
Statistical Learning

Homework 3

Part 1: Conceptual Questions

Problem 1. Consider a regression of Yi against a constant and Xi. Let β̂0, β̂1, and s2 denote
the estimated intercept, estimated slope parameter, and estimator of the variance of errors
from that regression. Let T denote the t-statistic for testing H0 that the slope parameter is
zero in that regression. Let pval be the corresponding p-value. Now, let c1 and c2 be two
constants (c2 6= 0). Define a new dependent variable and a new regressor as

Y ∗
i = c1Yi,

X∗
i = c2Xi.

Let β̂∗
0 , β̂∗

1 , and s2
∗ denote the estimated intercept, estimated slope parameter, and estimator

of the variance of errors from the regression of Y ∗
i against a constant and X∗

i . Let T ∗ denote
the t-statistic for testing H0 that the slope parameter in the regression of Y ∗

i against a
constant and X∗

i is zero. Let pval∗ be the corresponding p-value.

1. Find an expression for β̂∗
1 in terms of β̂1, c1, and c2.

2. Find an expression for β̂∗
0 in terms of β̂0 and c1.

3. Find an expression for s2
∗ in terms of s2 and c1.

4. What is the relationship between T and T ∗?

5. What is the relationship between pval and pval∗?

Solution.

(a) β̂∗
1 =

∑
i(X

∗
i −X̄∗)Y ∗

i∑
i(X

∗
i −X̄∗)2

=
∑

i(c2Xi−c2X̄)c1Yi∑
i(c2Xi−c2X̄)2

=
c1c2

∑
i(Xi−X̄)Yi

c22
∑

i(X−X̄)2
= c1

c2
β̂1.

(b) β̂∗
0 = Ȳ ∗ − β̂∗

1X̄
∗ = c1Ȳ − c1

c2
β̂1c2X̄ = c1Ȳ − c1β̂1X̄ = c1β̂0.

(c) First, Û∗
i = Y ∗

i − β̂∗
0 − β̂∗

1X
∗
i = c1Yi − c1β̂0 − c1

c2
β̂1c2Xi = c1Yi − c1β̂0 − c1β̂1Xi = c1Ûi.

Next, s2
∗ = 1

n−2

∑
i

(
Û∗
i

)2

= 1
n−2

∑
i

(
c1Ûi

)2

= c2
1s

2.
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(d) For H0 : β∗
1 = 0, we have

T ∗ = β̂∗
1/

√
s2
∗/
∑
i

(X∗
i − X̄∗)2

=
c1

c2

β̂1/

√
c2

1s
2/
∑
i

(c2Xi − c2X̄)2

=
c1

c2

β̂1/

√
(c1/c2)2 s2/

∑
i

(Xi − X̄)2

= β̂1/

√
s2/
∑
i

(Xi − X̄)2

= T.

Note that T is the test statistic for testing H0 : β1 = 0.

(e) Since T = T ∗ and df’s are the same in both cases, pval = pval∗. Thus, rescaling the
dependent variable and regressor has no effect on testing for significance of the slope
parameter.

Problem 2. ISL (2nd edition) Page 219, Question 1.

Solution. Compute

Var [αX + (1− α)Y ] = Var [αX] + Var [(1− α)Y ] + 2Cov [αX, (1− α)Y ]

= α2Var [X] + (1− α) Var [Y ] + 2α (1− α) Cov [X, Y ]

= σ2
Xα

2 + σ2
Y (1− α)2 + 2σXY

(
−α2 + α

)
.

Take derivative:

d

dα
Var [αX + (1− α)Y ] = 2ασ2

X + 2σ2
Y (1− α) (−1) + 2σXY (−2α + 1) .

The solution to
0 =

d

dα
Var [αX + (1− α)Y ]

is
α =

σ2
Y − σXY

σ2
X + σ2

Y − 2σXY
.

Problem 3. ISL (2nd edition) Page 284, Question 5.

Solution. (a) According to this setting (x11 = x12 = x1 and x21 = x22 = x2), the ridge
regression seeks to minimize

(y1 − b1x1 − b2x1)2 + (y2 − b1x2 − b2x2)2 + λ
(
b2

1 + b2
2

)
.

(b) By taking the derivative with respect to (b1, b2):

b1

(
x2

1 + x2
2 + λ

)
+ b2

(
x2

1 + x2
2

)
= y1x1 + y2x2
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and
b1

(
x2

1 + x2
2

)
+ b2

(
x2

1 + x2
2 + λ

)
= y1x1 + y2x2.

The solution
(
β̂1, β̂2

)
to the above equations satisfy β̂1 = β̂2.

(c) The LASSO optimization problem seeks to minimize

(y1 − b1x1 − b2x1)2 + (y2 − b1x2 − b2x2)2 + λ (|b1|+ |b2|) .

(d) Use the alternate form of the LASSO optimization problem: minimize

(y1 − b1x1 − b2x1)2 + (y2 − b1x2 − b2x2)2 subject to |b1|+ |b2| ≤ s.

Substitute x1 + x2 = 0 and y1 + y2 = 0 into the objective function to get

2 (y1 − (b1 + b2)x1)2 ≥ 0.

The unconstrained solution
(
β̂1, β̂2

)
must satisfy β̂1 + β̂2 = y1/x1. The constrained solution

of
min
b1,b2

2 (y1 − (b1 + b2)x1)2 subject to |b1|+ |b2| ≤ s

must be on the edges of the diamond of the constraints. The set of solutions must be either
of the two entire edges:

{(b1, b2) : b1 ≥ 0, b2 ≥ 0, b1 + b2 = s} (1)

and
{(b1, b2) : b1 ≤ 0, b2 ≤ 0, b1 + b2 = −s} . (2)

Finding the solutions boils down to comparing (y1 − s · x1)2 and (y1 + s · x1)2. In case
of (y1 − s · x1)2 ≥ (y1 + s · x1)2, (2) is the set of solutions. In case of (y1 − s · x1)2 ≤
(y1 + s · x1)2, (1) is the set of solutions. The constrained minimizer cannot occur at the
interior of the other two edges

{(b1, b2) : b1 ≥ 0, b2 ≤ 0, b1 − b2 = s}

and
{(b1, b2) : b1 ≤ 0, b2 ≥ 0,−b1 + b2 = s} .

Suppose that b1 ≥ 0, b2 ≤ 0, b1− b2 = s. Then, substitute b1− b2 = s into (y1 − (b1 + b2)x1)2

to get (y1 − (s+ 2b2)x1)2. Now choose b2 ∈ [−s, 0] to minimize it. It is clear that the
minimizer must be on the boundary, since the objective (y1 − (s+ 2b2)x1)2 is monotone in
b2.

Problem 4. ISL (2nd edition) Page 285, Question 7. Read “Bayesian Interpretation for
Ridge Regression and the Lasso” on Page 248.

Solution.
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(a) The likelihood:

f (Y | X, β) =
n∏
i=1

1√
2πσ

exp

−
(
yi − β0 −

∑p
j=1 βjxij

)2

2σ2


=

(
1√
2πσ

)n
exp

− 1

2σ2

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2
 .

(b) The posterior distribution:

p (β | X, Y ) � f (Y | X, β) p (β)

=

(
1√
2πσ

)n
exp

− 1

2σ2

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2
[ 1

2b
exp

(
−|β|
b

)]
,

where |β| =
∑p

j=1 |βj|.
(c) Rearrange:

f (Y | X, β) p (β) =

(
1√
2πσ

)n(
1

2b

)
exp

− 1

2σ2

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

− |β|
b

 .

Take log:

log (f (Y | X, β) p (β))

= log

((
1√
2πσ

)n(
1

2b

))
−

 1

2σ2

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+
|β|
b

 .

The posterior mode is

argmax
β

log (f (Y | X, β) p (β)) = argmin
β

 1

2σ2

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+
|β|
b


= argmin

β

 n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+
2σ2 |β|
b


= argmin

β

 n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

|βj|

 ,

where λ = 2σ2/b. The posterior mode is equal to the LASSO estimator with penalty
λ = 2σ2/b.
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(c) The posterior distribution:

p (β | X, Y ) � f (Y | X, β) p (β)

=

(
1√
2πσ

)n
exp

− 1

2σ2

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2
( 1√

2πc

)p
exp

(
− 1

2c

p∑
j=1

β2
j

)

=

(
1√
2πσ

)n(
1√
2πc

)p
exp

− 1

2σ2

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

− 1

2c

p∑
j=1

β2
j

 .

(d) The posterior mode is

argmax
β

log (f (Y | X, β) p (β)) = argmin
β

1

2σ2

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+
1

2c

p∑
j=1

β2
j

= argmin
β

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

β2
j ,

where λ = σ2/c. The posterior mode is equal to the ridge estimator with penalty λ = σ2/b.
The posterior distribution is normal. Therefore, the mode is equal to the mean.

Problem 5. Another resampling method is called jackknife, which is similar to LOOCV.
Suppose that θ̂ = ϕn (Z1, Z2, ..., Zn) is the estimator of an parameter θ. Denote θ̂−j =

ϕn−1 (Z1, ..., Zj−1, Zj+1, ..., Zn). θ̂−j is an estimator obtained by removing the j-th obser-
vation from the entire sample. The variation in

{
θ̂−j : j = 1, ..., n

}
should be informative

about the population variance of θ̂n. Denote θ̂ = n−1
∑n

j=1 θ̂−j. The Jackknife standard
error is

ŝejk =

√√√√n− 1

n

n∑
j=1

(
θ̂−j − θ̂

)2

.

An approximate 95% confidence interval is
[
θ̂n − 2 · ŝejk, θ̂n + 2 · ŝejk

]
. Consider the follow-

ing simple example: for i.i.d. random variables X1, X2, ..., Xn, where Xi ∼ N (θ, σ2), θ̂n =

n−1
∑n

i=1 Xi is an estimator of θ. Argue that when n is large, Pr
[
θ̂n − 2 · ŝejk ≤ θ ≤ θ̂n + 2 · ŝejk

]
is approximately 95% by showing that (n− 1)

∑n
j=1

(
θ̂−j − θ̂

)2

is equal to the sample vari-
ance.

Solution. Easy to compute

θ̂−j =
1

n− 1

(
nX −Xj

)
1

n

n∑
j=1

θ̂−j =
1

n (n− 1)

n∑
j=1

(
nX −Xj

)
= X.

5



For this simple case,

θ̂−j − θ̂ =
1

n− 1

(
nX −Xj

)
−X =

1

n− 1

(
X −Xj

)
.

We have

(n− 1)
n∑
j=1

(
θ̂−j − θ̂

)2

=
1

n− 1

n∑
j=1

(
Xj −X

)2
,

which is the sample variance that is a consistent and unbiased estimator for σ2. Therefore,

ŝe2
jk =

1

n
·

(
1

n− 1

n∑
j=1

(
Xj −X

)2

)

and
θ̂n − θ
ŝejk

∼ tn−1

and it is approximately normally distributed when n is large.

Part 2: Applied Questions

Problem 6. ISL (2nd edition) Page 220, Question 5.

Problem 7. ISL (2nd edition) Page 221, Question 6.

Problem 8. ISL (2nd edition) Page 285, Question 8.

Problem 9. ISL (2nd edition) Page 286, Question 9 (a,b,c,d).
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