Classification

We will use the Smarket data. This data set consists of percentage returns for the S&P 500 stock index over
1, 250~days, from the beginning of 2001 until the end of 2005. For each date, we have recorded the percentage
returns for each of the five previous trading days, lagone through lagfive. We have also recorded volume
(the number of shares traded on the previous day, in billions), Today (the percentage return on the date
in question) and direction (whether the market was Up or Down on this date). Our goal is to predict
direction (a qualitative response) using the other features.

library (MASS)
library(ISLR2)

##
## 'ISLR2'

## The following object is masked from 'package:MASS':
##
## Boston

attach(Smarket)

Logistic Regression

We will fit a logistic regression model in order to predict direction using lagone through lagfive and
volume. The syntax of the glm() function is similar to that of 1m(), except that we must pass in the
argument family = binomial in order to tell R to run a logistic regression.

glm.fits <- glm(
Direction ~ Lagl + Lag2 + Lag3 + Lag4 + Lagb + Volume,

Smarket, binomial

)
summary (glm.fits)
##
## Call:
## glm(formula = Direction ~ Lagl + Lag2 + Lag3 + Lagd4 + Lagb +
## Volume, family = binomial, data = Smarket)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.446 -1.203 1.065 1.145 1.326
##
## Coefficients:
#t Estimate Std. Error z value Pr(>lzl)
## (Intercept) -0.126000 0.240736 -0.523 0.601
## Lagl -0.073074 0.050167 -1.457 0.145
## Lag2 -0.042301 0.050086 -0.845 0.398
## Lag3 0.011085 0.049939 0.222 0.824
## Lagd 0.009359 0.049974 0.187 0.851
## Lagh 0.010313 0.049511 0.208 0.835



## Volume 0.135441  0.158360 0.855 0.392

##

## (Dispersion parameter for binomial family taken to be 1)
##

## Null deviance: 1731.2 on 1249 degrees of freedom

## Residual deviance: 1727.6 on 1243 degrees of freedom
## AIC: 1741.6

##

## Number of Fisher Scoring iterations: 3

The predict() function can be used to predict the probability that the market will go up, given values of
the predictors. If no data set is supplied to the predict () function, then the probabilities are computed for
the training data. We know that these values correspond to the probability of the market going up, rather
than down, because the contrasts() function indicates that R has created a dummy variable with a 1 for
Up.

glm.probs <- predict(glm.fits, "response")

glm.probs[1:10]

## 1 2 3 4 5 6 7 8
## 0.5070841 0.4814679 0.4811388 0.5152224 0.5107812 0.5069565 0.4926509 0.5092292
#i# 9 10

## 0.5176135 0.4888378

contrasts(Direction)

## Up
## Down O
## Up 1

In order to make a prediction as to whether the market will go up or down on a particular day, we must
convert these predicted probabilities into class labels, Up or Down. The following two commands create a
vector of class predictions based on whether the predicted probability of a market increase is greater than
or less than 0.5.

glm.pred <- rep("Down", 1250)
glm.pred[glm.probs > .5] = "Up"

Given these predictions, the table() function can be used to produce a confusion matrix in order to deter-
mine how many observations were correctly or incorrectly classified. The mean() function can be used to
compute the fraction of days for which the prediction was correct.

table(glm.pred, Direction)

## Direction
## glm.pred Down Up
## Down 145 141
## Up 457 507

mean(glm.pred == Direction)

## [1] 0.5216

100% — 52.2% = 47.8%, is the training error rate. To estimate the test error rate, we can fit the model using
part of the data, and then examine how well it predicts the held out data. To implement this strategy, we
will first create a vector corresponding to the observations from 2001 through 2004. We will then use this
vector to create a held out data set of observations from 2005.

train <- (Year < 2005)
Smarket.2005 <- Smarket[!train, ]



dim(Smarket.2005)

## [1] 2562 9

Direction.2005 <- Direction[!train]

We now fit a logistic regression model using only the subset of the observations that correspond to dates
before 2005, using the subset argument. We then obtain predicted probabilities of the stock market going
up for each of the days in our test set.

glm.fits <- glm(
Direction ~ Lagl + Lag2 + Lag3 + Lag4 + Lagb + Volume,
Smarket, binomial, train
)
glm.probs <- predict(glm.fits, Smarket.2005,
"response")

We compute the predictions for 2005 and compare them to the actual movements of the market over that
time period.
glm.pred <- rep("Down", 252)

glm.pred[glm.probs > .5] <- "Up"
table(glm.pred, Direction.2005)

## Direction.2005
## glm.pred Down Up
## Down 77 97
#i# Up 34 44

mean(glm.pred == Direction.2005)

## [1] 0.4801587
mean(glm.pred != Direction.2005)

## [1] 0.5198413

The test error rate estimate is 52,%. Using predictors that have no relationship with the response tends to
cause a deterioration in the test error rate (since such predictors cause an increase in variance without a
corresponding decrease in bias). Below we have refit the logistic regression using just lagone and lagtwo,
which seemed to have the highest predictive power in the original logistic regression model.

glm.fits <- glm(Direction ~ Lagl + Lag?2, Smarket,
binomial, train)
glm.probs <- predict(glm.fits, Smarket.2005,
"response")
glm.pred <- rep("Down", 252)
glm.pred[glm.probs > .5] <- "Up"
table(glm.pred, Direction.2005)

## Direction.2005
## glm.pred Down Up
## Down 35 35
#i# Up 76 106

mean(glm.pred == Direction.2005)

## [1] 0.5595238



106 / (106 + 76)

## [1] 0.5824176

Suppose that we want to predict the returns associated with particular values of lagone and lagtwo. In
particular, we want to predict direction on a day when lagone and lagtwo equal 1.2 and 1.1, respectively,
and on a day when they equal 1.5 and $-$0.8. We do this using the predict () function.

predict(glm.fits,

data.frame( c(1.2, 1.5), c(1.1, -0.8)),
"response"

## 1 2
## 0.4791462 0.4960939

Linear Discriminant Analysis

We fit an LDA model using the 1da() function, which is part of the MASS library.

lda.fit <- lda(Direction ~ Lagl + Lag2, Smarket,
train)
lda.pred <- predict(lda.fit, Smarket.2005)

The LDA and logistic regression predictions are almost identical.

lda.class <- lda.pred$class
table(lda.class, Direction.2005)

## Direction.2005
## lda.class Down Up
## Down 35 35
#i# Up 76 106

mean(lda.class == Direction.2005)

## [1] 0.5595238

Applying a 50,% threshold to the posterior probabilities allows us to recreate the predictions contained in
lda.pred$class.

sum(lda.pred$posterior[, 1] >= .5)

## [1]1 70
sum(lda.pred$posterior[, 1] < .5)

## [1] 182

Notice that the posterior probability 1da.pred$posterior[, 1] corresponds to the probability that the
market will decrease:

lda.pred$posterior[1:20, 1]

## 999 1000 1001 1002 1003 1004 1005 1006
## 0.4901792 0.4792185 0.4668185 0.4740011 0.4927877 0.4938562 0.4951016 0.4872861
## 1007 1008 1009 1010 1011 1012 1013 1014
## 0.4907013 0.4844026 0.4906963 0.5119988 0.4895152 0.4706761 0.4744593 0.4799583
## 1015 1016 1017 1018



## 0.4935775 0.5030894 0.4978806 0.4886331
lda.class[1:20]

## [1J Up Up Up Up Up Up Up Up Up Up Up DownUp Up Up
## [16] Up Up Down Up Up
## Levels: Down Up

Use a posterior probability threshold other than 50,% to make predictions:
sum(1lda.pred$posterior[, 1] > .4)

## [1] 252

Quadratic Discriminant Analysis

qda.fit <- qda(Direction ~ Lagl + Lag2, Smarket,
train)

qda.class <- predict(qda.fit, Smarket.2005)$class

table(qda.class, Direction.2005)

#it Direction.2005
## qda.class Down Up
#i# Down 30 20
#i# Up 81 121

mean(qda.class == Direction.2005)

## [1] 0.5992063

Naive Bayes

Naive Bayes is implemented in R using the naiveBayes() function, which is part of the e1071 library. The
syntax is identical to that of 1da() and qda().

library(e1071)

nb.fit <- naiveBayes(Direction ~ Lagl + Lag2, Smarket,
train)

nb.class <- predict(nb.fit, Smarket.2005)

table(nb.class, Direction.2005)

## Direction.2005
## nb.class Down Up
## Down 28 20
#it Up 83 121

mean(nb.class == Direction.2005)

## [1] 0.5912698

Naive Bayes performs very well on this data, with accurate predictions over 59% of the time. This is slightly
worse than QDA, but much better than LDA.

The predict () function can also generate estimates of the probability that each observation belongs to a
particular class.

nb.preds <- predict(nb.fit, Smarket.2005, "raw"
nb.preds[1:5, ]



## Down Up
## [1,] 0.4873164 0.5126836
## [2,] 0.4762492 0.5237508
## [3,] 0.4653377 0.5346623
## [4,] 0.4748652 0.5251348
## [5,] 0.4901890 0.5098110

K-Nearest Neighbors

We will now perform KNN using the knn() function, which is part of the class library. knn() forms
predictions using a single command. The function requires four inputs.

e A matrix containing the predictors associated with the training data, labeled train.X below.

e A matrix containing the predictors associated with the data for which we wish to make predictions,
labeled test.X below.

e A vector containing the class labels for the training observations, labeled train.Direction below.

e A value for K, the number of nearest neighbors to be used by the classifier.

We use the cbind() function to bind the lagone and lagtwo variables together into two matrices, one for
the training set and the other for the test set.

library(class)

train.X <- cbind(Lagl, Lag2) [train, ]
test.X <- cbind(Lagl, Lag2)[!train, ]
train.Direction <- Direction[train]

Now the knn() function can be used to predict the market’s movement for the dates in 2005. We set a
random seed before we apply knn() because if several observations are tied as nearest neighbors, then R will
randomly break the tie. Therefore, a seed must be set in order to ensure reproducibility of results.

set.seed (1)
knn.pred <- knn(train.X, test.X, train.Direction, 1)
table(knn.pred, Direction.2005)

## Direction.2005
## knn.pred Down Up
## Down 43 58
#it Up 68 83

mean (knn.pred == Direction.2005)

## [1] 0.5

We repeat the analysis using K = 3.

knn.pred <- knn(train.X, test.X, train.Direction, 3)
table(knn.pred, Direction.2005)

## Direction.2005
## knn.pred Down Up
## Down 48 54
#it Up 63 87

mean (knn.pred == Direction.2005)

## [1] 0.5357143

The results have improved slightly. But increasing K further turns out to provide no further improvements.
It appears that for this data, QDA provides the best results of the methods that we have examined so far.
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