Homework 3

Problem 1. (a) Prove the "Squeeze Rule": If $0 \le X_n \le Y_n$ and $Y_n \to_p 0$, then $X_n \to_p 0$; (b) Prove: $X_n \to_p 0$ if and only if $|X_n| \to_p 0$.

Solution. (a) For any $\epsilon > 0$,

$$\Pr(Y_n \le \epsilon) \le \Pr(X_n \le \epsilon) \le 1.$$

Then.

$$\Pr(Y_n \le \epsilon) = \Pr(|Y_n - 0| \le \epsilon) \to 1 \Longrightarrow \Pr(X_n \le \epsilon) = \Pr(|X_n - 0| \le \epsilon) \to 1.$$

(b) " \Longrightarrow part": by continuous mapping theorem, since the mapping $x \mapsto |x|$ is continuous. " \Longleftarrow part": straightforward.

Problem 2. Provide a counter example to show that $X_n \to_d X$ and $Y_n \to_d Y$ does not imply $X_n + Y_n \to_d X + Y$. Hint: Consider an iid random sample $X_1, ..., X_n$ with $\mathbb{E}X_1 = 0$ and $n^{1/2}\overline{X}_n$ and $-n^{1/2}\overline{X}_n$.

Solution. Let Z be a random variable such that $Z \sim N(0, \sigma^2)$, where $\sigma^2 = \text{Var}(X_1)$. Then by CLT,

$$n^{1/2}\overline{X}_n \to_d Z$$

and

$$-n^{1/2}\overline{X}_n = (-1) \times \left(n^{1/2}\overline{X}_n\right) \to_d (-1) \times Z \sim N\left(0,\sigma^2\right).$$

Therefore, it is also true that $-n^{1/2}\overline{X}_n \to_d Z \sim N(0, \sigma^2)$. Note

$$0 = \left(n^{1/2}\overline{X}_n\right) + \left(-n^{1/2}\overline{X}_n\right) \nrightarrow_d Z + Z \sim N\left(0, 4\sigma^2\right).$$

Problem 3. Let $\widehat{\boldsymbol{\theta}}_n = \left(\widehat{\theta}_{n,1}, \dots, \widehat{\theta}_{n,k}\right)'$ be an estimator of the k-vector of parameters $\boldsymbol{\theta} = (\theta_1, \dots, \theta_k)'$. Suppose that $\widehat{\boldsymbol{\theta}}_n \to_p \boldsymbol{\theta}$, and $n^{1/2} \left(\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}\right) \to_d W \sim N(0, \boldsymbol{\Sigma})$, where $\boldsymbol{\Sigma}$ is a positive definite $k \times k$ matrix. Use the delta method or CMT to find the (non-degenerate, i.e., not a constant) asymptotic distributions of the following quantities after a suitable normalization. "Suitable normalization" means subtraction of a constant and/or multiplication by a constant (could be dependent on n).

- 1. $n^{1/2} \left(\widehat{\boldsymbol{\theta}}_n \boldsymbol{\theta} \right)' \boldsymbol{c}$ where $\boldsymbol{c} \in \mathbb{R}^k$ is a vector of constants.
- $2. \ \widehat{\theta}_{n,1}.$
- 3. $n\left(\widehat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}\right)'\left(\widehat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}\right)$.
- 4. $\widehat{\theta}_{n,1} \widehat{\theta}_{n,2}$.
- 5. $\widehat{\theta}_{n,1}\widehat{\theta}_{n,2}/\widehat{\theta}_{n,3}$, provided that $\theta_3 \neq 0$.

Solution.

1. Define $X_n = n^{1/2} \left(\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta} \right)$ and $h(X_n) = X'_n \boldsymbol{c}$. By the Continuous Mapping Theorem we have

$$n^{1/2} \left(\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta} \right)' \boldsymbol{c} = h(\boldsymbol{X}_n) \rightarrow_d h(\boldsymbol{W}) = \boldsymbol{W}' \boldsymbol{c}$$

By the property of normal distribution we have

$$n^{1/2} \left(\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta} \right)' \boldsymbol{c} \rightarrow_d \boldsymbol{W}' \boldsymbol{c} \sim N(\boldsymbol{0}, \boldsymbol{c}' \boldsymbol{\Sigma} \boldsymbol{c}).$$

2. Set $\mathbf{c} = (1, 0, ..., 0)'$. Then, it follows from Part (i) that

$$n^{1/2}(\widehat{\theta}_{n,1} - \theta_1) \to_d N(0, \sigma_{11}^2),$$

where σ_{11}^2 is the first diagonal element of Σ .

3. Since $n^{1/2}\left(\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}\right) \to_d \boldsymbol{W}$, by the Continuous Mapping Theorem,

$$n(\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta})'(\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}) = \left[n^{1/2} \left(\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}\right)\right]' \left[n^{1/2} \left(\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}\right)\right] \to_d \boldsymbol{W}' \boldsymbol{W}.$$

4. Set c = (1, -1, 0, ..., 0)'. It follows from Part (i) that

$$n^{1/2}(\widehat{\theta}_{n,1} - \widehat{\theta}_{n,2} - \theta_1 + \theta_2) \to_d N(0, \sigma_{11}^2 - 2\sigma_{12} + \sigma_{22}^2),$$

where σ_{11}^2 and σ_{22}^2 are the first and second diagonal element of Σ , and σ_{12} is the element on the first row and second column of Σ .

5. Put $h(\boldsymbol{\theta}) = \frac{\theta_1 \theta_2}{\theta_3}$, apply the Delta method

$$n^{1/2}(\frac{\widehat{\theta}_{n,1}\widehat{\theta}_{n,2}}{\widehat{\theta}_{n,3}} - \frac{\theta_1\theta_2}{\theta_3}) = n^{1/2}(h(\widehat{\boldsymbol{\theta}}_n) - h(\boldsymbol{\theta})) \to_d \frac{\partial h(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}'} \boldsymbol{W}$$

where

$$\frac{\partial h(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}'} = \left(\frac{\theta_2}{\theta_3}, \frac{\theta_1}{\theta_3}, \frac{-\theta_1\theta_2}{\theta_3^2}, 0, ..., 0\right)'.$$

Then by the property of Normal density

$$n^{1/2}(\frac{\widehat{\theta}_{n,1}\widehat{\theta}_{n,2}}{\widehat{\theta}_{n,3}} - \frac{\theta_1\theta_2}{\theta_3}) \to_d N(0, \frac{\partial h(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}'} \boldsymbol{\Sigma} \frac{\partial h(\boldsymbol{\theta})'}{\partial \boldsymbol{\theta}}).$$

Problem 4. Suppose that $\hat{\theta}_n \to_p \theta$ and $\hat{\beta}_n \to \beta$, where θ and β are two scalar parameters. Without relying on Slutsky's Theorem, show:

- 1. $c\hat{\theta}_n \to_p c\theta$, where c is a constant.
- 2. $\hat{\theta}_n \hat{\beta}_n \to_p \theta \beta$.

Solution. (i) Suppose $c \neq 0$. Then $\Pr\left(|c\hat{\theta}_n - c\theta| > \varepsilon\right) = \Pr\left(|\hat{\theta}_n - \theta| > \frac{\varepsilon}{|c|}\right) \to 0$ as $n \to \infty$. If c = 0, then $c\hat{\theta}_n = 0 \to_p c\theta = 0$.

(ii) First, note that $\hat{\theta}_n \hat{\beta}_n - \theta \beta = (\hat{\theta}_n - \theta + \theta)(\hat{\beta}_n - \beta + \beta) - \theta \beta = (\hat{\theta}_n - \theta)(\hat{\beta}_n - \beta) + (\hat{\theta}_n - \theta)\beta + (\hat{\theta}_n - \beta)\theta$. Then, $(\hat{\theta}_n - \theta)\beta + (\hat{\beta}_n - \beta)\theta \rightarrow_p 0$ by Part (i). Then, for any $\epsilon > 0$,

$$\Pr\left(\left|\left(\hat{\theta}_{n} - \theta\right)\left(\hat{\beta}_{n} - \beta\right)\right| > \varepsilon\right) \leq \Pr\left(\left|\hat{\theta}_{n} - \theta\right| > \sqrt{\varepsilon} \text{ or } \left|\hat{\beta}_{n} - \beta\right| > \sqrt{\varepsilon}\right) \\
\leq \Pr\left(\left|\hat{\theta}_{n} - \theta\right| > \sqrt{\varepsilon}\right) + \Pr\left(\left|\hat{\beta}_{n} - \beta\right| > \sqrt{\varepsilon}\right) \to 0 \text{ as } n \to \infty.$$

Thus, $\hat{\theta}_n \hat{\beta}_n - \theta \beta \rightarrow_p 0$.

Problem 5. Suppose that $\mathbb{E}\left(\hat{\theta}_n\right) \to \theta$ and $\operatorname{Var}(\hat{\theta}_n) \to 0$ as $n \to \infty$. Show that $\hat{\theta}_n \to_p \theta$.

Solution. $\hat{\theta}_n$ converges in probability to θ if for all $\varepsilon > 0$, $\Pr\left(\left|\hat{\theta}_n - \theta\right| \ge \varepsilon\right) \to 0$ as $n \to \infty$. First, decompose the Mean Squared Error (MSE) into

$$MSE\left(\hat{\theta}_{n}\right) = \mathbb{E}\left(\hat{\theta}_{n} - \theta\right)^{2} = \mathbb{E}\left(\hat{\theta}_{n} - \mathbb{E}\hat{\theta}_{n} + \mathbb{E}\hat{\theta}_{n} - \theta\right)^{2}$$

$$= \mathbb{E}\left(\hat{\theta}_{n} - \mathbb{E}\hat{\theta}_{n}\right)^{2} + \left(\mathbb{E}\hat{\theta}_{n} - \theta\right)^{2} + 2\mathbb{E}\left(\hat{\theta}_{n} - \mathbb{E}\hat{\theta}_{n}\right)\left(\mathbb{E}\hat{\theta}_{n} - \theta\right)$$

$$= \mathbb{E}\left(\hat{\theta}_{n} - \mathbb{E}\hat{\theta}_{n}\right)^{2} + \left(\mathbb{E}\hat{\theta}_{n} - \theta\right)^{2} = \operatorname{Var}\left(\hat{\theta}_{n}\right) + \operatorname{Bias}\left(\hat{\theta}_{n}\right)^{2},$$

where the last line follows by the fact that $\mathbb{E}\left(\hat{\theta}_n - \mathbb{E}\hat{\theta}_n\right) = 0$.

Then, using Markov's Inequality,

$$\Pr\left(\left|\hat{\theta}_n - \theta\right| \ge \varepsilon\right) \le \frac{\mathbb{E}\left|\hat{\theta}_n - \theta\right|^2}{\varepsilon^2} = \frac{\mathbb{E}\left(\hat{\theta}_n - \theta\right)^2}{\varepsilon^2} = \frac{\operatorname{Var}\left(\hat{\theta}_n\right) + \operatorname{Bias}\left(\hat{\theta}_n\right)^2}{\varepsilon^2} \to 0 \text{ as } n \to \infty,$$

since by assumption, $\operatorname{Var}\left(\hat{\theta}_n\right) \to 0$ and $\mathbb{E}\hat{\theta}_n - \theta \to 0$ as $n \to \infty$.

Problem 6. Consider the linear model (with independently and identically distributed (i.i.d.) observations):

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + U_i$$

with $\mathbb{E}U_i = \mathbb{E}U_i X_{1,i} = \mathbb{E}U_i X_{2,i} = 0$. Suppose we know that $\beta_2 = \beta_1$ and conduct a constrained LS estimation of β_1 :

$$\min_{b_0,b_1} \sum_{i=1}^n (Y_i - b_0 - b_1 X_{1,i} - b_1 X_{2,i})^2.$$

- 1. Find the expression for the constrained LS estimator $(\widehat{\beta}_0, \widehat{\beta}_1)$ that solve the above minimization problem.
- 2. Assume that the restriction $\beta_2 = \beta_1$ is true. Derive the large-sample (asymptotic) distribution of $\widehat{\beta}_1$.

Solution. Denote $\overline{X}_1 = n^{-1} \sum_{i=1}^n X_{1,i}$ and $\overline{X}_2 = n^{-1} \sum_{i=1}^n X_{2,i}$. The constrained LS:

$$\widehat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{1,i} + X_{2,i} - \overline{X}_{1} - \overline{X}_{2}) Y_{i}}{\sum_{i=1}^{n} (X_{1,i} + X_{2,i} - \overline{X}_{1} - \overline{X}_{2})^{2}}.$$

And

$$\widehat{\beta}_0 = \overline{Y} - \widehat{\beta}_1 \left(\overline{X}_1 + \overline{X}_2 \right).$$

For (ii),

$$\widehat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{1,i} + X_{2,i} - \overline{X}_{1} - \overline{X}_{2}) Y_{i}}{\sum_{i=1}^{n} (X_{1,i} + X_{2,i} - \overline{X}_{1} - \overline{X}_{2})^{2}} \\
= \frac{\sum_{i=1}^{n} (X_{1,i} + X_{2,i} - \overline{X}_{1} - \overline{X}_{2}) (\beta_{0} + \beta_{1} X_{1,i} + \beta_{1} X_{2,i} + U_{i})}{\sum_{i=1}^{n} (X_{1,i} + X_{2,i} - \overline{X}_{1} - \overline{X}_{2})^{2}} \\
= \beta_{1} + \frac{\frac{1}{n} \sum_{i=1}^{n} (X_{1,i} + X_{2,i} - \overline{X}_{1} - \overline{X}_{2}) U_{i}}{\frac{1}{n} \sum_{i=1}^{n} (X_{1,i} + X_{2,i} - \overline{X}_{1} - \overline{X}_{2})^{2}}.$$

By WLLN and Continuous Mapping Theorem,

$$\frac{1}{n} \sum_{i=1}^{n} \left(X_{1,i} + X_{2,i} - \overline{X}_1 - \overline{X}_2 \right)^2 = \frac{1}{n} \sum_{i=1}^{n} \left(X_{1,i} + X_{2,i} \right)^2 - \left(\overline{X}_1 + \overline{X}_2 \right)^2$$

$$\rightarrow_p \operatorname{Var}(X_{1,i} + X_{2,i})$$
.

$$\frac{1}{n} \sum_{i=1}^{n} (X_{1,i} + X_{2,i} - \overline{X}_1 - \overline{X}_2) U_i = \frac{1}{n} \sum_{i=1}^{n} (X_{1,i} + X_{2,i} - \mathbb{E}(X_{1,i} + X_{2,i})) U_i \\
+ (\overline{X}_1 - \mathbb{E}(X_{1,i})) \frac{1}{n} \sum_{i=1}^{n} U_i + (\overline{X}_2 - \mathbb{E}(X_{2,i})) \frac{1}{n} \sum_{i=1}^{n} U_i.$$

Since $n^{-1/2} \sum_{i=1}^{n} U_i \to_d N\left(0, \mathbb{E}\left(U_i^2\right)\right)$, $\overline{X}_1 - \mathbb{E}\left(X_{1,i}\right) \to_p 0$ and $\overline{X}_2 - \mathbb{E}\left(X_{2,i}\right) \to_p 0$, by Slutsky's theorem,

$$(\overline{X}_1 - \mathbb{E}(X_{1,i})) \frac{1}{\sqrt{n}} \sum_{i=1}^n U_i \to_p 0$$

$$(\overline{X}_2 - \mathbb{E}(X_{2,i})) \frac{1}{\sqrt{n}} \sum_{i=1}^n U_i \to_p 0.$$

By CLT,

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left(X_{1,i} + X_{2,i} - \mathbb{E} \left(X_{1,i} + X_{2,i} \right) \right) U_i \to_d N \left(0, \mathbb{E} \left(U_i^2 \left(X_{1,i} + X_{2,i} - \mathbb{E} \left(X_{1,i} + X_{2,i} \right) \right)^2 \right) \right).$$

By Slutsky's theorem,

$$\sqrt{n} \left(\widehat{\beta}_{1} - \beta_{1} \right) = \frac{\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left(X_{1,i} + X_{2,i} - \overline{X}_{1} - \overline{X}_{2} \right) U_{i}}{\frac{1}{n} \sum_{i=1}^{n} \left(X_{1,i} + X_{2,i} - \overline{X}_{1} - \overline{X}_{2} \right)^{2}}
\rightarrow_{d} \operatorname{Var} \left(X_{1,i} + X_{2,i} \right)^{-1} N \left(0, \mathbb{E} \left(U_{i}^{2} \left(X_{1,i} + X_{2,i} - \mathbb{E} \left(X_{1,i} + X_{2,i} \right) \right)^{2} \right) \right).$$

Problem 7. Suppose we observe the i.i.d. random sample $\{(Y_i, X_i)\}_{i=1}^n$ with X_i being a scalar. Take the linear model

$$Y_i = X_i \beta + e_i$$
$$\mathbb{E}\left(e_i | X_i\right) = 0.$$

Consider the estimator

$$\widehat{\beta} = \frac{\sum_{i=1}^{n} X_i^3 Y_i}{\sum_{i=1}^{n} X_i^4}.$$

Find the asymptotic distribution of $\sqrt{n} (\widehat{\beta} - \beta)$.

Problem 8. Let $\{\theta_n : n \ge 1\}$ be a random sequence such that $\Pr(\theta_n = 0) = (n-1)/n$, and $\Pr(\theta_n = n^2) = 1/n$. Note that the only possible values for θ_n are zero and n^2 .

- 1. Show that $\lim_{n\to\infty} \mathbb{E}\theta_n = \infty$.
- 2. Does θ_n converge in probability to some limit? If yes, prove. If not, explain why.

Solution. (i)
$$\mathbb{E}\theta_n = 0 \cdot (n-1)/n + n^2 \cdot 1/n = n \to \infty$$
.
(ii) $\theta_n \to_p 0$, since for any $\epsilon > 0$, $\Pr\left(|\theta_n| > \epsilon\right) = \Pr\left(\theta_n = n^2\right) = 1/n \to 0$.