
Statistical Learning

Homework 1

Part 1: Conceptual Questions

Problem 1. Let (X, Y ) be a pair of random variables. Show that if E [Y | X] = E [Y ], then
Cov [X, Y ] = 0.

Problem 2. Let (X, Y ) be a pair of random variables. Denote f (X) = E [Y | X]. Show
that for any function g,

E
[
(Y − f (X))2 | X

]
≤ E

[
(Y − g (X))2 | X

]
.

Hint: write

E
[
(Y − g (X))2 | X

]
= E

[
(Y − f (X) + f (X)− g (X))2 | X

]
and use the law of iterated expectations (LIE).

Problem 3. Given training data Tr = {(X1, Y1) , ..., (Xn, Yn)} and a predictor f̂ (x) which
depends on Tr for any x, we have a new observation (X0, Y0) that is independent from Tr.
Suppose that (X0, Y0) is generated by the model Y0 = f (X0) + ε0 with ε0 being a new error
term that is independent from (X0,Tr). Show that the conditional expected test MSE can
be decomposed into

E

[(
Y0 − f̂ (X0)

)2
| X0

]
= Var [ε] + Bias (X0)

2 + Variance (X0)

where Bias (X0) = E
[
f̂ (X0) | X0

]
− f (X0) and

Variance (X0) = Var
[
f̂ (X0) | X0

]
= E

[(
f̂ (X0)− E

[
f̂ (X0) | X0

])2
| X0

]
.

Hint: by LIE, write

E

[(
Y0 − f̂ (X0)

)2
| X0

]
= E

[
E

[(
Y0 − f̂ (X0)

)2
| X0,Tr

]
| X0

]
= E

[
E

[(
Y0 − f (X0) + f (X0)− f̂ (X0)

)2
| X0,Tr

]
| X0

]
.

You may use the result E [Y0 | Tr, X0] = E [Y0 | X0] without proving it.
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Problem 4. Suppose that Y is a binary response variable. The range of values taken by Y
is {0, 1}. The goal is to predict Y given another random variable X. When we observe a
new X, we predict Y to be h (X), where h : R→ {0, 1} is a function that takes 0 or 1. We
call h a classification rule. The “classification risk” of h is

R (h) = Pr (Y 6= h (X)) .

Let m (x) = E [Y | X = x]. Since Y is binary,

E [Y | X = x] = 1× Pr (Y = 1 | X = x) + 0× Pr (Y = 0 | X = x) = Pr (Y = 1 | X = x) .

(You may assume X is discrete if you have difficulty making sense of “Pr (Y = 1 | X = x)”.
This is like Pr (A | B) with A being the event “Y = 1” and B being the event X = x). Show
that the rule that minimizes R (h) is

h∗ (x) =

{
1 if m (x) > 1

2

0 otherwise.

Hint: Note that

R (h) = Pr (Y 6= h (X)) =

∫
Pr (Y 6= h (x) | X = x) fX (x) dx,

where the second equality follows from LIE. It suffices to show that

Pr (Y 6= h (x) | X = x)− Pr (Y 6= h∗ (x) | X = x) ≥ 0 for all x.

Use Pr (Y 6= h (x) | X = x) = 1− Pr (Y = h (x) | X = x) and

Pr (Y = h (x) | X = x) = h (x) Pr (Y = 1 | X = x) + (1− h (x)) Pr (Y = 0 | X = x) .

Problem 5. Let {xi : i = 1, . . . , n} and {yi : i = 1, . . . , n} be two sequences. Define the
averages

x̄ =
1

n

n∑
i=1

xi,

ȳ =
1

n

n∑
i=1

yi.

1. Show that
∑n

i=1 (xi − x̄) = 0.

2. Using the result in part (1), show that

n∑
i=1

(xi − x̄)2 =
n∑

i=1

xi (xi − x̄) , and

n∑
i=1

(xi − x̄) (yi − ȳ) =
n∑

i=1

yi (xi − x̄) =
n∑

i=1

xi (yi − ȳ) .
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Problem 6. Given training data Tr = {(X1, Y1) , ..., (Xn, Yn)}, suppose that Yi = β0+β1Xi+
εi where εi is the error term. The simple regression coefficient presented in class is

β̂1 =

∑n
i=1

(
Yi − Y

) (
Xi −X

)∑n
i=1

(
Xi −X

)2 .

DenoteXn
1 = (X1, ..., Xn) for notational simplicity. Assume that E [εi | Xn

1 ] = 0, E [ε2i | Xn
1 ] =

σ2 (for some σ2 > 0) and E [εiεj | Xn
1 ] = 0, ∀i and ∀j 6= i.

1. Use the result in the last problem, show that

β̂1 =

∑n
i=1

(
Xi −X

)
Yi∑n

i=1

(
Xi −X

)2 .
2. Show that E

[
β̂1 | Xn

1

]
= β1 and Var

[
β̂1 | Xn

1

]
= σ2/

∑n
i=1

(
Xi −X

)2, where X =

n−1
∑n

i=1Xi.

3. Assume that the conditional distribution of εi given Xn
1 is N (0, σ2). What is the

conditional distribution of Yi given Xn
1 ?

4. What is the conditional distribution of β̂1 given Xn
1 ?

5. What is the unconditional distribution of the z-statistic:

β̂1 − β1√
σ2/

∑n
i=1

(
Xi −X

)2 ?

Problem 7. ISL (2nd edition) Question 7 on Page 54.

Part 2: Applied Questions

Write your answer in an RMarkdown report, print your report and hand in.

Problem 8. ISL (2nd edition) Question 8. Give answers to Parts a, b and c(i-iv).

Problem 9. ISL (2nd edition) Question 9. Give answers to Parts a, b, c and d.
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