Homework 4

Problem 1. (a) Prove the “Squeeze Rule™ If 0 < X,, <Y, and Y;, —, 0, then X,, —, 0; (b) Prove:
X, —, 0 if and only if | X,,| —, 0.

Solution. (a) For any € > 0,
Pr(Y, <e)<Pr(X,<e¢ <L

Then,
Pr(Y,<e)=Pr(JY,-0/<e¢) > 1=Pr(X, <e)=Pr(|X, -0/ <e¢) — L

(b) “= part” by continuous mapping theorem, since the mapping = — |z| is continuous. “<= part”:
straightforward.

Problem 2. Provide a counter example to show that X,, =4 X and Y,, —4Y does not imply X,, +Y,, —q
X + Y. Hint: Consider an iid random sample X7, ..., X,, with EX; = 0 and n'/2X,, and —n'/2X,,.

Solution. Let Z be a random variable such that Z ~ N (0, 02), where 02 = Var (X;). Then by CLT,
nl/QYn —a 4

and
a7, = (1) x (n7K,) g (<1) % Z~ N (0.07).

Therefore, it is also true that —n'/2X,, -4 Z ~ N (07 02). Note
0= (n1/2X,) + (~n'/2X,) 44 Z 4+ Z ~ N (0,40%).
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Problem 3. Let 6, = (le,...,én,k) be an estimator of the k-vector of parameters 8 = (01,...,0;)".

Suppose that 0, —p 0, and n'/? <§n - 9) —4 W ~ N (0,%), where X is a positive definite k¥ x k matrix.

Use the delta method or CMT to find the (non-degenerate, i.e., not a constant) asymptotic distributions
of the following quantities after a suitable normalization. "Suitable normalization" means subtraction of a
constant and/or multiplication by a constant (could be dependent on n).

. /
1. nt/? (Hn — 9) ¢ where ¢ € R¥ is a vector of constants.

o~

2. B, 1.
3. n (B, —9)' (6.-0).
4 By — 0o

5. lg\nylé\ng/é\n_’g, provided that 03 # 0.
Solution.
1. Define X,, = n'/? (gn — 0) and h(X,) = X/ c. By the Continuous Mapping Theorem we have
nl/? (@n - 0)' c=h(X,) —a (W) =W'e
By the property of normal distribution we have

. /
n'/? (On - 0) c—q4 W'e~ N(0,c'Ze).



2. Set ¢ = (1,0, ...,0)". Then, it follows from Part (i) that
02 (On1 — 01) —a N(0,0%),
where o, is the first diagonal element of X.
3. Since n'/? (En — 0) —q4 W, by the Continuous Mapping Theorem,

~

n(0, —0) (8, — ) = [nW <§n - 9)]' [nW <§n - 9)] SaWW.

4. Set ¢ = (1,-1,0,...,0)"It follows from Part (i) that
nl/Q(é\ml — é\mg — 01 + 92) —d N(0,0‘%l — 2012 + 0'52),

where 02, and 03, are the first and second diagonal element of X, and o5 is the element on the first
row and second column of X.

5. Put h(0) = 91227 apply the Delta method

0
01,10, 0,6 ~ Oh(6)
1/2(7n,17n2  T1Y2y _ 1/205(8. ) — h(O w
n = ( s o ) =02 (h(On) — 1(B)) —a — 7
where ,
oh(o) 0y 61 —6010; 0
60, - 03 ) 03 ) 0?2) » Vs ) .
Then by the property of Normal density
01,10, 010 Oh(6) _ Oh(6)
12701702 7172 N(0. =222 % )
n ( 0,”(’3 93 ) _>d ( ? 89/ 80 )

Problem 4. Suppose that 0, —p 0 and Bn — B, where 6 and ( are two scalar parameters. Without relying
on Slutsky’s Theorem, show:

1. Cén —p ¢, where c is a constant.
2. 0pfn —p 05

Solution. (i) Suppose ¢ # 0. Then Pr (|cén — b > 6) =Pr (\én — 0] > \ETI) — 0 as n — oo. If ¢ =0, then
cén:()%pcﬁz().

(i) First, note that 0,8, — 08 = (0, = 0+ 0)(By — B+ 8) = 08 = (0 0) (B = 8) + (9 —0) 8+
(Bn - ﬁ) 6. Then, (én - 9) B+ (Bn — ﬁ) 6 —, 0 by Part (i). Then, for any € > 0,

o)) = v

IN

97179‘> € or

Bn*ﬂ‘>\/g)
én—H‘>ﬁ)+Pr(Bn—B‘>\ﬁ>—>Oasn—>oo.

IN

Thus, énﬁn — 08—, 0.

Problem 5. Suppose that E <én) — 0 and Var(én) — 0 as n — 0o. Show that 6, —p 0.



Solution. 6,, converges in probability to @ if for all e > 0, Pr < 0, — 9‘ > 5) — 0 asn — oco. First, decompose

the Mean Squared Error (MSE) into
MSE (0,) = E (0.~ 9)2 ~E (0 — E, + E), - 9)2
— E(0,~B4,) + (B, -0) +28 (4, ~Ed,) (ED, - 0)
2

- E (én - ]Eén)Q + (Ed, — 9)2 — Var (en) + Bias (9) ,

where the last line follows by the fact that E (An - Eén) =0.
Then, using Markov’s Inequality,

2
E

9n — 9‘2 B E (én — 0)2 B Var (én) + Bias (én>

g2 N g2 g2

Pr(’énff)’Ze)g — 0 asn — oo,

since by assumption, Var (én) — 0 and Ef,, — 0 — 0 as n — oc.

Problem 6. Consider the linear model (with independently and identically distributed (i.i.d.) observations):
Y = Bo+ 51 X1,i + BeXoi + U

with EU; = EU; X, ; = EU; X2 ; = 0. Suppose we know that 82 = 51 and conduct a constrained LS estimation

of 515

n

min Yy (Vi — by — by X1 — b1 Xo.)> .
bosbr i

1. Find the expression for the constrained LS estimator (3&31) that solve the above minimization
problem.
2. Assume that the restriction S = 1 is true. Derive the large-sample (asymptotic) distribution of El.
Solution. Denote X; =n"*Y" | Xy, and Xo =n"'Y " | X5 ;. The constrained LS:

S Y (X Xey— X1 - X0) Y,

B = —
Sy (X + Xo — X1 — X2)2
And o
Bo=Y =1 (X1 4+ X2).
For (i),
2 S (X + Xe — X1 - X2) Y

61 - n — — 2
S (X + Xa — X1 — X2)

S (X + Xay — X1 — X2) (Bo+ B1X1,i + b1 Xa,i + Up)
S (X + Xa — X1 — y2)2

I (X + X — X1 - Xo) U

IS (X1 + Xoi— X1 — Y2)2 .

= B+

By WLLN and Continuous Mapping Theorem,
1 n n

_ _ 1 _ _
Z (X1, + Xo; — X1 —X2)2 = EZ(XU +X2,i)2 — (X1 +X2)2

n
i=1 i=1



—p Var (Xl,i + Xgﬂ‘) .

1 - = I
EZ(Xl)Z'-I-XQ’i—Xl—XQ) U, = EZ(Xl,i+X2,i_E(X1,i+X2,i)) U;
3 i=1

+ (X1 —E(X1,)) %Zn: Ui+ (X2 —E(Xa,))

=1 7

U;.

SRS

1

Since n~1/2 Y Ui —a N (O,IE (Uf)), X; —E(X1,) —p 0 and X —E(Xa24) —p 0, by Slutsky’s theorem,
_ 1 <&
(Xl — E(X]_’Z')) e ZUl —>p 0
Vi
_ 1 &
(X2 —E(X20)) —= > _U; = 0.
Vin i=1
By CLT,
1
vn

By Slutsky’s theorem,

Z (X1, + X0, —E(X1,+X2,)U; =a N (07[@ (UZQ (X1, +Xo, —E(X1, + X27i))2)) .
i=1

> (Xl,i + Xo; — X1 — YQ) Us;
n xr - 2
S (X + Xo — X1 — X2)
—d Var (XLi =+ Xg)i)_l N (07 E (le2 (Xl,i + Xg}i —E (Xl,i + X27i))2)) .

\/73(81*51) = \/1711

Problem 7. Suppose we observe the i.i.d. random sample {(Y;, X;)}_; with X; being a scalar. Take the
linear model

Yi=XiB+e

Consider the estimator . 5
i X}Y;

5 N Z?:l X24 .

Find the asymptotic distribution of v/n (E — ﬁ)

Problem 8. Let {6, : n > 1} be a random sequence such that Pr (6, = 0) = (n — 1) /n, and Pr (6,, = n?) =
1/n. Note that the only possible values for 6,, are zero and n?.

1. Show that lim,,_, - E8,, = oco.
2. Does 6,, converge in probability to some limit? If yes, prove. If not, explain why.

Solution. (i) Ef, =0-(n—1)/n+n?-1/n=n — oo.
(ii) 6, — 0, since for any € > 0, Pr(|0,,| > €) = Pr (6, =n?) =1/n — 0.



