
Homework 3

Problem 1. Suppose we observe a random sample {(Yi, Di)}ni=1, where Yi is the dependent variable and Di

is a binary independent variable: for all i = 1, 2, ..., n, Di = 1 or Di = 0. Suppose we regress Yi on Di with
an intercept. Show: the LS estimate of the slope is equal to the difference between the sample averages of the
dependent variable of the two groups, observations with Di = 1 and observations with Di = 0. Hint: The
sample average of Y of observations with Di = 1 can be written as

∑n
i=1DiYi∑n
i=1Di

. What is the sample average
of Y of observations with Di = 0? Also note: Di = D2

i .

Solution. Denote D = n−1
∑n
i=1Di. The LS estimate is

β̂ =

∑n
i=1

(
Di −D

)
Yi∑n

i=1

(
Di −D

)2 =

∑
i=1

(
Di −D

)
Yi∑n

i=1D
2
i − nD

2 =

∑
i=1DiYi − nDY
nD − nD2 .

The sample average of Y of observations with Di = 0 is∑n
i=1 (1−Di)Yi∑n
i=1 (1−Di)

.

Then, ∑n
i=1DiYi∑n
i=1Di

−
∑n
i=1 (1−Di)Yi∑n
i=1 (1−Di)

=

∑n
i=1DiYi

nD
−
∑n
i=1 (1−Di)Yi

n− nD

=

(
n− nD

)∑n
i=1DiYi −

(
nD
)∑n

i=1 (1−Di)Yi

nD
(
n− nD

)
=

∑n
i=1DiYi −D

∑n
i=1DiYi − nDY +D

∑n
i=1DiYi

nD − nD2

= β̂.

Problem 2. Suppose that assumptions of the Classical Linear Regression model hold, i.e.

Y = Xβ + e, β ∈ Rk

E(e|X) = 0,

rank(X) = k,

however,
E(ee′|X) = Ω,

where Ω is an n× n, positive definite and symmetric matrix, but different from σ2In.

1. Derive the conditional variance (given X) of the LS estimator β̂ = (X ′X)−1X ′Y .

2. Derive the conditional variance (givenX) of the Generalized LS estimator β̃ = (X ′Ω−1X)−1X ′Ω−1Y .

3. Without relying on the Gauss-Markov Theorem, show that

Var(β̂ |X)−Var(β̃ |X) ≥ 0

(in the positive semidefinite sense). Hint: Show(
Var(β̃ |X)

)−1

−
(

Var(β̂ |X)
)−1

≥ 0

by showing that the expression on the left-hand side depends on a symmetric and idempotent matrix
of the form In −H(H ′H)−1H ′ for some n× k matrix H of rank k.
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Solution.

1. Recall, β̂ = β + (X ′X)−1X ′e where β is a constant and does not vary. Therefore,

Var(β̂|X) = Var((X ′X)−1X ′e|X)

= (X ′X)−1X ′Var(e|X)X(X ′X)−1

= (X ′X)−1X ′E(ee′|X)X(X ′X)−1

= (X ′X)−1X ′ΩX(X ′X)−1

2. As above, β̃ = β + (X ′Ω−1X)−1X ′Ω−1e. Therefore,

Var(β̃|X) = Var((X ′Ω−1X)−1X ′Ω−1e|X)

= (X ′Ω−1X)−1X ′Ω−1Var(e|X)Ω−1X(X ′Ω−1X)−1

= (X ′Ω−1X)−1X ′Ω−1ΩΩ−1X(X ′Ω−1X)−1

= (X ′Ω−1X)−1X ′Ω−1X(X ′Ω−1X)−1

= (X ′Ω−1X)−1.

3. Following the hint we first show,

(Var(β̃|X))−1 − (Var(β̂|X))−1

=X ′Ω−1X − (X ′X)
(
X ′ΩX

)−1
(X ′X)

=X ′Ω−1/2(In −Ω1/2X(X ′ΩX)−1X ′Ω1/2)Ω−1/2X

=X ′Ω−1/2(In −D(D′D)−1D′)Ω−1/2X

where D = Ω1/2X. Notice then that In −D(D′D)−1D′ is a symmetric idempotent matrix. Since
any symmetric idempotent matrix is positive definite we have that,

(Var(β̃|X))−1 − (Var(β̂|X))−1 ≥ 0⇒ Var(β̃|X)−Var(β̂|X) ≤ 0.

Problem 3. Consider the GLS estimator β̃ defined in the previous question.

1. Show that β̃ satisfies ẽ′Ω−1X = 0, where ẽ = Y −Xβ̃.

2. Using the result in (i), show that the generalized squared distance function S(b) = (Y −Xb)′Ω−1(Y −
Xb) can be written as

S(b) = ẽ′Ω−1ẽ+ (β̃ − b)′X ′Ω−1X(β̃ − b).

3. Using the result in (ii), show that β̃ minimizes S(b).

Solution.

1.

ẽ′Ω−1X = (Y −Xβ̃)′Ω−1X

= Y ′Ω−1X − β̃
′
X ′Ω−1X

= Y ′Ω−1X −
[
Y ′Ω−1X(X ′Ω−1X)−1

]
X ′Ω−1X

= 0.
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2. By adding and subtracting Xβ̃, we have

Q(b) = (Y −Xβ̃ +Xβ̃ −Xb)′Ω−1(Y −Xβ̃ +Xβ̃ −Xb)
= (ẽ+X(β̃ − b))′Ω−1(ẽ+X(β̃ − b))
= ẽ′Ω−1ẽ+ (β̃ − b)′X ′Ω−1X(β̃ − b) + 2ẽ′Ω−1X(β̃ − b).

However, ẽ′Ω−1X = 0 due to the result in part (i).

3. ẽ′Ω−1ẽ does not depend on b, and therefore minimization of Q(b) is equivalent to minimization of
(β̃ − b)′X ′Ω−1X(β̃ − b). Since Ω is positive definite, Ω−1 and X ′Ω−1X are also positive definite as
the rank of X is k. Hence,

(β̃ − b)′X ′Ω−1X(β̃ − b) ≥ 0

which holds as an equality for b = β̃.

Problem 4. Use FWL Theorem to show that in a simple (one-regressor) regression model,

Yi = β0 + β1Xi + Ui, i = 1, . . . , n,

the LS estimate for β1 is

β̂1 =

∑n
i=1

(
Xi −X

)
Yi∑n

i=1

(
Xi −X

)2 .

Then assume (1) (Xi, Yi), i = 1, ..., n are independently and identically distributed (i.i.d.). (2) E (Ui|Xi) = 0,
for i = 1, ..., n. (3) E

(
U2
i |Xi

)
= σ2, for i = 1, ..., n, with some σ > 0. Show that

Var
(
β̂1|X1, ..., Xn

)
=

σ2∑n
i=1

(
Xi −X

)2 .
Solution. M1 = In − 1 (1′1)

−1
1′ = In − n−111′. Denote X = (X1, ..., Xn)

′ and Y = (Y1, ..., Yn)
′. Then,

M1X = X − 1 ·X. By FWL theorem,

β̂1 =
(
X ′M1X

)−1 (
X ′M1Y

)
=

(
X − 1 ·X

)′
Y(

X − 1 ·X
)′ (
X − 1 ·X

)
=

∑n
i=1

(
Xi −X

)
Yi∑n

i=1

(
Xi −X

)2 .

Note:
∑n
i=1

(
Xi −X

)
= n ·X − n ·X = 0 and

n∑
i=1

(
Xi −X

)
Xi =

n∑
i=1

(
Xi −X

) (
Xi −X +X

)
=

n∑
i=1

(
Xi −X

)2
+

n∑
i=1

(
Xi −X

)
X =

n∑
i=1

(
Xi −X

)2
.

Then,

β̂1 =

∑n
i=1

(
Xi −X

)
(β0 + β1Xi + Ui)∑n

i=1

(
Xi −X

)2
=

β1

∑n
i=1

(
Xi −X

)
Xi +

∑n
i=1

(
Xi −X

)
Ui∑n

i=1

(
Xi −X

)2
= β1 +

∑n
i=1

(
Xi −X

)
Ui∑n

i=1

(
Xi −X

)2 .
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And,

E
(
β̂1|X

)
= β1 + E

(
n∑
i=1

(
Xi −X

)∑n
i=1

(
Xi −X

)2Ui∣∣∣X
)

= β1 +

n∑
i=1

(
Xi −X

)∑n
i=1

(
Xi −X

)2E (Ui|X)

= β1.

Then,

Var
(
β̂1|X

)
= E

((
β̂1 − E

(
β̂1|X

))2

|X
)

= E

(∑n
i=1

(
Xi −X

)
Ui∑n

i=1

(
Xi −X

)2
)2 ∣∣∣X


=

1(∑n
i=1

(
Xi −X

)2)2E

( n∑
i=1

(
Xi −X

)
Ui

)2

|X


=

1(∑n
i=1

(
Xi −X

)2)2

E

(
n∑
i=1

(
Xi −X

)2
U2
i |X

)
+ E

∑
i 6=j

(
Xi −X

) (
Xj −X

)
UiUj |X


=

1(∑n
i=1

(
Xi −X

)2)2


n∑
i=1

(
Xi −X

)2 E (U2
i |X

)
+
∑
i 6=j

(
Xi −X

) (
Xj −X

)
E (UiUj |X)


=

1(∑n
i=1

(
Xi −X

)2)2

n∑
i=1

(
Xi −X

)2
σ2

=
σ2∑n

i=1

(
Xi −X

)2 .
Problem 5. Consider again the simple linear regression model:

Yi = β0 + β1Xi + Ui, i = 1, . . . , n;

with assumptions: (1) (Xi, Yi), i = 1, ..., n are independently and identically distributed (i.i.d.). (2)
E (Ui|Xi) = 0, for i = 1, ..., n. (3) E

(
U2
i |Xi

)
= σ2, for i = 1, ..., n, with some σ > 0. Define the esti-

mator

β̄1 =

∑n
i=1 Yi1{Xi≥0}∑n
i=1 1{Xi≥0} −

∑n
i=1 Yi1{Xi<0}∑n
i=1 1{Xi<0}∑n

i=1Xi1{Xi≥0}∑n
i=1 1{Xi≥0} −

∑n
i=1Xi1{Xi<0}∑n
i=1 1{Xi<0}

where

1 {Xi ≥ 0} =

{
1 if Xi ≥ 0

0 if Xi < 0

and

1 {Xi < 0} =

{
1 if Xi < 0

0 if Xi ≥ 0.
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In other words, β̄1 is the difference between the averaged Y ’s conditional onX being positive and the averaged
Y ’s conditional onX being negative divided by the difference between the averagedX conditional onX being
positive and the averaged X conditional on X being negative. Assume

∑n
i=1Xi1{Xi≥0}∑n
i=1 1{Xi≥0} 6=

∑n
i=1Xi1{Xi<0}∑n
i=1 1{Xi<0} .

1. Show that β̄1 is unbiased.

2. Is the conditional variance Var
(
β̄1|X1, ..., Xn

)
less than or equal to σ2∑n

i=1(Xi−X̄)
2 (the variance of the

LS estimator)? Explain.

Solution. (i) As we have done in class we should: (1) substitute Yi = β0 + β1Xi + Ui and then (2) use the
properties of expectations to simplify.

E[β̄1] =E


∑n
i=1 Yi1{Xi≥0}∑n
i=1 1{Xi≥0} −

∑n
i=1 Yi1{Xi<0}∑n
i=1 1{Xi<0}∑n

i=1Xi1{Xi≥0}∑n
i=1 1{Xi≥0} −

∑n
i=1Xi1{Xi<0}∑n
i=1 1{Xi<0}


=E


∑n
i=1(β0+Xiβ1+Ui)1{Xi≥0}∑n

i=1 1{Xi≥0} −
∑n
i=1(β0+Xiβ1+Ui)1{Xi<0}∑n

i=1 1{Xi<0}∑n
i=1Xi1{Xi≥0}∑n
i=1 1{Xi≥0} −

∑n
i=1Xi1{Xi<0}∑n
i=1 1{Xi<0}


rearranging

=E


(
β0

∑n
i=1 1{Xi≥0}∑n
i=1 1{Xi≥0} + β1

∑n
i=1Xi1{Xi≥0}∑n
i=1 1{Xi≥0} +

∑n
i=1 Ui1{Xi≥0}∑n
i=1 1{Xi≥0}

)
−
(
β0

∑n
i=1 1{Xi<0}∑n
i=1 1{Xi<0} + β1

∑n
i=1Xi1{Xi<0}∑n
i=1 1{Xi<0} +

∑n
i=1 Ui1{Xi<0}∑n
i=1 1{Xi<0}

)
∑n
i=1Xi1{Xi≥0}∑n
i=1 1{Xi≥0} −

∑n
i=1Xi1{Xi<0}∑n
i=1 1{Xi<0}


simplifying

=β1 + E


∑n
i=1 Ui1{Xi≥0}∑n
i=1 1{Xi≥0} −

∑n
i=1 Ui1{Xi<0}∑n
i=1 1{Xi<0}∑n

i=1Xi1{Xi≥0}∑n
i=1 1{Xi≥0} −

∑n
i=1Xi1{Xi<0}∑n
i=1 1{Xi<0}


using iterated expectations

=β1 + E

E


∑n
i=1 Ui1{Xi≥0}∑n
i=1 1{Xi≥0} −

∑n
i=1 Ui1{Xi<0}∑n
i=1 1{Xi<0}∑n

i=1Xi1{Xi≥0}∑n
i=1 1{Xi≥0} −

∑n
i=1Xi1{Xi<0}∑n
i=1 1{Xi<0}

|X1, ..., Xn




using the linearity of E[·|X1, ..., Xn] we have

=β1 + E


∑n
i=1 E[Ui|X1,...,Xn]1{Xi≥0}∑n

i=1 1{Xi≥0} −
∑n
i=1 E[Ui|X1,...,Xn]1{Xi<0}∑n

i=1 1{Xi<0}∑n
i=1Xi1{Xi≥0}∑n
i=1 1{Xi≥0} −

∑n
i=1Xi1{Xi<0}∑n
i=1 1{Xi<0}


E[Ui|X1, ..., Xn] = 0 by assumption, so

=β1

(ii) The previous part showed β̄1 is unbiased. It is also linear because it is equal
∑n
i=1 c̄iYi with

c̄i =

1{Xi≥0}∑n
i=1 1{Xi≥0} −

1{Xi<0}∑n
i=1 1{Xi<0}∑n

i=1Xi1{Xi≥0}∑n
i=1 1{Xi≥0} −

∑n
i=1Xi1{Xi<0}∑n
i=1 1{Xi<0}

.

Therefore, by the Gauss-Markov theorem, V ar(β̄1) > V ar(β̂1).

Problem 6. Suppose that a random variable X has a normal distribution with unknown mean µ. To
simplify the analysis, we shall assume that σ2 is known. Given a sample of observations, an estimator of
µ is the sample mean, X. When performing a (two-sided) test of the null hypothesis H0 : µ = µ0 at 5%
significance level, it is usual to choose the upper and lower 2.5% tails of the normal distribution as the
rejection regions, as shown in the first figure. s.d. is equal to

√
σ2/n, the standard deviation of X. The

density function of N
(
µ0, σ

2/n
)
is shown in the first figure. H0 is rejected when

∣∣X − µ0

∣∣ /s.d. > 1.96.
However, suppose that someone instead chooses the central 5% of the distribution as the rejection region, as
in the second figure. Give a technical explanation, using appropriate statistical concepts, of why this is not
a good idea.
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Solution. The following discussion assumes that you are performing a 5 per cent significance test, but it
applies to any significance level. If the null hypothesis is true, it does not matter how you define the 5 per
cent rejection region. By construction, the risk of making a Type I error will be 5 per cent. Issues relating
to Type II errors are irrelevant when the null hypothesis is true.

The reason that the central part of the conditional distribution is not used as a rejection region is that
it leads to problems when the null hypothesis is false. The probability of not rejecting H0 when it is false
will be lower. To use the obvious technical term, the power of the test will be lower. The figure opposite
shows the power functions for the test using the conventional upper and lower 2.5 per cent tails and the test
using the central region. The horizontal axis is the difference between the true value and the hypothetical
value µ0 in terms of standard deviations. The vertical axis is the power of the test. The first figure has been
drawn for the case where the true value is greater than the hypothetical value. The second figure is for the
case where the true value is lower than the hypothetical value. It is the same, but reflected horizontally.

The greater the difference between the true value and the hypothetical mean, the more likely it is that
the sample mean will lie in a tail of the distribution conditional on H0 being true, and so the more likely it
is that the null hypothesis will be rejected by the conventional test. The figures show that the power of the
test approaches 1 asymptotically. However, if the central region of the distribution is used as the rejection
region, the probability of the sample mean lying in it will diminish as the difference between the true and
hypothetical values increases, and the power of the test approaches zero asymptotically. This is an extreme
example of a very bad test procedure.

6



Problem 7. Consider the following model:

Yi = β + Ui,

where Ui are iid N(0, 1) random variables, i = 1, . . . , n.

1. Find the LS estimator of β and its mean, variance, and distribution.

2. Suppose that a data set of 100 observation produced OLS estimate β̂ = 0.167.

(a) Construct 90% and 95% symmetric two-sided confidence intervals for β.

(b) Construct a 95% one-sided confidence interval of the form [A,+∞) for β. In other words, find a
random variable A such that Pr(β ∈ [A,+∞)) = 1 − α, where α ∈ (0, 0.5) is a known constant
chosen by the econometrician.

(c) Construct a 95% one-sided confidence interval of the form (−∞, A] for β.

Solution. The model is Yi = β + Ui, with {Ui}ni=1 i.i.d random variables and Ui ∼ N(0, 1), i = 1, ..., n.
LS estimator for β is given by β̂ = (1′1)−11′Y , where 1 is a n× 1 vector of ones and Y = (Y1, · · · , Yn)′.

Therefore, β̂ = 1
n

∑n
i=1 Yi = Y . Notice the following

β̂ =
1

n

n∑
i=1

Yi =
1

n

n∑
i=1

(β + Ui) = β +
1

n

n∑
i=1

Ui.
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Hence,

Eβ̂ = β +
1

n

n∑
i=1

E(Ui) = β

Var(β̂) = Var(
1

n

n∑
i=1

Ui)

=
1

n2

n∑
i=1

Var(Ui) since Ui’s are i.i.d.

=
n

n2
=

1

n
.

Since β̂ is just a linear combination of iid normal random variables, β̂ ∼ N(β, 1
n ). β̂ = 0.167. Confidence

interval for significance level α is

β̂ − z1−α2

√
σ2

n
≤ β ≤ β̂ + z1−α2

√
σ2

n

Plugging in the values for β̂ = 0.167,
√

σ2

n = 0.1, z1−α2 = 1.645 when α = 0.1, z1−α2 = 1.96 when α = 0.05.
We obtain CI90% = [0.0025, 0.3315] and CI95% = [−0.029, 0.363].

One sided confidence interval for significance level α = 0.05 of the form [a,+∞) is

β ≥ β̂ − z1−α

√
σ2

n
.

Plugging in the values for β̂ = 0.167,
√

σ2

n = 0.1, z1−α = 1.645 . We obtain the one-sided confidence interval
CI95% = [0.0025,∞).

One sided confidence interval for significance level α = 0.05 of the form (−∞, a] is

β ≤ β̂ + z1−α

√
σ2

n

Plugging in the values for β̂ = 0.167,
√

σ2

n = 0.1, z1−α = 1.645 . We obtain the one-sided confidence interval
CI95% = (−∞, 0.3315].

Problem 8. Consider the following regression model:

Y = X1β1 +X2β2 + e,

E(e|X1,X2) = 0,

E (ee′|X1,X2) = σ2
eIn.

Let β̃1 = (X ′1X1)−1X ′1Y be the LS estimator for β1 which omits X2 from the regression.

1. Find E(β̃1|X1).

2. Define
V = X2β2 − E (X2β2|X1) .

Find E
(
eV ′|X1

)
.

3. Find E (ee′|X1).
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4. Assume that

E
(
V V ′|X1

)
= σ2

vIn,

and find Var(β̃1|X1).

5. Let β̂1 = (X ′1M2X1)−1X ′1M2Y be the OLS estimator for β1 from a regression of Y against X1

and X2, where M2 = In − X2(X ′2X2)−1X ′2. Compare Var(β̃1|X1) derived in part (iv) with
Var(β̂1|X1,X2). Can you say which of the two variances is bigger (in the positive semi-definite
sense)? Explain your answer.

Solution. The LS estimator for β1 which omits β2 from the regression is β̃1 =
(
X ′1X1

)−1
X ′1Y that can

be written as
β̃1 = β1 +

(
X ′1X1

)−1
X ′1X2β2 +

(
X ′1X1

)−1
X ′1e.

1.
E
(
β̃1|X1

)
= β1 +

(
X ′1X1

)−1
X ′1E (X2β2|X1) +

(
X ′1X1

)−1
X ′1E (e|X1) .

By Law of Iterated Expectations, E (e|X1) = E (E (e|X1,X2) |X1) = 0, thus

E
(
β̃1|X1

)
= β1 +

(
X ′1X1

)−1
X ′1E (X2β2|X1) .

Also, by defining V as V = X2β2−E (X2β2|X1), β̃1−E
(
β̃1|X1

)
=
(
X ′1X1

)−1
X ′1V +

(
X ′1X1

)−1
X ′1e.

2. In order to find E
(
eV ′|X1

)
= E

[
e (X2β2 − E (X2β2|X1))

′ |X1

]
, use again the Law of Iterated

Expectations,

E
[
e (X2β2 − E (X2β2|X1))

′ |X1

]
= E

(
E
[
e (X2β2 − E (X2β2|X1))

′ |X1,X2

]
|X1

)
= E

(
E [e|X1,X2] (X2β2 − E (X2β2|X1))

′ |X1

)
= E

(
0 (X2β2 − E (X2β2|X1))

′ |X1

)
= 0.

3.
E (ee′|X1) = E (E (ee′|X1,X2) |X1) = E

(
σ2
eIn|X1

)
= σ2

eIn.

4. Using previous results and the fact that E
(
V V ′|X1

)
= σ2

vIn,

Var
(
β̃1|X1

)
= E

([
β̃1 − E

(
β̃1|X1

)] [
β̃1 − E

(
β̃1|X1

)]′
|X1

)
= E

([(
X ′1X1

)−1
X ′1V +

(
X ′1X1

)−1
X ′1e

] [(
X ′1X1

)−1
X ′1V +

(
X ′1X1

)−1
X ′1e

]′
|X1

)
=

(
X ′1X1

)−1
X ′1E

(
(e+ V ) (e+ V )

′ |X1

)
X1

(
X ′1X1

)−1

=
(
X ′1X1

)−1
X ′1E

(
ee′ + eV ′ + V e′ + V V ′|X1

)
X1

(
X ′1X1

)−1

=
(
X ′1X1

)−1
X ′1

(
σ2
eIn + σ2

vIn
)
X1

(
X ′1X1

)−1

=
(
σ2
e + σ2

v

) (
X ′1X1

)−1
.

5. Var
(
β̂1|X1

)
= σ2

e

(
X ′1M2X1

)−1
. Then,X ′1X1−X ′1M2X1 = X ′1P 2X1 ≥ 0 since P 2 is a projection

matrix (symmetric and idempotent), therefore positive semi-definite. It follows that
(
X ′1X1

)−1 −(
X ′1M2X1

)−1 ≤ 0. Therefore, since σ2
v > 0, it is ambiguous which variance is larger, Var

(
β̃1|X1

)
or Var

(
β̂1|X1

)
.
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