boldsymbol{M}_2 \boldsymbol{X}_1 \boldsymbol{\beta} = (\boldsymbol{I}_n - \boldsymbol{X}_2 (\boldsymbol{X}_2' \boldsymbol{X}_2)^{-1} \boldsymbol{X}_2') \boldsymbol{X}_1 \boldsymbol{\beta} = \boldsymbol{0} \\ \iff & \boldsymbol{X}_1 \boldsymbol{\beta} - \boldsymbol{X}_2 (\boldsymbol{X}_2' \boldsymbol{X}_2)^{-1} \boldsymbol{X}_2' \boldsymbol{X}_1 \boldsymbol{\beta} = \boldsymbol{0} \\ \iff & \left(\begin{array}{cc} \boldsymbol{X}_1 & \boldsymbol{X}_2 \end{array} \right) \left(\begin{array}{cc} \boldsymbol{\beta} \\ -(\boldsymbol{X}_2' \boldsymbol{X}_2)^{-1} \boldsymbol{X}_2' \boldsymbol{X}_1 \boldsymbol{\beta} \end{array} \right) = \boldsymbol{0} \end{split}$$

where $\begin{pmatrix} \boldsymbol{\beta} \\ -(\boldsymbol{X}_2'\boldsymbol{X}_2)^{-1}\boldsymbol{X}_2'\boldsymbol{X}_1\boldsymbol{\beta} \end{pmatrix} \neq \mathbf{0}$. This contradict to that \boldsymbol{X} has full rank. Therefore, $\widetilde{\boldsymbol{X}}_1$ has full column rank, and $(\widetilde{\boldsymbol{X}}_1'\widetilde{\boldsymbol{X}}_1)^{-1}$ exist.

A direct proof: We want to show that the $n \times k_1$ matrix M_2X_1 has full column rank, i.e. $\operatorname{rank}(M_2X_1) = k_1$. First, $\operatorname{rank}(M_2X_1) \le \min \{\operatorname{rank}(M_2), \operatorname{rank}(X_1)\}$. It can be shown that $\operatorname{rank}(M_2) = n - k_2$ and $\operatorname{rank}(X_1) = k_1$. Since $k_1 + k_2 \le n$, $k_1 \le n - k_2$, $\operatorname{rank}(M_2X_1) \le \operatorname{rank}(X_1) = k_1$. Second, observe that $\operatorname{rank}(M_2X_1) = \operatorname{rank}(M_2X)$ since $M_2X_2 = 0$. Then, by Sylvester-inequality, $\operatorname{rank}(M_2X_1) = \operatorname{rank}(M_2X) \ge \operatorname{rank}(M_2) + \operatorname{rank}(X) - n = n - k_2 + k - n = k_1$. Combining the previous two results, $\operatorname{rank}(M_2X) = k_1$.