
Homework 2

Problem 1. Let Y ∈ {1, 2, 3, 4, 5, 6} be the face number showing when a die is rolled. Define X as

X =

{
Y if Y is even,
0 if Y is odd.

Find the best linear predictor P (Y |X) and the conditional expectation E (Y |X). Calculate E
[
(Y − P (Y |X))

2
]

and E
[
(Y − E (Y |X))

2
]
.

Solution. First we derive the joint distribution of (X,Y ):

1

6
=Pr ((X,Y ) = (0, 1))

=Pr ((X,Y ) = (0, 3))

=Pr ((X,Y ) = (0, 5))

=Pr ((X,Y ) = (2, 2))

=Pr ((X,Y ) = (4, 4))

=Pr ((X,Y ) = (6, 6)) .

It is easy to derive that the best linear predictor is:

P (Y |X) = E (Y ) +
Cov (X,Y )

Var (X)
(X − E (X)) .

We have

E (Y ) =

6∑
i=1

i

6
=

7

2

E (X) =
1

2
× 0 +

1

6
(2 + 4 + 6) = 2

Var (X) =
1

2
× (0− 2)

2
+

1

6

[
(2− 2)

2
+ (4− 2)

2
+ (6− 2)

2
]
=

16

3

E (XY ) =
1

6

(
22 + 42 + 62

)
=

28

3

Cov (X,Y ) =
28

3
− 2× 28

3
=

7

3
.

So
P (Y |X) =

21

8
+

7

16
X.

The conditional mean is:

E (Y |X) =

{
X if X = 2, 4, 6
1
3 (1 + 3 + 5) if X = 0.

Calculate:

E
(
(Y − P (Y |X))

2
)
=
1

6

[(
1− 21

8

)2

+

(
3− 21

8

)2

+

(
5− 21

8

)2

+

(
2−

(
21

8
+

7

16
× 2

))2

1



+

(
4−

(
21

8
+

7

16
× 4

))2

+

(
6−

(
21

8
+

7

16
× 6

))2
]

=1.896

and

E
[
(Y − E (Y |X))

2
]

=
1

6

[
(1− 3)

2
+ (3− 3)

2
+ (5− 3)

2
]
= 1.333.

Problem 2. Suppose that

Y =X ′β + e

E (e|X) =0

E
(
e2|X

)
=σ2 (X) .

Consider two approximations to the conditional variance σ2 (X):

γ1 minimizes E
(
σ2 (X)−X ′γ

)2
and

γ2 minimizes E
(
e2 −X ′γ

)2
.

Show: γ1 = γ2.

Solution. By law of iterated expectation,

γ2 =
(
E
(
XX ′

))−1 E (Xe2
)

=
(
E
(
XX ′

))−1 E (XE
(
e2|X

))
=

(
E
(
XX ′

))−1 E (Xσ2 (X)
)

= γ1.

Problem 3. The Mean Trimmed Squared Error (MTSE) is defined by

T (θ) = E
((
Y −X ′θ

)2
τ (X)

)
,

where τ (X) is a known, scalar-valued, non-negative, bounded, function.

1. Give an explicit formula for the value of θ which minimizes T (θ).

2. Define e = Y −X ′θ, where θ is the minimizer defined above. Show: E (Xτ (X) e) = 0.

3. Under what condition (other than τ (X) = 1) will this minimizer equal the Best Linear Predictor?

Solution. Part (1). By expanding the square

T (θ) = E
((
Y −X ′θ

)2
τ (X)

)
= E

(
Y 2τ (X)

)
− 2E

(
YX ′τ (X)

)
θ + θ′E

(
XX ′τ (X)

)
θ.

Differentiate:
∂

∂θ
T (θ) = −2E (XY τ (X)) + 2E

(
XX ′τ (X)

)
θ.

Setting it equal to zero and solving for θ:

θ =
(
E
(
XX ′τ (X)

))−1 E (XY τ (X)) .
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Part (2). Since e = Y −X ′θ,

E (Xeτ (X)) = E (XY τ (X))− E
(
XX ′τ (X)

)
θ

= E (XY τ (X))− E
(
XX ′τ (X)

) (
E
(
XX ′τ (X)

))−1 E (XY τ (X))

= 0.

Part (3). If the conditional mean is linear: E (Y |X) =X ′β then by the law of iterated expectation,

θ =
(
E
(
XX ′τ (X)

))−1 E (XY τ (X))

=
(
E
(
XX ′τ (X)

))−1 EE (XY τ (X) |X)

=
(
E
(
XX ′τ (X)

))−1 EXτ (X)E (Y |X)

=
(
E
(
XX ′τ (X)

))−1 E (Xτ (X)X ′
)
β

= β.

Problem 4. The conditional PDF of Y given X is

fY |X (y|x) = y + x
1/2 + x

,

for 0 < y < 1. Find E [Y |X = x].

Solution.

E [Y |X = x] =

∫ 1

0

y (y + x)
1/2 + x

dy =
2 + 3x

3 + 6x
.

Problem 5. For any given two random variables X and Y , we define

Var [Y | X] = E
[
(Y − E [Y | X])

2 | X
]
.

Suppose that E [Y | X] = 1/4 and E
[
Y 2 | X

]
= 1/8. Then show that for any function g, Var [Y | g (X)] =

1/16. Use the following facts: for any function g, E [E [Y | g (X)] | X] = E [Y | g (X)] and E [E [Y | X] | g (X)] =
E [Y | g (X)].

Solution. By using the fact that E [Y | g (X)] = E [E [Y | X] | g (X)],

Var [Y | g (X)] = E
[
(Y − E [Y | g (X)])

2 | g (X)
]

= E
[
(Y − E [E [Y | X] | g (X)])

2 | g (X)
]

= E

[(
Y − 1

4

)2

| g (X)

]

= E
[
Y 2 | g (X)

]
− 1

2
E [Y | g (X)] + E

[
1

16
| g (X)

]
= E

[
E
[
Y 2 | X

]
| g (X)

]
− 1

2
E [E [Y | X] | g (X)] +

1

16

= E

[
1

8
| g (X)

]
− 1

2
E

[
1

4
| g (X)

]
+

1

16

=
1

8
− 1

8
+

1

16

=
1

16
.
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Problem 6. Let X be the matrix collecting all the n observations on the k regressors:

X =


X1,1 X1,2 · · · X1,k

X2,1 X2,2 · · · X2,k

...
...

. . .
...

Xn,1 Xn,k · · · Xn,k


n×k

.

Assume n > k and X is of full rank. Let A be a k × k singular matrix. Show that the columns of XA are
linearly dependent and S (XA) ⊂ S (X), where

S(X) =
{
z ∈ Rn : z =Xb, b = (b1, b2, . . . , bk)

′ ∈ Rk
}
.

Solution. Since A is a k × k singular matrix, there is at least one k-vector b such that Ab = 0, and
the columns of A must be linearly dependent: let aj denotes the j-th column of A; we have 0 = Ab =
[ a1 . . . ak ]b = b1a1 + . . . + bkak. Next, the j-th column of XA is given by Xaj , and XAb =
b1Xa1 + . . . + bkXak. On the other hand, XAb = 0 since Ab = 0. Therefore, there is a k-vector b such
that:

b1Xa1 + . . .+ bkXak = 0.

It follows that the columns of XA are linearly dependent.

To show the second claim, suppose that y ∈ S(XA). Then there is b ∈ Rk such that y =XAb. Define
c = Ab, and note that it is a k-vector. Hence, y = Xc, where c ∈ Rk, and therefore, y ∈ S(X) by the
definition of S(X). We have shown that any y ∈ S(XA) is also in S(X). Hence, S(XA) ⊂ S(X).

Problem 7. Partition the matrix of regressors X as follows:

X = [X1 X2] .

Denote P 1 = X1

(
X ′1X1

)−1
X ′1 and PX = X

(
X ′X

)−1
X ′. M1 and MX are defined analogously:

M1 = In − P 1 and MX = In − PX . Prove:

P 1PX = PXP 1 = P 1 (1)

and
M1MX =MXM1 =MX . (2)

Solution. Since PXX1 =X1,

PXP 1 = PXX1

(
X ′1X1

)−1
X ′1 =X1

(
X ′1X1

)−1
X ′1 = P 1.

Transpose:
P 1 = P ′1 = (PXP 1)

′
= P ′1P

′
X = P 1PX . (3)

Then,
MXM1 = (In − PX) (In − P 1) = In − P 1 − PX + PXP 1 = In − PX =MX .

M1MX =MX follows from steps similar to (3).

Problem 8. Use (1) to show that PX − P 1 is symmetric and idempotent. Show further that PX −
P 1 = PM1X2

by showing that for any z ∈ S (M1X2), (PX − P 1) z = z and for any y ∈ S⊥ (M1X2),
(PX − P 1)y = 0, where

S⊥(M1X2) = {z ∈ Rn : z′M1X2 = 0} .
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Solution. We have to show that (PX − P 1) is symmetric and idempotent. a) symmetric: since both PX

and P 1 are symmetric, PX − P 1 is also symmetric. b) idempotent:

(PX − P 1)(PX − P 1) = PXPX − PXP 1 − P 1PX + P 1P 1 = PX − P 1 − P 1 + P 1 = PX − P 1.

Take any z ∈ S (M1X2), then z can be written as z =M1X2α for some vector α.

(PX − P 1)M1X2α = (−MX +M1)M1X2α = −MXX2α+M1X2α =M1X2α = z,

where we used MXM1 =MX and MXX2 = 0.
Suppose y′M1X2 = 0. Then,

y′M1X = y′M1 [X1 X2] = [y′M1X1 y
′M1X2] = 0,

since M1X1 = 0. Transpose to get

0 =X ′M1y =X ′ (In − P 1)y =⇒X ′y =X ′P 1y.

Then, premultiply by X
(
X ′X

)−1:
X
(
X ′X

)−1
X ′y =X

(
X ′X

)−1
X ′P 1y =⇒ PXy = PXP 1y =⇒ PXy = P 1y =⇒ (PX − P 1)y = 0,

where we used (1).

Problem 9. In this question, use the hints to show “R2 increases by adding more regressors”. Suppose we
have n observations on regressors (Z1, ..., Zk) and (W1, ...,Wm) and dependent variable Y . Let Z be the n×k
matrix collecting the observations on (Z1, ..., Zk) and letW be the n×m matrix collecting the observations
on (W1, ...,Wm). Let X = [Z W ] . Assume that Z contains a column of ones so that R2 = 1−RSS/TSS
in both regressions.

Let

PX =X
(
X ′X

)−1
X ′ projection matrix corresponding to the full regression,

PZ = Z
(
Z ′Z

)−1
Z ′ projection matrix corresponding to the regression without W .

Define also

MX = In − PX ,

MZ = In − PZ .

Define

êX =MXY ,

êZ =MZY .

Show: ê′X êZ = ê′X êX and therefore

0 ≤ (êX − êZ)′ (êX − êZ) = ê′X êX − ê
′
Z êZ .

Hint: use (1) and (2). How can you argue that now we conclude that “R2 increases by adding more
regressors”?

Solution. Note that since Z is a part of X,

PXZ = Z,
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and

PXPZ = PXZ
(
Z ′Z

)−1
Z ′

= Z
(
Z ′Z

)−1
Z ′

= PZ .

Consequently,

MXMZ = (In − PX) (In − PZ)

= In − PX − PZ + PXPZ

= In − PX − PZ + PZ

=MX .

Assume that Z contains a column of ones, so both short and long regressions have intercepts. Define

êX =MXY ,

êZ =MZY .

Write:

0 ≤ (êX − êZ)′ (êX − êZ)
= ê′X êX + ê′Z êZ − 2ê′X êZ .

Next,

ê′X êZ = Y ′MXMZY

= Y ′MXY

= ê′X êX .

Hence,
ê′Z êZ ≥ ê

′
X êX .

Note that ê′Z êZ is the RSS of the short regression and ê′X êX is the RSS of the long regression and the two
regressions have the same TSS. Since R2 = 1−RSS/TSS, comparing R2 is equivalent to comparing RSS.

Problem 10. Let X be an n × k matrix (n > k) of full column rank. Partition X as X = [ X1 X2 ],
where X1 is n× k1 and X2 is n× k2, k1 + k2 = k.

1. Show that X2 has full column rank and therefore (X ′2X2)
−1 exists.

2. Define M2 = In −X2

(
X ′2X2

)−1
X ′2 and X̃1 = M2X1. Show that X̃1 has full column rank and

therefore
(
X̃
′
1X̃1

)−1
=
(
X ′1M2X1

)−1 exists.

Solution. (i)Proof by contradiction: Suppose X2 does not have full rank, then there exist a vector λ such
that X2λ = 0. Then we have:

(
X1 X2

)( 0
λ

)
= 0, where

(
0
λ

)
6= 0.

This is contradict to the given condition that X has full column rank. Then X ′2X2 is a k2× k2 matrix, and
rank(X ′2X2)= rank (X2) = k2, which is full rank, then (X ′2X2)

−1 exist.
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(ii). Proof by contradiction: Suppose X̃1 = M2X1 does not have full column rank, then there exist a
nonzero vector β such that X̃1β = 0, i.e.

M2X1β = (In −X2(X
′
2X2)

−1X ′2)X1β = 0

⇐⇒ X1β −X2(X
′
2X2)

−1X ′2X1β = 0

⇐⇒
(
X1 X2

)( β
−(X ′2X2)

−1X ′2X1β

)
= 0

where
(

β
−(X ′2X2)

−1X ′2X1β

)
6= 0. This contradict to that X has full rank. Therefore, X̃1 has full

column rank, and (X̃
′
1X̃1)

−1 exist.
A direct proof: We want to show that the n×k1 matrixM2X1 has full column rank, i.e. rank(M2X1) =

k1. First, rank(M2X1) ≤ min {rank(M2), rank(X1)} . It can be shown that rank(M2) = n − k2 and
rank(X1) = k1. Since k1 + k2 ≤ n, k1 ≤ n − k2, rank(M2X1) ≤ rank(X1) = k1. Second, observe
that rank(M2X1) = rank(M2X) since M2X2 = 0. Then, by Sylvester-inequality, rank(M2X1) =
rank(M2X) ≥ rank(M2) + rank(X) − n = n − k2 + k − n = k1. Combining the previous two results,
rank(M2X) = k1.
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