Homework 2

Problem 1. Let Y € {1,2,3,4,5,6} be the face number showing when a die is rolled. Define X as

X Y ifY is even,
0 if Y is odd.

Find the best linear predictor P (Y| X) and the conditional expectation E (Y| X). Calculate E |(Y — P (Y|X))?
and E [(Y — E (Y]X))?].

Solution. First we derive the joint distribution of (X,Y):

é —Pr((X,Y) = (0, 1))
=Pr ((X, Y) = (0, 3))
—Pr((X,Y) = (0,5))
—Pr((X,Y) = (2,2))
=Pr ((X,Y) = (4,4))
—Pr((X,Y) = (6,6)).

Cov (X,Y)
YIX)=E(Y X -E(X
P(VIX) = E(Y) + —go s (X B (X))
We have
6 .
7 7
E(Y) = 2=
(Y) ;6 5
1 1
EX) = §XO+5(2+4+6):2
1 1 16
Var(X) = 5x(0-27+5[2-2°+ (-2 +(6-2°] =3
2 6 3
E(XY) = é(22+42+62):?
2 2
Cov(X,Y) = ;—2x§:g.
So 21 7
YIX)=—+ —X
PY1X) 8 +16
The conditional mean is:
X if X =2,4,6
E(Y[X) =14, P
1(1+3+5) if X=0.

Calculate:



(@) (o (o))

=1.896
and
21 1 2 2 2] _
E [(YAE(Y|X)) } - 3 [(1—3) +(3-32+(5-3) ] — 1.333.
Problem 2. Suppose that
Y=X'B+e
E(e|X) =0

E (e*|X) =0” (X).
Consider two approximations to the conditional variance o2 (X):
7, minimizes E (02 (X) - )(/'y)2

and )
7, minimizes E (62 — X"y) .

Show: v, = ,.

Solution. By law of iterated expectation,
Yo = (E

E(XX')'E(XE (¢} X))

E(XX') ' E(Xo? (X))

Problem 3. The Mean Trimmed Squared Error (MTSE) is defined by
T(9)=E ((Y = (X)) :

where 7 (X)) is a known, scalar-valued, non-negative, bounded, function.
1. Give an explicit formula for the value of @ which minimizes T ().
2. Define e = Y — X', where 0 is the minimizer defined above. Show: E (X7 (X)e) = 0.
3. Under what condition (other than 7 (X) = 1) will this minimizer equal the Best Linear Predictor?

Solution. Part (1). By expanding the square

T(9) E ((y ~X'0)’ 7 (X))

E(Y?r (X)) -2E(YX'7T(X))0+0E(XX'7T(X))6.

Differentiate: 5
%T(O) = 2E(XY7(X))+2E (XX/T (X)) 0.

Setting it equal to zero and solving for 6:

0= (E(XX'7(X))) 'E(XY7(X)).



Part (2). Sincee =Y — X6,
E(Xer (X)) = E(XY7(X))-E(XX'7(X))6
— E(XY7(X))-E(XX'7(X)) (E(XX'7 (X)) ' E(XYr(X))
= 0
Part (3). If the conditional mean is linear: E (Y|X) = X’ then by the law of iterated expectation,

—1

0 = (E(XX'7(X)) E(XYr (X))
- (B(XX'T(X)) EE(XY7(X)|X)
- (BE(XX'r(X))EX7(X)E(Y|X)
(E(XX'm (X)) E(Xr(X)X')83
= B.
Problem 4. The conditional PDF of Y given X is
fY\X (ylz) = 11;2%,

for 0 <y <1 Find EY|X = z].

Solution.
Ly (y+2) 243z

EY|X =z]= dy = .
] ] /0 o+ YT 3% 6

Problem 5. For any given two random variables X and Y, we define

Var[Y|X]:E[(Y—E[Y|X])2|X}.

Suppose that E[Y | X] = 1/4 and E [Y? | X| = 1/8. Then show that for any function g, Var[Y | g (X)] =
1/16. Use the following facts: for any function g, E[E[Y | ¢ (X)] | X]=E[Y | ¢(X)]andE[E[Y | X] | g (X)] =
E[Y [g(X)].

Solution. By using the fact that E[Y | ¢ (X)]|=E[E[Y | X] | g (X)],
Var[Y [ g(X)] = E|[(V —E[|g(X)])*|g(X)]

= B|(Y-EEY | X]|g(X)])*|g(X)]

(Yi>2|g<x>

— B[V g(0)] - 3B |90+ B |5 |9 (0)

= B

= BE[?|X]g(X)] - SEEY | X]]g(0)]+
= B[glo00| - 3E|3 19| + 5
111

- 88 16

1

- L



Problem 6. Let X be the matrix collecting all the n observations on the k regressors:

X1 X2 - Xuig

Xo1 Xoo -+ Xop
X = ) } . .

Xn,l Xn,k e Xn,k

nxk

Assume n > k and X is of full rank. Let A be a k X k singular matrix. Show that the columns of X A are
linearly dependent and S (X A) C S (X), where

S(X)={z€R":2=Xb, b= (by,bo,...,b,) € R}.

Solution. Since A is a k x k singular matrix, there is at least one k-vector b such that Ab = 0, and
the columns of A must be linearly dependent: let a; denotes the j-th column of A; we have 0 = Ab =
[a1 ... ap ]b = bia; + ...+ brar. Next, the j-th column of XA is given by Xa,;, and XAb =
b1 Xaq, + ...+ bpXag. On the other hand, X Ab = 0 since Ab = 0. Therefore, there is a k-vector b such
that:

b1 Xay+...+bXa =0.

It follows that the columns of X A are linearly dependent.

To show the second claim, suppose that y € S(X A). Then there is b € R¥ such that y = X Ab. Define
¢ = Ab, and note that it is a k-vector. Hence, y = Xe, where ¢ € R*, and therefore, y € S(X) by the
definition of S(X'). We have shown that any y € S(X A) is also in S(X). Hence, S(X A) C S(X).

Problem 7. Partition the matrix of regressors X as follows:
X =[X; X,].

Denote P; = X (X'le)f1 X}| and Px = X(X’X)f1 X'. M, and Mx are defined analogously:
M,=1,—Pyand Mx =1, — Px. Prove:

PiPx =PxP, =P, (1)
and
M Mx=MxM; =Mx. (2)
Solution. Since Px X = X1,
PxP, = PxX, (XX,) ' X=X, (X},X,)"' X, = P,.
Transpose:
P, =P, =(PxP,) = P\Py = P,Px. (3)

Then,
MxM,=I,-Px)I,—P1)=1,—-P1—-Px+PxP,=1,—Px=Mx.

MM x = M x follows from steps similar to (3).
Problem 8. Use (1) to show that Px — P; is symmetric and idempotent. Show further that Px —
P, = Pj;, x, by showing that for any z € S (M1X5), (Px — P1)z = z and for any y € S+ (M X3),

(Px — P1)y = 0, where
SL(Ml_XQ) = {Z eR™: Z/MlXQ = 0}



Solution. We have to show that (Px — Pp) is symmetric and idempotent. a) symmetric: since both Px
and P; are symmetric, Px — P; is also symmetric. b) idempotent:

(Px — P,)(Px —P,)=PxPx -PxP,-P,Px+P P =Px—-P,—P, +P, =Px—P,.
Take any z € S (M1X5), then z can be written as z = M; X« for some vector c.
(PX 7P1)M1X20é = (7MX +M1)M1X2a = fMXX2a+M1X2a = M1X2a =z,

where we used M x M1 = M x and M x X5 = 0.
Suppose y' M1 X5 = 0. Then,

YM X =y' M, [X; Xo]=[yM X, yM,X5]=0,
since M1 X1 = 0. Transpose to get
0=X'My=X'(I,-P))y—=— X'y=X'Pyy.
Then, premultiply by X (X’X)fl:
X (X'X)'X'y=X (X'X)"' X'Piy = Pxy=PxPiy= Pxy=Piy= (Px - P))y=0,
where we used (1).

Problem 9. In this question, use the hints to show “R? increases by adding more regressors”. Suppose we
have n observations on regressors (Z71, ..., Zx) and (Wi, ..., W,,,) and dependent variable Y. Let Z be the nx k
matrix collecting the observations on (Z1, ..., Zx) and let W be the n x m matrix collecting the observations
on (Wy,...,W,,). Let X =[Z W]. Assume that Z contains a column of ones so that R? =1 — RSS/TSS
in both regressions.

Let
Px =X (X/X)_1 X' projection matrix corresponding to the full regression,
Pz =2 (Z'Z)f1 Z' projection matrix corresponding to the regression without W.
Define also
Mx =1, - Px,
Mz=1,—Pgz.
Define
ex =MxY,
ez =MzY.

~ o~ ~ o~
Show: exez = exex and therefore
~ ~ !y~ ~ o~ o~ ~ o~
0<(ex —ez) (ex —€z)=€exex —€zez.

Hint: use (1) and (2). How can you argue that now we conclude that “R? increases by adding more
regressors’?

Solution. Note that since Z is a part of X,

PxZ = Z,



and
PxPy;=PxZ(2'Z) "' Z'
AV AN A
=Py.
Consequently,

MxMz=I,—Px)(I,—Pgz)
:In7PX7PZ+PXPZ
—I,-Px—Py+Py
— Mx.

Assume that Z contains a column of ones, so both short and long regressions have intercepts. Define

ex =MxY,
ez =MzY.
Write:
o~ ~ ! oy~ o~
0 S (eX — ez) (ex — ez)
~ o~ ~ ~ ~ o~
=exex +ezez —2exez.
Next,
~ o~
eXGZ:Y/MxMzY
=Y' MxY
~ o~
:eXeX.
Hence,

A~ o~ ~ o~
ezez > exex.
A~ o~

Note that €€ is the RSS of the short regression and €’y ex is the RSS of the long regression and the two
regressions have the same T'SS. Since R? = 1 — RSS/TSS, comparing R? is equivalent to comparing RSS.

Problem 10. Let X be an n x k matrix (n > k) of full column rank. Partition X as X =[ X; X, |,
where X1 isn x k1 and Xo is n X kg, k1 + ko = k.

1. Show that X5 has full column rank and therefore (X5X2)~! exists.
2. Define My =1, — X5 (X/2X2)_1X/2 and /)21 = M5X ;. Show that /)21 has full column rank and

—t —~ \ —1 _
therefore <X1X1> = (X’lMgXl) ! exists.

Solution. (i)Proof by contradiction: Suppose X5 does not have full rank, then there exist a vector A such
that XX = 0. Then we have:

(X, X2)<2\>—0,where<g>7€0‘

This is contradict to the given condition that X has full column rank. Then X ’2X o is a ko X ko matrix, and
rank(X 5 X 2)= rank (X ) = ko, which is full rank, then (X5X )~ ! exist.



(ii). Proof by contradiction: Suppose 3(/1 = M5 X does not have full column rank, then there exist a
nonzero vector 3 such that X3 =0, i.e.

M>X 18 = (I, — X2(X5X5)" ' X5)X18=0
= X0 X2(X,X,) 'X,X,8=0

g _
= (x0 X)) _prx,ixgxis ) 7

where ( —(XIQXQ)IG_1X/2X1,@ ) # 0. This contradict to that X has full rank. Therefore, X, has full
column rank, and (’)?113(/1)*1 exist.

A direct proof: We want to show that the n x k1 matrix M2 X ; has full column rank, i.e. rank(M,X;) =
ky. First, rank(M2X) < min{rank(M5),rank(X;)}. It can be shown that rank(Ms) = n — ks and
rank(X1) = ki Since k1 + k2 < n, k1 < n — ko, rank(M3X;) < rank(X;) = k;. Second, observe
that rank(M3X,) = rank(M,X) since MyXo = 0. Then, by Sylvester-inequality, rank(M,X,) =
rank(M3X) > rank(M3z) 4+ rank(X) —n = n — ks + k — n = k;. Combining the previous two results,
rank(MoX) = k.



