Statistical Learning

Homework 1

Part 1: Conceptual Questions

Problem 1. Let (X,Y') be a pair of random variables. Show that if E[Y | X| = E[Y], then
Cov [X,Y] = 0.

Solution. By law of iterated expectations (LIE), E[Y X]| =E[E[YX | X]|]=E[X -E[Y | X]] =
EX-E[Y]|=E[X]E[Y].

Problem 2. Let (X,Y) be a pair of random variables. Denote f(X) = E[Y | X]. Show
that for any function g,

E[(Y - f(X)"| X] <E[(Y —g (X)) | X].
Hint: write
E[(Y —g(X) | X] =E[(Y - f(X) + [ (X) - g(X))" | X]
and use the law of iterated expectations (LIE).

Solution. By LIE,

E[(Y—g(X)*|X] = E[(Y—f(X) F(X)=g(X))*| X]
= E[(Y = F (X)) | X] + (f (X) — g (X))*
+2-E[Y ( ) (f (X) — g (X)) | X]
Note that
E[Y-fX)([(X)—gX)|X] = (f(X)—g(X)E[Y - f(X)]X]
= (f(X)—g(X)(E}Y | X]-[f(X))
= 0.
Then,

E[Y —g (X)) [ X]=E[(Y - (X)) | X] + (f(X) =g (X)* 2 E[(Y - f (X))"| X].

Problem 3. Given training data Tr = {(X1,Y}), ..., (X,,Y,)} and a predictor f () which
depends on Tr for any z, we have a new observation (X, Yy) that is independent from Tr.
Suppose that (Xo, Yy) is generated by the model Yy = f (Xg) + €y with €, being a new error
term that is independent from (X, Tr). Show that the conditional expected test MSE can
be decomposed into

E {(YQ - f(X0)>2 | XU} = Var [¢] + Bias (X,)? + Variance (X)
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where Bias (Xy) = E [f (Xo) | Xo} — f(Xo) and

Variance (Xo) = Var [f (Xo) | XO] —E {(f (Xo) — E [f (Xo) | X0]>2 | Xo] .
Hint: by LIE, write
B[(5-Fo)’126] = E[E[(%-F0w) 1T 1]
= BB | (¥ £ ) + £ 0 = F0) 1 X0 1]

You may use the result E [Yg | Tr, Xo] = E [Yo | Xo] without proving it.
Solution. By LIE and simple algebra,

E {(YG - f(Xo)>2 | Xo] = E[E[(Yo— f(X0)* | Xo,Tr] | Xo]
VE [E [(f (Xo) — f(X0)>2 | Xo,Tr} | XO}

+2-E [E (% - £ (X0)) (f (Xo) = F (X0)) | Xo.Tr] | Xo|.
Then,
E[E[(Yo — f(X0))* | Xo, Tr] | Xo] = E [E ¢ | Xo, Tr] | Xo] = E[¢] = Var[d],
since € is independent from (X, Tr). Note that this implies that €2 is also independent from

(Xo, Tr) and therefore, €3 is mean independent from (X, Tr): E[€3 | Xo, Tr] = E [¢2] = Var[¢].
For the third term,

BB [(%— £ (X0) (f (X0) = f (X0)) | Xo, Tr] | Xo =
B[ (f(Xo) = f (X0)) E[(Yo — £ (Xo)) | Xo, T | Xo] =
B[ (£ (Xo) = f (X0)) Eleo | X0, | Xo| =0,
since E [eo | Xo, Tr] = E [eg] = 0. For the second term,
BB (7 060 - £ 00) 1 20,7 13| =B (1 0t - £ 060) 1 )
— | (£ (x0) - B [ ()| 6] + B [ (%) 3] - F(0)” 1 X0
— Bias (Xo)>+ Variance (Xo)+2-E [( f(Xo)—E [ F(X0) | XOD (E [ F(X0) | XO} 7 (Xo)) | XO} .
The conclusion follows from
B[ (f(X0) — B [F(X0) | Xo] ) (B[] (Xo) | Xo| = F (X0)) | Xo] =
(7 (X0) = E[f (Xo) | Xo] ) E[E [ (X0) | X| = f (Xo) | Xo| =
(£ X0 —E[£(X0) | Xo] ) (E | (o) | Xo| —E | (o) | Xo ) =0.
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Problem 4. Suppose that Y is a binary response variable. The range of values taken by Y
is {0,1}. The goal is to predict Y given another random variable X. When we observe a
new X, we predict Y to be h(X), where h: R — {0,1} is a function that takes 0 or 1. We

call h a classification rule. The “classification risk” of h is
R(h)=Pr(Y #h(X)).
Let m (z) = E[Y | X = z]. Since Y is binary,
EY | X=2]=1xPr(Y=1|X=2)+0xPr(Y=0|X=2)=Pr(Y=1|X=12).

(You may assume X is discrete if you have difficulty making sense of “Pr (Y =1 | X = z)".
This is like Pr (A | B) with A being the event “Y = 1”7 and B being the event X = x). Show
that the rule that minimizes R (h) is

h*(x):{l if m(z) > 3

0 otherwise.

Hint: Note that

R() =Pr(Y £h(X) = [Pr(Y £h(@)| X =) fx () ds
where the second equality follows from LIE. It suffices to show that

Pr(Y#h(z)| X=2)—Pr(Y #h"(z)| X =2) >0 for all z.
Use Pr(Y#h(z) | X=2)=1-Pr (Y =h(z)| X ==x) and

Pr(Y=h(z)| X=2)=h(zx)Pr(Y=1|X=2)+(1—-h(z)Pr(Y=0| X =2x).

Solution. Note:

Pr(Y#h(z)|X=2) = 1-Pr(Y =h(z)|X =2x)
l—[h(z)Pr(Y=1X=2)+(1—h(z)Pr(Y =0/X = 2x)]

L=[h(z)m(z) + (1 = h(z) (1 —m(z))]

Therefore,

Pr(Y#4h(x)|X =2)—Pr(Y #1h"(2)|X =2x)
=[P (x)m (x) + (1 = h" (2)) (L =m (2))] = [~ (z) m (2) + (1 = h(2)) (1 = m (2))]
=(2m (z) = 1) (0" (z) — h ()

5 (m (z) — %) (h* (z) — b (z)).

When m (z) > 1/2 and h* (z) = 1, (m(
h(x) =1 or h(x) = 0. When m(z) < 1/2 and h* (z)

again non-negative.

z) — 1) (h* (z) — h(z)) must be non-negative, since

0, (m(2) = 3) (h* () = h(2)) is



Problem 5. Let {z;:i=1,...,n} and {y;:i=1,...,n} be two sequences.
averages

_ 1
xr = — Xy,
n -
=1
n
_ 1
y = - Yi
n -
=1

1. Show that Y ", (z; — %) = 0.

2. Using the result in part (1), show that
Z (2 — ) = Zﬂﬂz (z; — ), and
i=1
Z(ﬂfi—f)(yi—@) = Zyz(%—f)zzxz(yz—@)
' i=1 i=1

Solution. (a)

Z(:Ui—j):ixi—Zf:n-j—n'f:O,
‘ i=1

i=1

because Y x; =n-Z. (b)

Z (@, — )" - Z (@, — ) :Z (@1 — 2 — s (a1 — )]
:g (0% — 20,3 + ) — (22 — 0s2)]
= il (2% — ;)
e )
:07i21

D@D =9 = (wi-D)yi-Y (z-2)y
—Z(ml—f)yi—yZ(xl—x)
= (Il_f)yu

Define the



where the last equality follows from > " | (x; — Z) = 0 proved in (a). The proof of

n n

Z(%—f)(%—ﬂ)IZ(yz’—@)%

i=1 i=1
is similar.
Problem 6. Given training data Tr = {(X1,Y7), ..., (X, Y,,) }, suppose that Y; = Go+ 1 X;+
€; where ¢; is the error term. The simple regression coefficient presented in class is
Bl _ Z?:l (Yi _?) ()ﬁzy)
Z:L:l (Xi - X )

Denote X7 = (X1, ..., X,,) for notational simplicity. Assume that E[¢; | X7'] =0, E[¢? | X7] =
o? (for some 0% > 0) and E [g¢; | X'] = 0, Vi and Vj # .

1. Use the result in the last problem, show that

B - Z?:l (Xi _7> Yi
Z?:l (Xi - 7)2 |

2. Show that E [Bl | Xy] — B and Var [Bl | Xy] = 02/, (X; - X)*, where X =
n_l Z?:l XZ

3. Assume that the conditional distribution of ¢; given X7 is N (0,0?). What is the
conditional distribution of Y; given X717

4. What is the conditional distribution of §; given X7?
5. What is the unconditional distribution of the z-statistic:
h-s
” —2
Vor/ S, (X - X)

Solution. For 1, use > " (v; — Z) (yi — y) = > iy ¥i (x; — T). For 2, use
Z?:l (Xi — Y) Yi
Z?:l (Xi - 7)2
D (Xi - X) (Bo+ B Xi + &)
Z?:l (Xi B 7)2

B =

Then, o
i " (X, — X)E[e | X7
E[ﬁl|X{1]_Bl+Zz:1( JEle | X7] _




Also,

Var[BuXﬂ:E[(Bl—E[BuX” | X { 1(&_?) }2|X?

|-
S—— {ﬂ 9e)
.

= [” Y X X)ee”X”]
POINCTED o S k=

n

3 (x ~-X)e | xp

i=1

1

) {zL, (Xi_Y)Q}Q {E

Now Var [31 | X{L] =0/ (X — 7)2 follows from

+E

iZ(Xi—Y) (Xj—Y)eieﬂX?”.

i=1 j#i

E[En:(Xi—Y)QeﬂXf] S (% - XV E[E] X = 0?3 (X - )’

i=1 =1 i=1

and

ZZX X) (X, - XeZeJ|X"] ZZX X) (X; - X)Elee; | X7 = 0.

=1 j#i =1 j#i

3. Y, | X7 ~ N (By + 51 X;,0%). 4. Bl given X7 is normal, since conditional on X7, ,@1 is a
linear function of Y7, ..., Y,,, which are jointly normal. And,

31|X{LNN<E [Bl‘Xﬂ , Var [Bl‘X?D ~ N (ﬁl’zﬂ ()J(j_Yf)'

=1
5. By 4, )
b1 — B
Vor/ S, (X - X)

The conditional distribution given X' of the z-statistic is independent from X7* (standard
normal), therefore, the unconditional distribution of it is also standard normal. (Why?)

Problem 7. ISL (2nd edition) Question 7 on Page 54.

Solution. (a) The distances are 3, 2, 3.16, 2.23, 1.41 and 1.73 (obs 1 to 6, respectively).
(b) The fifth observation is in the nearest neighbor. The prediction is Green, since the
KNN estimate of the conditional probability of Red is 0 and the estimated probability of
Green is 1. (c) The second, fifth and sixth are in the 3-nearest neighbor. KNN estimate
of the conditional probability of Red is 2/3 and the estimated probability of Green is 1/3.
The prediction is Red. (d) As K becomes larger, the KNN boundary becomes inflexible
(linear). So in this case we would expect that the optimal K should be small so that the
KNN boundary is flexible enough to approximate the Bayes decision boundary.

| X" ~N(0,1).
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Part 2: Applied Questions

Write your answer in an RMarkdown report, print your report and hand in.
Problem 8. ISL (2nd edition) Question 8. Give answers to Parts a, b and c(i-iv).

Problem 9. ISL (2nd edition) Question 9. Give answers to Parts a, b, ¢ and d.



