Statistical Learning

Homework 2

Part 1: Conceptual Questions

Problem 1. In an econometric model, we say that a parameter is identified if we can recover its value perfectly given the joint distribution of the observable variables. Suppose that (Y, X) is the observable variables and U is the unobservable variable.

- 1. Suppose that $Y = \beta_0 + \beta_1 X + U$ and E[U] = E[XU] = 0. Show that β_1 is identified. I.e., if you know the joint distribution of (Y, X), how do you determine the value of the parameter β_1 ?
- 2. Suppose that Y is binary and $Y = 1 (\beta_0 + \beta_1 X \ge U)$ and U is a standard normal (N(0,1)) random variable that is independent of X. If you know the joint distribution of (Y,X), how do you determine the value of the parameter β_1 ? Hint: $E[Y \mid X] = E[1(\beta_0 + \beta_1 X \ge U) \mid X] = \Phi(\beta_0 + \beta_1 X)$, where Φ is the standard normal CDF.

Solution. Take

$$Cov [Y, X] = Cov [\beta_0 + \beta_1 X + U, X] = Cov [\beta_1 X + U, X] = \beta_1 Cov [X, X] + Cov [U, X] = \beta_1 Var [X].$$

Therefore, $\beta_1 = \text{Cov}[Y, X]/\text{Var}[X]$. This quantity can be recovered if you know the joint distribution of (Y, X).

Similarly, $E[Y \mid X] = \Phi(\beta_0 + \beta_1 X)$ gives $\beta_0 + \beta_1 X = \Phi^{-1}(E[Y \mid X])$, where Φ^{-1} is the inverse function of $\Phi(\Phi)$ is strictly increasing). Then,

$$\operatorname{Cov}\left[\Phi^{-1}\left(\operatorname{E}\left[Y\mid X\right]\right),X\right]=\operatorname{Cov}\left[\beta_{0}+\beta_{1}X,X\right]=\beta_{1}\operatorname{Var}\left[X\right].$$

Therefore, $\beta_1 = \text{Cov} \left[\Phi^{-1}\left(\text{E}\left[Y\mid X\right]\right), X\right]/\text{Var}\left[X\right]$. This quantity can be recovered if you know the joint distribution of (Y,X).

Problem 2. In this question, we show that in linear regression R^2 is a non-decreasing function of the number of the regressors. Consider the sample $(Y_i, X_{1,i}, X_{2,i})$, i = 1, 2, ..., n, with two predictors $X_{1,i}, X_{2,i}$. Let $\tilde{\beta}_0, \tilde{\beta}_1$ denote the OLS coefficients of the linear regression of Y_i against $X_{1,i}$. Let $\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2$ denote the OLS coefficients of the linear regression of Y_i against $X_{1,i}, X_{2,i}$. Let \tilde{U}_i and \hat{U}_i denote the OLS residuals respectively. I.e.,

$$Y_i = \tilde{\beta}_0 + \tilde{\beta}_1 X_{1,i} + \tilde{U}_i,$$

$$Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1,i} + \hat{\beta}_2 X_{2,i} + \hat{U}_i.$$

1. Show that $\sum_{i=1}^{n} \tilde{U}_i = \sum_{i=1}^{n} \tilde{U}_i X_{1,i} = 0$ and $\sum_{i=1}^{n} \hat{U}_i = \sum_{i=1}^{n} \hat{U}_i X_{1,i} = \sum_{i=1}^{n} \hat{U}_i X_{2,i} = 0$.

- 2. Show that $\sum_{i=1}^n \tilde{U}_i \hat{U}_i = \sum_{i=1}^n \hat{U}_i^2$.
- 3. Show that $\sum_{i=1}^n \tilde{U}_i^2 \ge \sum_{i=1}^n \hat{U}_i^2$.
- 4. Show that the R^2 from the second (long) regression is larger than that of the first (short) regression.

Solution.

1. By definition, $(\tilde{\beta}_0, \tilde{\beta}_1)$ minimizes $\sum_{i=1}^n (Y_i - b_0 - b_1 X_{1,i})^2$ over (b_0, b_1) and $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)$ minimizes $\sum_{i=1}^n (Y_i - b_0 - b_1 X_{1,i} - b_2 X_{2,i})^2$ over (b_0, b_1, b_2) . The first-order conditions are satisfied:

$$\sum_{i=1}^{n} \left(Y_i - \tilde{\beta}_0 - \tilde{\beta}_1 X_{1,i} \right) = 0$$

$$\sum_{i=1}^{n} \left(Y_i - \tilde{\beta}_0 - \tilde{\beta}_1 X_{1,i} \right) X_{1,i} = 0$$

and

$$\sum_{i=1}^{n} \left(Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_{1,i} - \hat{\beta}_2 X_{2,i} \right) = 0$$

$$\sum_{i=1}^{n} \left(Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_{1,i} - \hat{\beta}_2 X_{2,i} \right) X_{1,i} = 0$$

$$\sum_{i=1}^{n} \left(Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_{1,i} - \hat{\beta}_2 X_{2,i} \right) X_{2,i} = 0.$$

2. By Part 1,

$$\sum_{i=1}^{n} \tilde{U}_{i} \hat{U}_{i} = \sum_{i=1}^{n} \left(Y_{i} - \tilde{\beta}_{0} - \tilde{\beta}_{1} X_{1,i} \right) \hat{U}_{i}
= \sum_{i=1}^{n} Y_{i} \hat{U}_{i}
= \sum_{i=1}^{n} \left(\hat{\beta}_{0} + \hat{\beta}_{1} X_{1,i} + \hat{\beta}_{2} X_{2,i} + \hat{U}_{i} \right) \hat{U}_{i}
= \sum_{i=1}^{n} \hat{U}_{i}^{2}.$$

3. By Part 2,

$$0 \le \sum_{i=1}^{n} \left(\tilde{U}_i - \hat{U}_i \right)^2 = \sum_{i=1}^{n} \tilde{U}_i^2 + \sum_{i=1}^{n} \hat{U}_i^2 - 2 \sum_{i=1}^{n} \tilde{U}_i \hat{U}_i = \sum_{i=1}^{n} \tilde{U}_i^2 - \sum_{i=1}^{n} \hat{U}_i^2.$$

4. Let R_{ur}^2 denote the R^2 from the long regression. Let R_r^2 denote the R^2 from the short regression. Then, $R_{ur}^2 = 1 - \sum_{i=1}^n \hat{U}_i^2 / \sum_{i=1}^n \left(Y_i - \overline{Y}\right)^2$ and $R_r^2 = 1 - \sum_{i=1}^n \tilde{U}_i^2 / \sum_{i=1}^n \left(Y_i - \overline{Y}\right)^2$, where $\overline{Y} = n^{-1} \sum_{i=1}^n Y_i$. Clearly, $R_{ur}^2 \geq R_r^2$.

Problem 3. Question 4 on Page 189 (ISL second edition).

Solution.

1. If $x \in [0.05, 0.95]$, then the observations used for prediction are in the interval [x - 0.05, x + 0.05]. If x < 0.05, the observations used for prediction in the interval [0, x + 0.05] which represents a fraction of (100x + 5)%. If x > 0.95, then the fraction of observations is (105 - 100x)%. To compute the average fraction,

$$\int_{0.05}^{0.95} 10 dx + \int_{0}^{0.05} (100x + 5) dx + \int_{0.95}^{1} (105 - 100x) dx = 9 + 0.375 + 0.375 = 9.75.$$

On average, the fraction of observations for prediction is 9.75%.

- 2. If we assume X_1 and X_2 to be independent, the fraction of observations for prediction is $9.75\%^2 \approx 0.95\%$.
- 3. The fraction of observations for prediction is $(9.75\%)^{100} \approx 0$.
- 4. The fraction of observations for prediction is $(9.75\%)^p$. We have $\lim_{p\uparrow\infty} (9.75\%)^p = 0$.
- 5. Let ℓ denote the length of the cube. For p = 1, $\ell = 0.1$. For p = 2, $\ell^2 = 0.1$. For p = 100, $\ell^{100} = 0.1$.

Problem 4. Define a density function

$$f(x \mid \theta) = \begin{cases} \left(1 + \frac{1 - 2\theta}{\theta - 1}\right) x^{\frac{1 - 2\theta}{\theta - 1}} & x \in (0, 1) \\ 0 & x \notin (0, 1), \end{cases}$$

where $0 < \theta < 1$ is a parameter. $X_1, ..., X_n$ is an independent and identically distributed sample with true density $f(\cdot \mid \theta_*)$ for some θ_* .

- 1. Show that $f(\cdot \mid \theta)$ is a probability density function, for all $0 < \theta < 1$.
- 2. Show that $\theta_* = \int_0^1 x f(x \mid \theta_*) dx$. I.e., in this parametrization, θ_* is also the population mean. Derive the method of moment estimator of θ_* .
- 3. Write the log-maximum likelihood function and derive the maximum likelihood estimator. Is it equal to the method of moment estimator?

Solution.

1. Compute

$$\int_0^1 f(x \mid \theta) \, dx = \left(1 + \frac{1 - 2\theta}{\theta - 1}\right) \int_0^1 x^{\frac{1 - 2\theta}{\theta - 1}} dx = \left(1 + \frac{1 - 2\theta}{\theta - 1}\right) \frac{1}{1 + \frac{1 - 2\theta}{\theta - 1}} x^{1 + \frac{1 - 2\theta}{\theta - 1}} \bigg|_0^1 = 1.$$

Therefore, $f(x \mid \theta) \ge 0$ and $\int_0^1 f(x \mid \theta) dx = 1$.

2. Compute

$$\int_{0}^{1} x f(x \mid \theta_{*}) dx = \left(1 + \frac{1 - 2\theta_{*}}{\theta_{*} - 1}\right) \int_{0}^{1} x \cdot x^{\frac{1 - 2\theta_{*}}{\theta_{*} - 1}} dx = \left(1 + \frac{1 - 2\theta_{*}}{\theta_{*} - 1}\right) \frac{1}{1 - \frac{\theta_{*}}{\theta_{*} - 1}} x^{1 - \frac{\theta_{*}}{\theta_{*} - 1}} \bigg|_{0}^{1} = \theta_{*}.$$

The method of moment estimator: $n^{-1} \sum_{i=1}^{n} X_i$.

• The log-maximum likelihood function is

$$\log L(\theta; X_1, ..., X_n) = n \log \left(\frac{\theta}{1-\theta}\right) + \frac{1-2\theta}{\theta-1} \sum_{i=1}^n \log(X_i).$$

Differentiating with respect to θ :

$$\frac{\partial \log L}{\partial \theta} = \frac{n}{\theta (1 - \theta)} + \frac{1}{(1 - \theta)^2} \sum_{i=1}^{n} \log (X_i).$$

Solving the first order condition, the maximum likelihood estimator is

$$\hat{\theta} = \frac{n}{n - \sum_{i=1}^{n} \log(X_i)},$$

which is different from the method of moments estimator.

Problem 5. Given training data $\operatorname{Tr} = \{(X_1, Y_1), ..., (X_n, Y_n)\}$, suppose that $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$ where ϵ_i is the error term. Denote $X_1^n = (X_1, ..., X_n)$ for notational simplicity. Assume that $\operatorname{E} [\epsilon_i \mid X_1^n] = 0$, $\operatorname{E} [\epsilon_i^2 \mid X_1^n] = \sigma^2$ (for some $\sigma^2 > 0$) and $\operatorname{E} [\epsilon_i \epsilon_j \mid X_1^n] = 0$, $\forall i$ and $\forall j \neq i$. Assume that the conditional distribution of ϵ_i given X_1^n is $\operatorname{N}(0, \sigma^2)$. Let $\hat{\beta}_0, \hat{\beta}_1$ denote the OLS estimator. Let x_0 be a fixed value and $y_0 = \beta_0 + \beta_1 x_0$. Let $\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$ be the estimator of y_0 . Let $Y_0 = y_0 + \epsilon_0$, where ϵ_0 denotes an error that is independent of the training data $\operatorname{Tr} (\epsilon_0 \mid \operatorname{Tr} \sim \operatorname{N}(0, \sigma^2))$. In this question, assume that σ^2 is known.

- 1. Show that $E[\hat{y}_0 \mid X_1^n] = y_0$ find the expression of $Var[\hat{y}_0 \mid X_1^n]$.
- 2. What is conditional distribution of \hat{y}_0 given X_1^n ?
- 3. What is conditional variance of $\hat{y}_0 Y_0$ given X_1^n ? Hint: $E[\epsilon_0 \mid \mathsf{Tr}] = E[\epsilon_0] = 0$ and by law of iterated expectations,

$$\mathrm{E}\left[\epsilon_{0}\hat{y}_{0}\mid X_{1}^{n}\right]=\mathrm{E}\left[\mathrm{E}\left[\epsilon_{0}\hat{y}_{0}\mid\mathsf{Tr}\right]\right]=\mathrm{E}\left[\hat{y}_{0}\mathrm{E}\left[\epsilon_{0}\mid\mathsf{Tr}\right]\right]=0.$$

What is conditional distribution of $\hat{y}_0 - Y_0$ given X_1^n ?

4. Propose a prediction interval [LB, UB] that covers Y_0 with probability 95%. Find LB and UB.

Solution.

1. Denote $\overline{Y} = n^{-1} \sum_{i=1}^{n} Y_i$, $\overline{X} = n^{-1} \sum_{i=1}^{n} X_i$ and $\overline{\epsilon} = n^{-1} \sum_{i=1}^{n} \epsilon_i$. We have $\hat{\beta}_1 = \sum_{i=1}^{n} \left(X_i - \overline{X}\right) Y_i / \sum_{i=1}^{n} \left(X_i - \overline{X}\right)^2$, $\hat{\beta}_0 = \overline{Y} - \overline{X} \hat{\beta}_1$ and $\overline{Y} = \beta_0 + \beta_1 \overline{X} + \overline{\epsilon}$. Then, $\hat{\beta}_0 = \beta_0 + \beta_1 \overline{X} + \overline{\epsilon} - \overline{X} \hat{\beta}_1 = \beta_0 + \overline{\epsilon} - \overline{X} \left(\hat{\beta}_1 - \beta_1\right)$. And,

$$\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0 = \beta_0 + \overline{\epsilon} - \overline{X} \left(\hat{\beta}_1 - \beta_1 \right) + \hat{\beta}_1 x_0$$

$$= \beta_0 + \beta_1 x_0 + \overline{\epsilon} - \frac{\sum_{i=1}^n \left(X_i - \overline{X} \right) \left(\overline{X} - x_0 \right) \epsilon_i}{\sum_{i=1}^n \left(X_i - \overline{X} \right)^2}$$

$$= \beta_0 + \beta_1 x_0 + \frac{1}{n} \sum_{i=1}^n \left\{ 1 - \frac{\left(X_i - \overline{X} \right) \left(\overline{X} - x_0 \right)}{\frac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2} \right\} \epsilon_i.$$

It follows that $E[\hat{y}_0 \mid X_1^n] = y_0$ and

$$\operatorname{Var}\left[\hat{y}_{0} \mid X_{1}^{n}\right] = \frac{1}{n^{2}} \sum_{i=1}^{n} \left\{ 1 - \frac{\left(X_{i} - \overline{X}\right)\left(\overline{X} - x_{0}\right)}{\frac{1}{n} \sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}} \right\}^{2} \sigma^{2} = \frac{1}{n} \left\{ 1 + \frac{\left(\overline{X} - x_{0}\right)^{2}}{\frac{1}{n} \sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}} \right\} \sigma^{2}.$$

- 2. Conditional on X_1^n , \hat{y}_0 is a linear function of $(\epsilon_1, \epsilon_2, ..., \epsilon_n)$, which is jointly normal. Therefore, $\hat{y}_0 \mid X_1^n \sim \mathrm{N}\left(y_0, \mathrm{Var}\left[\hat{y}_0 \mid X_1^n\right]\right)$.
- 3. $\hat{y}_0 Y_0 = \hat{y}_0 y_0 \epsilon_0$ and ϵ_0 is independent of $\hat{y}_0 y_0$. Then,

$$\operatorname{Var}\left[\hat{y}_{0} - Y_{0} \mid X_{1}^{n}\right] = \operatorname{E}\left[\left(\hat{y}_{0} - y_{0} - \epsilon_{0}\right)^{2} \mid X_{1}^{n}\right] = \frac{1}{n} \left\{1 + \frac{\left(\overline{X} - x_{0}\right)^{2}}{\frac{1}{n} \sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}}\right\} \sigma^{2} + \sigma^{2},$$

since $E\left[\epsilon_{0}\left(\hat{y}_{0}-y_{0}\right)\mid X_{1}^{n}\right]=0.\ \hat{y}_{0}-Y_{0}$ is a linear function of $(\epsilon_{1},\epsilon_{2},...,\epsilon_{n},\epsilon_{0}).\ \hat{y}_{0}-Y_{0}\mid X_{1}^{n}\sim N\left(E\left[\hat{y}_{0}-Y_{0}\mid X_{1}^{n}\right], Var\left[\hat{y}_{0}-Y_{0}\mid X_{1}^{n}\right]\right).$ And, it is easy to check $E\left[\hat{y}_{0}-Y_{0}\mid X_{1}^{n}\right]=0.$

4. Since

$$\hat{y}_0 - Y_0 \mid X_1^n \sim N\left(0, \frac{1}{n} \left\{1 + \frac{\left(\overline{X} - x_0\right)^2}{\frac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X}\right)^2}\right\} \sigma^2 + \sigma^2\right)$$

and therefore,

$$\frac{\hat{y}_0 - Y_0}{SE} \sim \mathcal{N}(0, 1), \text{ with } SE = \sqrt{\frac{1}{n} \left\{ 1 + \frac{\left(\overline{X} - x_0\right)^2}{\frac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X}\right)^2} \right\} \sigma^2 + \sigma^2}.$$

Then, $\Pr[|(\hat{y}_0 - Y_0)/SE| \le 1.96] = 95\%$. And therefore, $LB = \hat{y}_0 - 1.96 \cdot SE$ and $UB = \hat{y}_0 + 1.96 \cdot SE$.

Part 2: Applied Questions

Problem 6. Question 8 on Page 123 (ISL second edition).

Problem 7. Question 9 on Page 123 (ISL second edition).

Problem 8. Question 13 on Page 193 (ISL second edition).