Homework 6

Problem 1. In this question, you will derive the asymptotic distribution of the OLS estimator under endogeneity. Consider the usual linear regression model $Y_i = X'_i \beta + U_i$, where β is a $k \times 1$ vector. Assume, however, that X_i 's are endogenous:

$$\mathbb{E}X_iU_i = \mu \neq 0,$$

where μ is an unknown $k \times 1$ vector. Let $\hat{\beta}_n$ denote the OLS estimator of β . Make the following additional assumptions:

- A1. Data are iid.
- **A2.** $Q = \mathbb{E}X_i X_i'$ is finite and positive definite.
- **A3.** $\mathbb{E}(U_i X_i'\delta)^2 X_i X_i'$ is finite and positive definite, where $\delta = Q^{-1}\mu$.
 - 1. Find the probability limit of $\hat{\beta}_n$.
 - 2. Re-write the model as $Y_i = X_i'(\beta + \delta) + (U_i X_i'\delta)$ and find $\mathbb{E}X_i(U_i X_i'\delta)$.
 - 3. Using the result in (ii), derive the asymptotic distribution of $\hat{\beta}_n$ and find its asymptotic variance. Explain how this result differs from the asymptotic normality of OLS with exogenous regressors. Hint: To establish asymptotic normality, $\hat{\beta}_n$ must be properly re-centered based on the result in (i).
 - 4. Can $\hat{\beta}_n$ and its asymptotic distribution be used for inference about β ? Explain why or why not.
 - 5. Suppose that the errors U_i 's are homoskedastic:

$$\mathbb{E}\left(U_i^2|X_i\right) = \sigma^2 = const.$$

Consider the usual estimator of the asymptotic variance of OLS designed for a model with homoskedastic errors and exogenous regressors:

$$n^{-1} \sum_{i=1}^{n} \left(Y_i - X_i' \hat{\beta}_n \right)^2 \left(n^{-1} \sum_{i=1}^{n} X_i X_i' \right)^{-1}.$$

Is it consistent for the asymptotic variance of the OLS estimator if X_i 's are in fact endogenous? Explain why or why not.

6. Continue to assume that U_i 's are homoskedastic as in (v). Consider the usual heteroskedasticity-robust asymptotic variance estimator designed for a model with exogenous regressors:

$$\left(n^{-1}\sum_{i=1}^{n}X_{i}X_{i}'\right)^{-1}\left(n^{-1}\sum_{i=1}^{n}\left(Y_{i}-X_{i}'\hat{\beta}_{n}\right)^{2}X_{i}X_{i}'\right)\left(n^{-1}\sum_{i=1}^{n}X_{i}X_{i}'\right)^{-1}.$$

Is it consistent for the asymptotic variance of the OLS estimator if X_i 's are in fact endogenous? Explain why or why not.

Problem 2. Consider the linear regression model $Y = X\beta + e$, where X is the $n \times k$ matrix of regressors, Y is the n-vector of observations on the dependent variable, and $\beta \in \mathbb{R}^k$ is the vector of unknown parameters. Let Z be the $n \times k$ matrix of instruments. Assume that:

• X and Z are strongly exogenous: $\mathbb{E}(e|X,Z) = 0$.

- e is homoskedastic: $\mathbb{E}(ee'|X,Z) = \sigma^2 I_n$.
- X and Z'X have rank k.

Let $\hat{\boldsymbol{\beta}} = \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1} \boldsymbol{X}' \boldsymbol{Y}$ and $\tilde{\boldsymbol{\beta}} = \left(\boldsymbol{Z}' \boldsymbol{X} \right)^{-1} \boldsymbol{Z}' \boldsymbol{Y}$ be the OLS and IV estimators of $\boldsymbol{\beta}$ respectively.

- 1. Show that $\mathbb{E}(e|X) = \mathbf{0}$ and $\mathbb{E}(ee'|X) = \sigma^2 I_n$.
- 2. Show that the OLS and IV estimators are unbiased.
- 3. Find the exact finite sample conditional variances of $\hat{\boldsymbol{\beta}}$ and $\tilde{\boldsymbol{\beta}}$: Var $(\hat{\boldsymbol{\beta}}|\boldsymbol{X},\boldsymbol{Z})$ and Var $(\tilde{\boldsymbol{\beta}}|\boldsymbol{X},\boldsymbol{Z})$. Show that

$$\operatorname{Var}\left(\tilde{\boldsymbol{\beta}}|\boldsymbol{X},\boldsymbol{Z}\right) - \operatorname{Var}\left(\hat{\boldsymbol{\beta}}|\boldsymbol{X},\boldsymbol{Z}\right)$$
$$= \sigma^{2} \left(\boldsymbol{Z}'\boldsymbol{X}\right)^{-1} \boldsymbol{Z}' \left(\boldsymbol{I}_{n} - \boldsymbol{X}\left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1} \boldsymbol{X}'\right) \boldsymbol{Z} \left(\boldsymbol{X}'\boldsymbol{Z}\right)^{-1}.$$

4. When regressors are exogenous, should the econometrician use IV or OLS? Explain why using the result in in part (iii).

Problem 3. Consider a simple IV regression model:

$$Y_i = \beta X_i + U_i$$

where X_i is a single regressor, i.e. $\beta \in \mathbb{R}$. Let Z_i be a single exogenous IV:

$$\mathbb{E}Z_iU_i=0,$$

however, assume that Z_i is an irrelevant instrument in the sense that:

$$\mathbb{E}Z_iX_i=0.$$

Assuming that data $\{(Y_i, X_i, Z_i) : i = 1, ..., n\}$ are iid and that the following 2×2 matrix is finite and positive definite

$$\begin{pmatrix} \mathbb{E}(U_i^2 Z_i^2) & \mathbb{E}(U_i X_i Z_i^2) \\ \mathbb{E}(U_i X_i Z_i^2) & \mathbb{E}(X_i^2 Z_i^2) \end{pmatrix},$$

derive the distribution of the IV estimator by following the steps below.

1. Show that

$$n^{-1/2} \sum_{i=1}^{n} Z_i \begin{pmatrix} U_i \\ X_i \end{pmatrix} \to_d \begin{pmatrix} \Psi_U \\ \Psi_X \end{pmatrix},$$

where Ψ_U and Ψ_X are two random variables following a bivariate normal distribution.

2. Using the result in (i) and the continuous mapping theorem, derive the asymptotic distribution of

$$\hat{\beta}_n^{IV} - \beta$$
,

where $\hat{\beta}_n^{IV}$ is the IV estimator of β .

3. Is $\hat{\beta}_n^{IV}$ consistent in this case? Explain why or why not.

Problem 4. Consider a regression model with potentially endogenous regressors:

$$Y_i = X_i'\beta + U_i, \quad \beta \in \mathbb{R}^k.$$

Let Z_i be the *l*-vector of instruments such that $l \geq k$,

$$\operatorname{rank}(\mathbb{E}Z_iX_i') = k,$$
$$\mathbb{E}Z_iU_i = 0.$$

Let R be a $q \times k$ matrix of rank q, and let r be a $q \times 1$ vector; both R and r are known. Let W_n be an $l \times l$ matrix such that

$$W_n \to_p W$$
,

where W is symmetric and positive definite. Let $\tilde{\beta}_n$ be the restricted GMM estimator: $\tilde{\beta}_n$ minimizes the GMM criterion function $(Y - Xb)'ZW_nZ'(Y - Xb)$ subject to the restriction Rb - r = 0, where

$$Y = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix}, \quad X = \begin{pmatrix} X_1' \\ \vdots \\ X_n' \end{pmatrix}, \quad Z = \begin{pmatrix} Z_1' \\ \vdots \\ Z_n' \end{pmatrix}.$$

1. Show that $\tilde{\beta}_n$ solves

$$-X'ZW_nZ'(Y-X\tilde{\beta}_n) + R'\tilde{\lambda}_n = 0,$$

where $\tilde{\lambda}_n$ is the q-vector of Lagrange multipliers.

2. Show that

$$\tilde{\beta}_n = \hat{\beta}_n - (X'ZW_nZ'X)^{-1}R'\tilde{\lambda}_n,$$

where $\hat{\beta}_n$ is the unconstrained GMM estimator, i.e.

$$\hat{\beta}_n = \arg\min_{b \in \mathbb{R}^k} (Y - Xb)' Z W_n Z' (Y - Xb).$$

3. Using the the result from (ii) and the fact that $\tilde{\beta}_n$ satisfies the constraint, show that

$$\tilde{\beta}_n = \hat{\beta}_n - (X'ZW_nZ'X)^{-1}R'(R(X'ZW_nZ'X)^{-1}R')^{-1}(R\hat{\beta}_n - r).$$

4. Suppose that data are iid, and the instruments and regressors have finite second moments. Find the probability limit of the restricted GMM estimator, i.e. find the expression for β^* in

$$\tilde{\beta}_n \to_n \beta^*$$
.

Under what condition the restricted GMM estimator $\tilde{\beta}_n$ is consistent?

5. Suppose that $R\beta = r$. Find the probability limit of $\tilde{\lambda}_n/n^2$. Explain how the result can be used for testing $H_0: R\beta = r$ against $H_1: R\beta \neq r$. You do not have to figure out the details of such a test, only to explain why the probability limit of $\tilde{\lambda}_n/n^2$ is useful for construction of the test.

Problem 5. Consider the following regression model:

$$Y = X\beta + U$$
.

where Y is an $n \times 1$ vector of observations on the dependent variable and X is an $n \times k$ matrix of observations on the regressors. Let Z be an $n \times l$ matrix of observations on the instruments, $l \geq k$. The 2SLS estimator of β can be written as $\hat{\beta} = (X'P_ZX)^{-1}X'P_ZY$, where $P_Z = Z(Z'Z)^{-1}Z'$. Let $\tilde{\beta}$ be the OLS estimator of the coefficients on X in the regression of Y against X and \hat{V} :

$$Y = X\beta + \hat{V}\gamma + U,$$

where \hat{V} is the matrix of the fitted residuals from the regression of X against Z,

$$X = Z\hat{\Pi} + \hat{V}$$

and $\hat{\Pi} = (Z'Z)^{-1}Z'X$ is the OLS estimator from the regression of X against Z. Show that $\tilde{\beta} = \hat{\beta}$ by following the steps below:

- 1. Use the partitioned regression result to write $\tilde{\beta} = (X'MX)^{-1}X'MY$, and define the matrix M in terms of \hat{V} .
- 2. Using the definition of M from part (i) and the definition of \hat{V} , show that $X'MX = X'P_ZX$.
- 3. Repeat the same steps as in (ii) to show that $X'MY = X'P_ZY$.