Statistical Learning

Homework 1

Part 1: Conceptual Questions

Problem 1. Let (X, Y) be a pair of random variables. Show that if $E[Y \mid X] = E[Y]$, then Cov[X, Y] = 0.

Problem 2. Let (X, Y) be a pair of random variables. Denote $f(X) = E[Y \mid X]$. Show that for any function g,

$$E[(Y - f(X))^{2} | X] \le E[(Y - g(X))^{2} | X].$$

Hint: write

$$E[(Y - g(X))^{2} | X] = E[(Y - f(X) + f(X) - g(X))^{2} | X]$$

and use the law of iterated expectations (LIE).

Problem 3. Given training data $\operatorname{Tr} = \{(X_1, Y_1), ..., (X_n, Y_n)\}$ and a predictor $\hat{f}(x)$ which depends on Tr for any x, we have a new observation (X_0, Y_0) that is independent from Tr . Suppose that (X_0, Y_0) is generated by the model $Y_0 = f(X_0) + \epsilon_0$ with ϵ_0 being a new error term that is independent from (X_0, Tr) . Show that the conditional expected test MSE can be decomposed into

$$E\left[\left(Y_{0} - \hat{f}\left(X_{0}\right)\right)^{2} \mid X_{0}\right] = Var\left[\epsilon\right] + Bias\left(X_{0}\right)^{2} + Variance\left(X_{0}\right)$$

where Bias $(X_0) = \mathbb{E}\left[\hat{f}(X_0) \mid X_0\right] - f(X_0)$ and

$$\operatorname{Variance}\left(X_{0}\right)=\operatorname{Var}\left[\hat{f}\left(X_{0}\right)\mid X_{0}\right]=\operatorname{E}\left[\left(\hat{f}\left(X_{0}\right)-\operatorname{E}\left[\hat{f}\left(X_{0}\right)\mid X_{0}\right]\right)^{2}\mid X_{0}\right].$$

Hint: by LIE, write

$$E\left[\left(Y_{0} - \hat{f}\left(X_{0}\right)\right)^{2} \mid X_{0}\right] = E\left[E\left[\left(Y_{0} - \hat{f}\left(X_{0}\right)\right)^{2} \mid X_{0}, \mathsf{Tr}\right] \mid X_{0}\right]$$

$$= E\left[E\left[\left(Y_{0} - f\left(X_{0}\right) + f\left(X_{0}\right) - \hat{f}\left(X_{0}\right)\right)^{2} \mid X_{0}, \mathsf{Tr}\right] \mid X_{0}\right].$$

You may use the result $E[Y_0 \mid \mathsf{Tr}, X_0] = E[Y_0 \mid X_0]$ without proving it.

Problem 4. Suppose that Y is a binary response variable. The range of values taken by Y is $\{0,1\}$. The goal is to predict Y given another random variable X. When we observe a new X, we predict Y to be h(X), where $h: \mathbb{R} \to \{0,1\}$ is a function that takes 0 or 1. We call h a classification rule. The "classification risk" of h is

$$R(h) = \Pr(Y \neq h(X)).$$

Let $m(x) = E[Y \mid X = x]$. Since Y is binary,

$$E[Y \mid X = x] = 1 \times Pr(Y = 1 \mid X = x) + 0 \times Pr(Y = 0 \mid X = x) = Pr(Y = 1 \mid X = x).$$

(You may assume X is discrete if you have difficulty making sense of "Pr $(Y = 1 \mid X = x)$ ". This is like Pr $(A \mid B)$ with A being the event "Y = 1" and B being the event X = x. Show that the rule that minimizes R(h) is

$$h^*(x) = \begin{cases} 1 & \text{if } m(x) > \frac{1}{2} \\ 0 & \text{otherwise.} \end{cases}$$

Hint: Note that

$$R(h) = \Pr(Y \neq h(X)) = \int \Pr(Y \neq h(x) \mid X = x) f_X(x) dx,$$

where the second equality follows from LIE. It suffices to show that

$$\Pr(Y \neq h(x) | X = x) - \Pr(Y \neq h^*(x) | X = x) > 0 \text{ for all } x.$$

Use
$$\Pr(Y \neq h(x) | X = x) = 1 - \Pr(Y = h(x) | X = x)$$
 and

$$\Pr(Y = h(x) \mid X = x) = h(x) \Pr(Y = 1 \mid X = x) + (1 - h(x)) \Pr(Y = 0 \mid X = x).$$

Problem 5. Let $\{x_i : i = 1, ..., n\}$ and $\{y_i : i = 1, ..., n\}$ be two sequences. Define the averages

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i,$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i.$$

- 1. Show that $\sum_{i=1}^{n} (x_i \bar{x}) = 0$.
- 2. Using the result in part (1), show that

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i (x_i - \bar{x}), \text{ and}$$

$$\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y}) = \sum_{i=1}^{n} y_i (x_i - \bar{x}) = \sum_{i=1}^{n} x_i (y_i - \bar{y}).$$

Problem 6. Given training data $\text{Tr} = \{(X_1, Y_1), ..., (X_n, Y_n)\}$, suppose that $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$ where ϵ_i is the error term. The simple regression coefficient presented in class is

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n \left(Y_i - \overline{Y} \right) \left(X_i - \overline{X} \right)}{\sum_{i=1}^n \left(X_i - \overline{X} \right)^2}.$$

Denote $X_1^n = (X_1, ..., X_n)$ for notational simplicity. Assume that $\mathbf{E}\left[\epsilon_i \mid X_1^n\right] = 0$, $\mathbf{E}\left[\epsilon_i^2 \mid X_1^n\right] = \sigma^2$ (for some $\sigma^2 > 0$) and $\mathbf{E}\left[\epsilon_i \epsilon_j \mid X_1^n\right] = 0$, $\forall i$ and $\forall j \neq i$.

1. Use the result in the last problem, show that

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \overline{X}) Y_i}{\sum_{i=1}^n (X_i - \overline{X})^2}.$$

- 2. Show that $\operatorname{E}\left[\hat{\beta}_1 \mid X_1^n\right] = \beta_1$ and $\operatorname{Var}\left[\hat{\beta}_1 \mid X_1^n\right] = \sigma^2 / \sum_{i=1}^n \left(X_i \overline{X}\right)^2$, where $\overline{X} = n^{-1} \sum_{i=1}^n X_i$.
- 3. Assume that the conditional distribution of ϵ_i given X_1^n is N $(0, \sigma^2)$. What is the conditional distribution of Y_i given X_1^n ?
- 4. What is the conditional distribution of $\hat{\beta}_1$ given X_1^n ?
- 5. What is the unconditional distribution of the z-statistic:

$$\frac{\hat{\beta}_1 - \beta_1}{\sqrt{\sigma^2 / \sum_{i=1}^n \left(X_i - \overline{X} \right)^2}}?$$

Problem 7. ISL (2nd edition) Question 7 on Page 54.

Part 2: Applied Questions

Write your answer in an RMarkdown report, print your report and hand in.

Problem 8. ISL (2nd edition) Question 8. Give answers to Parts a, b and c(i-iv).

Problem 9. ISL (2nd edition) Question 9. Give answers to Parts a, b, c and d.