
Homework 6

Problem 1. In this question, you will derive the asymptotic distribution of the OLS estimator under
endogeneity. Consider the usual linear regression model Yi = X ′iβ + Ui, where β is a k × 1 vector. Assume,
however, that Xi’s are endogenous:

EXiUi = µ 6= 0,

where µ is an unknown k × 1 vector. Let β̂n denote the OLS estimator of β. Make the following additional
assumptions:
A1. Data are iid.
A2. Q = EXiX

′
i is finite and positive definite.

A3. E (Ui −X ′iδ)
2
XiX

′
i is finite and positive definite, where δ = Q−1µ.

1. Find the probability limit of β̂n.

2. Re-write the model as Yi = X ′i(β + δ) + (Ui −X ′iδ) and find EXi(Ui −X ′iδ).

3. Using the result in (ii), derive the asymptotic distribution of β̂n and find its asymptotic variance.
Explain how this result differs from the asymptotic normality of OLS with exogenous regressors. Hint:
To establish asymptotic normality, β̂n must be properly re-centered based on the result in (i).

4. Can β̂n and its asymptotic distribution be used for inference about β? Explain why or why not.

5. Suppose that the errors Ui’s are homoskedastic:

E
(
U2
i |Xi

)
= σ2 = const.

Consider the usual estimator of the asymptotic variance of OLS designed for a model with homoskedas-
tic errors and exogenous regressors:

n−1
n∑

i=1

(
Yi −X ′iβ̂n

)2(
n−1

n∑
i=1

XiX
′
i

)−1
.

Is it consistent for the asymptotic variance of the OLS estimator if Xi’s are in fact endogenous? Explain
why or why not.

6. Continue to assume that Ui’s are homoskedastic as in (v). Consider the usual heteroskedasticity-robust
asymptotic variance estimator designed for a model with exogenous regressors:(

n−1
n∑

i=1

XiX
′
i

)−1(
n−1

n∑
i=1

(
Yi −X ′iβ̂n

)2
XiX

′
i

)(
n−1

n∑
i=1

XiX
′
i

)−1
.

Is it consistent for the asymptotic variance of the OLS estimator if Xi’s are in fact endogenous? Explain
why or why not.

Problem 2. Consider the linear regression model Y = Xβ+e, whereX is the n×k matrix of regressors, Y
is the n-vector of observations on the dependent variable, and β ∈ Rk is the vector of unknown parameters.
Let Z be the n× k matrix of instruments. Assume that:

• X and Z are strongly exogenous: E (e|X,Z) = 0.

1



• e is homoskedastic: E (ee′|X,Z) = σ2In.

• X and Z ′X have rank k.

Let β̂ =
(
X ′X

)−1
X ′Y and β̃ =

(
Z ′X

)−1
Z ′Y be the OLS and IV estimators of β respectively.

1. Show that E (e|X) = 0 and E (ee′|X) = σ2In.

2. Show that the OLS and IV estimators are unbiased.

3. Find the exact finite sample conditional variances of β̂ and β̃: Var
(
β̂|X,Z

)
and Var

(
β̃|X,Z

)
. Show

that

Var
(
β̃|X,Z

)
−Var

(
β̂|X,Z

)
=σ2

(
Z ′X

)−1
Z ′
(
In −X

(
X ′X

)−1
X ′
)
Z
(
X ′Z

)−1
.

4. When regressors are exogenous, should the econometrician use IV or OLS ? Explain why using the
result in in part (iii).

Problem 3. Consider a simple IV regression model:

Yi = βXi + Ui,

where Xi is a single regressor, i.e. β ∈ R. Let Zi be a single exogenous IV:

EZiUi = 0,

however, assume that Zi is an irrelevant instrument in the sense that:

EZiXi = 0.

Assuming that data {(Yi, Xi, Zi) : i = 1, . . . , n} are iid and that the following 2 × 2 matrix is finite and
positive definite (

E(U2
i Z

2
i ) E(UiXiZ

2
i )

E(UiXiZ
2
i ) E(X2

i Z
2
i )

)
,

derive the distribution of the IV estimator by following the steps below.

1. Show that

n−1/2
n∑

i=1

Zi

(
Ui

Xi

)
→d

(
ΨU

ΨX

)
,

where ΨU and ΨX are two random variables following a bivariate normal distribution.

2. Using the result in (i) and the continuous mapping theorem, derive the asymptotic distribution of

β̂IV
n − β,

where β̂IV
n is the IV estimator of β.

3. Is β̂IV
n consistent in this case? Explain why or why not.

Problem 4. Consider a regression model with potentially endogenous regressors:

Yi = X ′iβ + Ui, β ∈ Rk.

2



Let Zi be the l-vector of instruments such that l ≥ k,

rank(EZiX
′
i) = k,

EZiUi = 0.

Let R be a q × k matrix of rank q, and let r be a q × 1 vector; both R and r are known. Let Wn be an l× l
matrix such that

Wn →p W,

where W is symmetric and positive definite. Let β̃n be the restricted GMM estimator: β̃n minimizes the
GMM criterion function (Y −Xb)′ZWnZ

′(Y −Xb) subject to the restriction Rb− r = 0, where

Y =

 Y1
...
Yn

 , X =

 X ′1
...
X ′n

 , Z =

 Z ′1
...
Z ′n

 .

1. Show that β̃n solves
−X ′ZWnZ

′(Y −Xβ̃n) +R′λ̃n = 0,

where λ̃n is the q-vector of Lagrange multipliers.

2. Show that
β̃n = β̂n − (X ′ZWnZ

′X)−1R′λ̃n,

where β̂n is the unconstrained GMM estimator, i.e.

β̂n = arg min
b∈Rk

(Y −Xb)′ZWnZ
′(Y −Xb).

3. Using the the result from (ii) and the fact that β̃n satisfies the constraint, show that

β̃n = β̂n − (X ′ZWnZ
′X)−1R′(R(X ′ZWnZ

′X)−1R′)−1(Rβ̂n − r).

4. Suppose that data are iid, and the instruments and regressors have finite second moments. Find the
probability limit of the restricted GMM estimator, i.e. find the expression for β∗ in

β̃n →p β
∗.

Under what condition the restricted GMM estimator β̃n is consistent?

5. Suppose that Rβ = r. Find the probability limit of λ̃n/n2. Explain how the result can be used for
testing H0 : Rβ = r against H1 : Rβ 6= r. You do not have to figure out the details of such a test, only
to explain why the probability limit of λ̃n/n2 is useful for construction of the test.

Problem 5. Consider the following regression model:

Y = Xβ + U,

where Y is an n×1 vector of observations on the dependent variable and X is an n×k matrix of observations
on the regressors. Let Z be an n× l matrix of observations on the instruments, l ≥ k. The 2SLS estimator
of β can be written as β̂ = (X ′PZX)−1X ′PZY , where PZ = Z(Z ′Z)−1Z ′. Let β̃ be the OLS estimator of
the coefficients on X in the regression of Y against X and V̂ :

Y = Xβ + V̂ γ + U,

where V̂ is the matrix of the fitted residuals from the regression of X against Z,

X = ZΠ̂ + V̂ ,

and Π̂ = (Z ′Z)−1Z ′X is the OLS estimator from the regression of X against Z. Show that β̃ = β̂ by
following the steps below:
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1. Use the partitioned regression result to write β̃ = (X ′MX)−1X ′MY , and define the matrix M in
terms of V̂ .

2. Using the definition of M from part (i) and the definition of V̂ , show that X ′MX = X ′PZX.

3. Repeat the same steps as in (ii) to show that X ′MY = X ′PZY .
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