
Homework 5

Problem 1. In this question, you will derive the asymptotic distribution of the OLS estimator under
endogeneity. Consider the usual linear regression model Yi = X ′

iβ + Ui, where β is a k × 1 vector. Assume,
however, that Xi’s are endogenous:

EXiUi = µ ̸= 0,

where µ is an unknown k × 1 vector. Let β̂n denote the OLS estimator of β. Make the following additional
assumptions:
A1. Data are iid.
A2. Q = EXiX

′
i is finite and positive definite.

A3. E (Ui −X ′
iδ)

2
XiX

′
i is finite and positive definite, where δ = Q−1µ.

1. Find the probability limit of β̂n.

2. Re-write the model as Yi = X ′
i(β + δ) + (Ui −X ′

iδ) and find EXi(Ui −X ′
iδ).

3. Using the result in (ii), derive the asymptotic distribution of β̂n and find its asymptotic variance.
Explain how this result differs from the asymptotic normality of OLS with exogenous regressors. Hint:
To establish asymptotic normality, β̂n must be properly re-centered based on the result in (i).

4. Can β̂n and its asymptotic distribution be used for inference about β? Explain why or why not.

5. Suppose that the errors Ui’s are homoskedastic:

E
(
U2
i |Xi

)
= σ2 = const.

Consider the usual estimator of the asymptotic variance of OLS designed for a model with homoskedas-
tic errors and exogenous regressors:

n−1
n∑

i=1

(
Yi −X ′

iβ̂n

)2(
n−1

n∑
i=1

XiX
′
i

)−1

.

Is it consistent for the asymptotic variance of the OLS estimator if Xi’s are in fact endogenous? Explain
why or why not.

6. Continue to assume that Ui’s are homoskedastic as in (v). Consider the usual heteroskedasticity-robust
asymptotic variance estimator designed for a model with exogenous regressors:(

n−1
n∑

i=1

XiX
′
i

)−1(
n−1

n∑
i=1

(
Yi −X ′

iβ̂n

)2
XiX

′
i

)(
n−1

n∑
i=1

XiX
′
i

)−1

.

Is it consistent for the asymptotic variance of the OLS estimator if Xi’s are in fact endogenous? Explain
why or why not.

Solution.

1. Write

β̂n = β +

(
n−1

n∑
i=1

XiX
′
i

)−1

n−1
n∑

i=1

XiUi
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→p β +Q−1µ

= β + δ,

where convergence of n−1
∑n

i=1 XiX
′
i →p Q and n−1

∑n
i=1 XiUi →p EXiUi = µ hold by the WLLN,

and the result in the second line holds by CMT.

2.

EXi(Ui −X ′
iδ) = EXiUi − EXiX

′
iQ

−1µ

= µ−QQ−1µ

= 0.

3. Write

β̂n − (β + δ) =

(
n−1

n∑
i=1

XiX
′
i

)−1

n−1
n∑

i=1

Xiϵi,

where
ϵi = Ui −X ′

iδ

and uncorrelated with Xi by the result in (ii). Furthermore, Xiϵi satisfies the assumptions of the CLT.
Hence, this is a regression with all the usual assumptions, however, it has a new regression coefficient
β + δ and new errors ϵi’s. We have:

√
n
(
β̂n − (β + δ)

)
→d N

(
0, Q−1

(
E (Ui −X ′

iδ)
2
XiX

′
i

)
Q−1

)
.

Comparing to the case with exogenous regressors, the center of the asymptotic distribution is shifted
by δ. Also, the asymptotic variance depends on X ′

iδ through E (Ui −X ′
iδ)

2
XiX

′
i.

4. Asymptotic inference about β based on the OLS estimator will be invalid since the asymptotic dis-
tribution of the OLS estimator is centered at β + δ. The OLS estimator can be only used for testing
hypotheses about β + δ.

5. First, we need to describe the probability limit of the estimator proposed. Write:

n−1
n∑

i=1

(
Yi −X ′

iβ̂n

)2
= n−1

n∑
i=1

(
(Ui −X ′

iδ) +X ′
i

(
β + δ − β̂n

))2
= n−1

n∑
i=1

(
ϵi +X ′

i

(
β + δ − β̂n

))2
,

where
ϵi = Ui −X ′

iδ.

In view of the result in (i), β + δ − β̂n →p 0, and therefore

n−1
n∑

i=1

(
Yi −X ′

iβ̂n

)2
→p Eϵ2i .

Hence, the proposed estimator converges in probability to E (Ui −X ′
iδ)

2
Q−1. This would be the same

as the asymptotic variance in (iii) if the errors ϵi = Ui −X ′
iδ were homoskedastic.

It is given that Ui’s are homoskedastic. However, even if Ui’s are homoskedastic, ϵi = Ui −X ′
iδ would

be heteroskedastic:
E(ϵ2i |Xi) = σ2 + (X ′

iδ)
2 − 2E (Ui|Xi)X

′
iδ ̸= const,
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unless E (Ui|Xi) = 0.5X ′
iδ. Since δ = Q−1µ, Q = EXiX

′
i, and µ = EXiUi, the law of iterated

expectation implies that if E (Ui|Xi) = 0.5X ′
iδ, then

µ = EXiUi

= E (XiE(Ui|Xi))

= E (Xi × 0.5X ′
iδ)

= 0.5Qδ

= 0.5Q×Q−1µ

= 0.5µ.

However, the only solution to µ = 0.5µ is µ = 0, which contradicts the assumption that EXiUi ̸= 0. It
follows therefore that ϵi = Ui −X ′

iδ are heteroskedastic. Hence, the estimator would be inconsistent
for the asymptotic variance of the OLS estimator.

6. The model Yi = X ′
i(β+ δ)+(Ui−X ′

iδ) is the usual linear regression with weakly exogenous regressors.
The OLS estimator consistently estimates β+δ. Its asymptotic variance has the usual “sandwich” form.
Hence, with additional technical assumptions such as finite fourth moments for Xi’s and Ui −X ′

iδ, the
estimator will be consistent.

Problem 2. Consider the linear regression model Y = Xβ+e, where X is the n×k matrix of regressors, Y
is the n-vector of observations on the dependent variable, and β ∈ Rk is the vector of unknown parameters.
Let Z be the n× k matrix of instruments. Assume that:

• X and Z are strongly exogenous: E (e|X,Z) = 0.

• e is homoskedastic: E (ee′|X,Z) = σ2In.

• X and Z ′X have rank k.

Let β̂ =
(
X ′X

)−1
X ′Y and β̃ =

(
Z ′X

)−1
Z ′Y be the OLS and IV estimators of β respectively.

1. Show that E (e|X) = 0 and E (ee′|X) = σ2In.

2. Show that the OLS and IV estimators are unbiased.

3. Find the exact finite sample conditional variances of β̂ and β̃: Var
(
β̂|X,Z

)
and Var

(
β̃|X,Z

)
. Show

that

Var
(
β̃|X,Z

)
−Var

(
β̂|X,Z

)
=σ2

(
Z ′X

)−1
Z ′
(
In −X

(
X ′X

)−1
X ′
)
Z
(
X ′Z

)−1
.

4. When regressors are exogenous, should the econometrician use IV or OLS ? Explain why using the
result in in part (iii).

Solution.

1. The results follow by the law of iterated expectation:

E(e|X) = E (E(e|X,Z) |X)

= E (0|X)

= 0,

E (ee′|X) = E (E (ee′|X,Z) |X)

= E
(
σ2In|X

)
= σ2In.
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2. Write

β̂ = β + (X ′X)−1X ′e,

β̃ = β + (Z ′X)−1Z ′e.

The results follow since

E(X ′e|X,Z) = X ′E(e|X,Z) = 0,

E(Z ′e|X,Z) = Z ′E(e|X,Z) = 0.

3. For the IV estimator,

Var(β̃|X,Z) = Var
(
(Z ′X)−1Z ′e|X,Z

)
= (Z ′X)−1Z ′Var(e|X,Z)Z(X ′Z)−1

= σ2(Z ′X)−1Z ′Z(X ′Z)−1.

For the OLS estimator, we have the usual expression:

Var(β̂|X,Z) = σ2(X ′X)−1.

Lastly,

(Z ′X)−1Z ′Z(X ′Z)−1 − (X ′X)−1

= (Z ′X)−1Z ′Z(X ′Z)−1 − (Z ′X)−1(Z ′X)(X ′X)−1(X ′Z)(X ′Z)−1

=
(
Z ′X

)−1
Z ′
(
In −X (X′X)

−1
X ′
)
Z
(
X ′Z

)−1
.

4. We showed that
Var(β̃|X,Z)−Var(β̂|X,Z) = σ2A′MXA,

where MX = In −X (X′X)
−1

X ′ is symmetric and idempotent and therefore positive semi-definite.
Consequently, A′MXA is also positive semi-definite, and it follows that the OLS estimator has a
smaller variance than the IV estimator. Since the OLS estimator is also unbiased with exogenous
regressors, one should use OLS in this case. Note that the conclusion also follows by Gauss-Markov
Theorem.

Problem 3. Consider the model

Yi = β0 + β1Xi + ei

E (ei) = 0

E (Xiei) = 0

with both Yi and Xi scalar. Assume β0 > 0 and β1 < 0. Suppose the parameter of interest is the area under

the regression curve (e.g., consumer surplus), which is A = − β2
0

2β1
. Let θ̂ =

(
β̂0, β̂1

)′
be the LS estimator of

θ = (β0, β1)
′ so that

√
n
(
θ̂ − θ

)
→d N (0,V θ). Let V̂ θ be a standard consistent estimator for V θ. You do

not need to write out these estimators.

1. Given the above, describe an estimator of A.

2. Construct an asymptotic 1− α coverage probability confidence interval for A.

3. Construct an asymptotic 1− α coverage probability bootstrap percentile confidence interval for A.

Solution.
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1. The plug-in estimator is Â = −β̂2
0/2β̂1.

2. Define

a =

(
∂A
∂β0
∂A
∂β1

)
=

(
−β0/β1

β2
0/2β

2
1

)
.

By delta method, √
n
(
θ̂ − θ

)
→d N (0,a′V θa) ,

where V θ = Q−1ΩQ−1, Q = E
(
XiX

′
i

)
, Xi = (1, Xi)

′ and Ω = E
(
e2iXiX

′
i

)
. An estimate of the

asymptotic variance is â′V̂ θâ, where

â =

(
−β̂0/β̂1

β̂2
0/2β̂

2
1

)
,

V̂ θ = Q̂
−1

Ω̂Q̂
−1

, Q̂ = n−1
∑n

i=1 XiX
′
i, Ω̂ = n−1

∑n
i=1 ê

2
iXiX

′
i and êi = Yi −X ′

iθ̂. An asymptotic
1− α coverage probability confidence interval for A is[

Â− 1.96×
√
n−1â′V̂ θâ, Â+ 1.96×

√
n−1â′V̂ θâ

]
.

3. percentile bootstrap

• Step 1: Generate an i.i.d. sample {(Y ∗
i , X

∗
i )}

n
i=1 by drawing with replacement from the sample

{(Yi, Xi) : i = 1, ..., n}.

• Step 2: Use the bootstrap sample to calculate θ̂
∗
=
(
β̂∗
0 , β̂

∗
1

)′
= (
∑n

i=1 X
∗
iX

∗
i
′)
−1

(
∑n

i=1 X
∗
i Y

∗
i )

(X∗
i = (1, X∗

i )
′) and Â∗ = −β̂∗2

0 /2β̂∗
1 .

• Step 3: Repeat B times. Collect B replications: Â∗1, ..., Â∗B .

• Step 4: Order the B values of Â∗1, ..., Â∗B . Denote the ordered values by Â∗
(1), ..., Â

∗
(B). Suppose

B = 1000. The bootstrap percentile confidence interval is
[
Â∗

(25), Â
∗
(975)

]
.

Problem 4. Consider a regression model with potentially endogenous regressors:

Yi = X ′
iβ + Ui, β ∈ Rk.

Let Zi be the l-vector of instruments such that l ≥ k,

rank(EZiX
′
i) = k,

EZiUi = 0.

Let R be a q × k matrix of rank q, and let r be a q × 1 vector; both R and r are known. Let Wn be an l× l
matrix such that

Wn →p W,

where W is symmetric and positive definite. Let β̃n be the restricted GMM estimator: β̃n minimizes the
GMM criterion function (Y −Xb)′ZWnZ

′(Y −Xb) subject to the restriction Rb− r = 0, where

Y =

 Y1

...
Yn

 , X =

 X ′
1
...

X ′
n

 , Z =

 Z ′
1
...
Z ′
n

 .
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1. Show that β̃n solves
−X ′ZWnZ

′(Y −Xβ̃n) +R′λ̃n = 0,

where λ̃n is the q-vector of Lagrange multipliers.

2. Show that
β̃n = β̂n − (X ′ZWnZ

′X)−1R′λ̃n,

where β̂n is the unconstrained GMM estimator, i.e.

β̂n = arg min
b∈Rk

(Y −Xb)′ZWnZ
′(Y −Xb).

3. Using the the result from (ii) and the fact that β̃n satisfies the constraint, show that

β̃n = β̂n − (X ′ZWnZ
′X)−1R′(R(X ′ZWnZ

′X)−1R′)−1(Rβ̂n − r).

4. Suppose that data are iid, and the instruments and regressors have finite second moments. Find the
probability limit of the restricted GMM estimator, i.e. find the expression for β∗ in

β̃n →p β∗.

Under what condition the restricted GMM estimator β̃n is consistent?

5. Suppose that Rβ = r. Find the probability limit of λ̃n/n
2. Explain how the result can be used for

testing H0 : Rβ = r against H1 : Rβ ̸= r. You do not have to figure out the details of such a test, only
to explain why the probability limit of λ̃n/n

2 is useful for construction of the test.

Solution.

1. The Lagrangian is given by

L(b, λ) = (Y −Xb)′ZWnZ
′(Y −Xb) + 2λ′(Rb− r).

The derivative of L(b, λ) with respect to b is

∂L(b, λ)

∂b
= −2X ′ZWnZ

′(Y −Xb) + 2R′λ.

Hence, β̃n and λ̃n must satisfy

−X ′ZWnZ
′(Y −Xβ̃n) +R′λ̃n = 0.

2. From (i),
X ′ZWnZ

′Xβ̃n = X ′ZWnZ
′Y −R′λ̃n,

or

β̃n = (X ′ZWnZ
′X)−1

(
X ′ZWnZ

′Y −R′λ̃n

)
= β̂n − (X ′ZWnZ

′X)−1R′λ̃n, (1)

since
β̂n = (X ′ZWnZ

′X)−1X ′ZWnZ
′Y.
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3. Since β̃n is the solution to the constrained optimization problem, it must satisfy the constraint:

Rβ̃n − r = 0.

From the result in (ii),

r = Rβ̃n

= R
(
β̂n − (X ′ZWnZ

′X)−1R′λ̃n

)
= Rβ̂n −R(X ′ZWnZ

′X)−1R′λ̃n.

Hence,
λ̃n =

(
R(X ′ZWnZ

′X)−1R′)−1
(
Rβ̂n − r

)
. (2)

The result follows from equations (1) and (2).

4. Note that by usual results for GMM, the unconstrained estimator is consistent:

β̂n →p β.

Moreover, by the WLLN,
Z ′X

n
→p Q = EZiX

′
i.

Hence,

β̃n = β̂n −
(
X ′Z

n
Wn

Z ′X

n

)
−1R′

(
R

(
X ′Z

n
Wn

Z ′X

n

)
−1R′

)
−1(Rβ̂n − r)

→p β − (Q′WQ)
−1

R′ (R(Q′WQ)−1R′)−1
(Rβ − r),

i.e.
β∗ = β − (Q′WQ)

−1
R′ (R(Q′WQ)−1R′)−1

(Rβ − r).

Thus, the restricted estimator is in general inconsistent as β∗ ̸= β. However, when the restriction is
true, Rβ − r = 0, β∗ = β and the estimator becomes consistent.

5. We have

λ̃n/n
2 =

(
n2R(X ′ZWnZ

′X)−1R′)−1
(
Rβ̂n − r

)
=

(
R

(
X ′Z

n
Wn

Z ′X

n

)
−1R′

)
−1
(
Rβ̂n − r

)
→p

(
R(Q′WQ)−1R′)−1

(Rβ − r)

= 0.

Let
λ̃n/n

2 →p λ∗.

When H0 : Rβ = r is true, λ∗ = 0. Hence, we can test the same hypothesis by testing

λ∗ = 0.

Problem 5. Consider the following regression model:

Y = Xβ + U,
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where Y is an n×1 vector of observations on the dependent variable and X is an n×k matrix of observations
on the regressors. Let Z be an n× l matrix of observations on the instruments, l ≥ k. The 2SLS estimator
of β can be written as β̂ = (X ′PZX)−1X ′PZY , where PZ = Z(Z ′Z)−1Z ′. Let β̃ be the OLS estimator of
the coefficients on X in the regression of Y against X and V̂ :

Y = Xβ + V̂ γ + U,

where V̂ is the matrix of the fitted residuals from the regression of X against Z,

X = ZΠ̂ + V̂ ,

and Π̂ = (Z ′Z)−1Z ′X is the OLS estimator from the regression of X against Z. Show that β̃ = β̂ by
following the steps below:

1. Use the partitioned regression result to write β̃ = (X ′MX)−1X ′MY , and define the matrix M in
terms of V̂ .

2. Using the definition of M from part (i) and the definition of V̂ , show that X ′MX = X ′PZX.

3. Repeat the same steps as in (ii) to show that X ′MY = X ′PZY .

Solution.
Write

β̃ = (X ′MV̂ X)−1X ′MV̂ Y,

where

MV̂ = I − V̂ (V̂ ′V̂ )−1V̂ ′

= I −MZX(X ′MZX)−1X ′MZ .

Therefore,

X ′MV̂ X = X ′X −X ′MZX(X ′MZX)−1X ′MZX

= X ′X −X ′MZX

= X ′(I −MZ)X

= X ′PZX.

Similarly,

X ′MV̂ Y = X ′Y −X ′MZX(X ′MZX)−1X ′MZY

= X ′Y −X ′MZY

= X ′(I −MZ)Y

= X ′PZY.
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