Statistical Learning

Homework 4

Part 1: Conceptual Questions

Problem 1. ISL (second edition), Question 1 on Page 321.

Solution. (a) For $x \leq \xi$, we have

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3.$$

Take $a_1 = \beta_0$, $b_1 = \beta_1$, $c_1 = \beta_2$ and $d_1 = \beta_3$.

(b) For $x > \xi$, we have

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 (x - \xi)^3$$

= $\beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 (x^3 - \xi^3 + 3x\xi^2 - 3x^2\xi)$
= $(\beta_0 - \beta_4 \xi^3) + (\beta_1 + 3\beta_4 \xi^2) x + (\beta_2 - 3\beta_4 \xi) x^2 + (\beta_3 + \beta_4) x^3.$

Take $a_2 = \beta_0 - \beta_4 \xi^3$, $b_2 = \beta_1 + 3\beta_4 \xi^2$, $c_2 = \beta_2 - 3\beta_4 \xi$ and $d_2 = \beta_3 + \beta_4$. (c)

$$\lim_{x \uparrow \xi} f(x) = \lim_{x \uparrow \xi} f_1(x) = f_1(\xi) = \beta_0 + \beta_1 \xi + \beta_2 \xi^2 + \beta_3 \xi^3$$
$$\lim_{x \downarrow \xi} f(x) = \lim_{x \downarrow \xi} f_2(x) = f_2(\xi) = \beta_0 + \beta_1 \xi + \beta_2 \xi^2 + \beta_3 \xi^3,$$

where " $x \uparrow \xi$ " means that x approaches ξ from left.

(d) It is easy to check that

$$f_1'(x) = \beta_1 + 2\beta_2 x + 3\beta_3 x^2$$

$$f_2'(x) = (\beta_1 + 3\beta_4 \xi^2) + 2(\beta_2 - 3\beta_4 \xi) x + 3(\beta_3 + \beta_4) x^2.$$

Then,

$$\lim_{\Delta \uparrow 0} \frac{f(\xi + \Delta) - f(\xi)}{\Delta} = \lim_{x \uparrow \xi} f'(x) = \lim_{x \uparrow \xi} f'_1(x) = f'_1(\xi) = \beta_1 + 2\beta_2 \xi + 3\beta_3 \xi^2$$

$$\lim_{\Delta \downarrow 0} \frac{f(\xi + \Delta) - f(\xi)}{\Delta} = \lim_{x \downarrow \xi} f'(x) = \lim_{x \downarrow \xi} f'_2(x) = f'_2(\xi) = \beta_1 + 2\beta_2 \xi + 3\beta_3 \xi^2,$$

where the first equality follows from the mean value theorem: for $\Delta > 0$, $(f(\xi + \Delta) - f(\xi))/\Delta = f'(\dot{x})$, where $\xi < \dot{x} < \xi + \Delta$ and $\dot{x} \downarrow \xi$ as $\Delta \downarrow 0$.

(e) It is easy to check that

$$f_1''(x) = 2\beta_2 + 6\beta_3 x$$

$$f_2''(x) = 2(\beta_2 - 3\beta_4 \xi) + 6(\beta_3 + \beta_4) x.$$

Then,

$$\lim_{\Delta \uparrow 0} \frac{f'(\xi + \Delta) - f'(\xi)}{\Delta} = \lim_{x \uparrow \xi} f''(x) = \lim_{x \uparrow \xi} f_1''(x) = f_1''(\xi) = 2\beta_2 + 6\beta_3 \xi$$

$$\lim_{\Delta \downarrow 0} \frac{f'(\xi + \Delta) - f'(\xi)}{\Delta} = \lim_{x \downarrow \xi} f''(x) = \lim_{x \downarrow \xi} f_2''(x) = f_2''(\xi) = 2\beta_2 + 6\beta_3 \xi.$$

Problem 2. ISL (second edition), Question 2 on Page 322.

(a) Infinitely large penalty is imposed and forces g=0 (a constant function zero). In this case, $\hat{g}=0$.

(b) Penalty forces $g^{(1)} = 0$ and therefore $\hat{g} = m^*$, where

$$m^* = \underset{m}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - m)^2.$$

(c) Penalty forces $g^{(2)} = 0$ and therefore, $\hat{g}(x) = a^* + b^*x$, where

$$(a^*, b^*) = \underset{a,b}{\operatorname{argmin}} \sum_{i=1}^n (y_i - (a + bx_i))^2.$$

(d) Penalty forces $g^{(3)}=0$ and therefore, $\hat{g}\left(x\right)=a^{*}+b^{*}x+c^{*}x^{2}$, where

$$(a^*, b^*, c^*) = \underset{a,b,c}{\operatorname{argmin}} \sum_{i=1}^n (y_i - (a + bx_i + cx_i^2))^2.$$

(e) Zero penalty and therefore, \hat{g} interpolates the data, i.e., $\hat{g}(x_i) = y_i$, for all i.

Problem 3. ISL (second edition), Question 4 on Page 362.

Solution.

Part 2: Applied Questions

Problem 4. ISL (second edition), Question 9 on Page 324.

Problem 5. ISL (second edition), Question 8 on Page 363.