
Final Exam (January 2023)

Problem 1. (8 points) Consider the following simple linear regression model

Yi = βXi + Ui,

where β ∈ R is the unknown parameter. The econometrician is interested in constructing a 1 − α asymptotic
confidence interval for β, where 0 < α < 1/2. Assume that the data {(Yi, Xi) : i = 1, ..., n} are i.i.d. and the
following assumptions hold: E [XiUi] = 0; 0 < E

[
X2
i

]
<∞; E

[
U2
i | Xi

]
= σ2. Define

σ̂2
n =

1

n

n∑
i=1

(
Yi − β̂nXi

)2
,

where β̂n is the OLS estimator of β. For each confidence interval listed below indicate if it is asymptotically valid
(that is, the coverage probability converges to 1 − α). z1−α/2 denotes the (1− α/2)-quantile of the standard
normal distribution.

(i)
[
β̂n − z1−α/2 (σ̂n/

√
n) , β̂n + z1−α/2 (σ̂n/

√
n)
]
.

(ii)
(
−∞, β̂n − zα

√
σ̂2
n/ (

∑n
i=1X

2
i )
]
.

Solution.

(i) No. Write

Pr
(
β ∈

[
β̂n − z1−α/2σ̂n/

√
n, β̂n + z1−α/2σ̂n/

√
n
])

= Pr

∣∣∣∣∣∣
√
n
(
β̂n − β

)
σ̂n

∣∣∣∣∣∣ ≤ z1−α/2
 .

Note √
n
(
β̂n − β

)
σ̂n

→d σ
−1 ·N

(
0,

σ2

E (X2
i )

)
∼ N

(
0,

1

E (X2
i )

)
.

So Pr

(∣∣∣∣√n(β̂n−β)
σ̂n

∣∣∣∣ ≤ z1−α/2) does not converge to 1− α, unless EX2
i = 1.

(ii) Yes. We have

− β̂n − β√
σ̂2
n∑n

i=1X
2
i

→d (−1) ·N (0, 1) ∼ N (0, 1) .

Then,

Pr

β ∈
−∞, β̂n − zα

√√√√σ̂2
n/

n∑
i=1

X2
i

 = Pr

− β̂n − β√
σ̂2
n∑n

i=1X
2
i

≤ −zα

→ Pr (Z ≤ −zα) = 1− α,

where Z ∼ N (0, 1).

Problem 2. (12 Points) The family of Pareto distributions has been used as a model for a density function
with a slowly decaying tail:

f (x | x0, θ) = θxθ0x
−θ−1

for x ≥ x0, θ > 1. Assume that x0 is given and that X1, ..., Xn is an i.i.d. sample with density f (· | x0, θ∗).

(i) We can find that E [X1] = (x0θ∗) / (θ∗ − 1) (you are not required to prove this). Find an estimator of θ∗
based on the method of moments.

(ii) Find the maximum likelihood estimator of θ∗, θ̂MLE
n .

(iii) Find the asymptotic variance of the maximum likelihood estimator. i.e. Find σ2 such that

√
n
(
θ̂MLE
n − θ∗

)
→d N

(
0, σ2

)
.
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Solution.

(i) Let us denote µ = E [X1]. Then we have θ∗ = µ
µ−x0

. A method of moment estimator of θ∗ is θ̂MM = X
X−x0

where X = 1
n

∑n
i=1Xi is the sample mean.

(ii) The log-likelihood function is

` (θ) = log

(
n∏
i=1

θxθ0X
−θ−1
i

)
= nlog (θ) + nθlog (x0)− (θ + 1)

n∑
i=1

log (Xi) .

The derivative is

`′ (θ) =
n

θ
+ nlog (x0)−

n∑
i=1

log (Xi) .

Solving for `′ (θ) = 0, the maximum likelihood estimator is given by

θ̂MLE =
n∑n

i=1 log (Xi)− nlog (x0)
.

(iii) We have
`′′ (θ) = − n

θ2
.

The asymptotic variance is
σ2 = −n (`′′ (θ∗))

−1
= θ2∗.

Problem 3. (12 Points) Consider the following linear model:

Y = β0 + β1X + U.

Suppose E [U ] = 0 and E [XU ] 6= 0, but you have two valid instruments, Z1 and Z2 (E [Z1U ] = E [Z2U ] = 0).
Write the first-stage regression as

X = πX0 + πX1 Z1 + πX2 Z2 + ε, (1)

where E [ε] = E [εZ1] = E [εZ2] = 0.

(i) Explain how you compute the 2SLS estimator of β1.

(ii) Also write the linear regression of Y on Z1 and Z2 as

Y = πY0 + πY1 Z1 + πY2 Z2 + ν, (2)

where E [ν] = E [νZ1] = E [νZ2] = 0. Let π̂X1 and π̂Y1 denote the OLS estimators of the regressions (1)
and (2). Show that

β̂ILS,11 =
π̂Y1
π̂X1

is a consistent estimator of β1. You may take as given that π̂X1 →p π
X
1 and π̂Y1 →p π

Y
1 .

(iii) Using the coefficients on Z2 instead of Z1, we define

β̂ILS,21 =
π̂Y2
π̂X2

.

Like β̂ILS,11 , β̂ILS,21 is a consistent estimator of β1. In some data, suppose we find β̂ILS,11 − β̂ILS,21 is large.
What might this indicate about our instruments?

Solution.

(i) First stage: regress X on Z1, Z2 and a constant and get fitted value X̂. Second stage: regress Y on X̂
and a constant. The OLS coefficient for X̂ is the 2SLS estimate for β1.

(ii) Plug X = πX0 + πX1 Z1 + πX2 Z2 + ε into Y = β0 + β1X + U :

Y = β0 + β1
(
πX0 + πX1 Z1 + πX2 Z2 + ε

)
+ U

=
(
β0 + β1π

X
0

)
+ β1π

X
1 Z1 + β1π

X
2 Z2 + (β1ε+ U) .

V = β1ε + U satisfies E [V Z1] = E [V Z2] = E [V ] = 0. Therefore, πY1 = β1π
X
1 , πY0 = β0 + β1π

X
0

and πY2 = β1π
X
2 . π̂Y1 consistently estimates πY1 = β1π

X
1 . π̂X1 consistently estimates πX1 . Therefore,

β̂ILS,11 = π̂Y1 /π̂
X
1 consistently estimates πY1 /πX1 = β1.
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(iii) If both instruments are valid, β̂ILS,11 − β̂ILS,21 should converge in probability to zero and we should find
that β̂ILS,11 − β̂ILS,21 is small. If we find β̂ILS,11 − β̂ILS,21 is large, this indicates that one of the instruments
could be invalid: E [Z1U ] 6= 0 or E [Z2U ] 6= 0.

Problem 4. (8 Points) Suppose we observe the i.i.d. random sample {(Yi, Xi) : i = 1, ..., n}. Denote Xn =
n−1

∑n
i=1Xi, Y n = n−1

∑n
i=1 Yi, µX = E [Xi] and µY = E [Yi]. We are interested in µY · µX . Derive the

asymptotic distribution of
√
n
(
Y n ·Xn − µY · µX

)
. Hint: Write

Y n ·Xn =
(
Y n − µY + µY

) (
Xn − µX + µX

)
=

(
Y n − µY

) (
Xn − µX

)
+ µY

(
Xn − µX

)
+
(
Y n − µY

)
µX + µY · µX

You may use the following result: Wn →d N
(
0, σ2

)
and θn →p 0, then θnWn →p 0.

Solution. Write

Y n ·Xn − µY · µX =
(
Y n − µY

) (
Xn − µX

)
+ µY

(
Xn − µX

)
+
(
Y n − µY

)
µX

and
√
n
(
Y n ·Xn − µY · µX

)
=
√
n
(
Y n − µY

) (
Xn − µX

)
+ µY

√
n
(
Xn − µX

)
+
√
n
(
Y n − µY

)
µX . (3)

By using
√
n
(
Y n − µY

)
→d N

(
0, σ2

Y

)
(σ2
Y denotes the variance of Yi) and Xn − µX →p 0, we have

√
n
(
Y n − µY

) (
Xn − µX

)
→p 0. (4)

Write

µY
√
n
(
Xn − µX

)
+
√
n
(
Y n − µY

)
µX =

1√
n

n∑
i=1

(µYXi + µXYi − 2µXµY ) . (5)

Note that E [µYXi + µXYi] = 2µXµY . By central limit theorem,

1√
n

n∑
i=1

(µYXi + µXYi − 2µXµY )→d N
(

0,E
[
(µYXi + µXYi − 2µXµY )

2
])
. (6)

By (3), (4), (5) and (6),

√
n
(
Y n ·Xn − µY · µX

)
→d N

(
0,E

[
(µYXi + µXYi − 2µXµY )

2
])
.

Problem 5. (8 Points) A researcher has data on the following variables for 5,061 respondents in the US
National Longitudinal Survey of Youth:

• MARRIED, marital status in 1994, defined to be 1 if the respondent was married with his/her spouse
present and 0 otherwise (a man/woman may not be in marriage legally with his/her spouse);

• MALE, defined to be 1 if the respondent was male and 0 if female;

• AGE in 1994 (the range being 29-37);

• S, years of schooling, defined as highest grade completed, and

• ASVABC, score on a test of cognitive ability, scaled so as to have mean 50 and standard deviation 10.

She uses Probit analysis to regress MARRIED on the other variables. The sample means of the explanatory
variables and their (average) marginal effects evaluated at the sample means are shown in the table.
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(i) Discuss the conclusions one may reach, given the Probit output and the table, comment on whether you
think they are reasonable.

(ii) The researcher considers including CHILD, a dummy variable defined to be 1 if the respondent had children
and 0 otherwise, as an explanatory variable. When she does this, its t-statistic is found to be 33.65 and
its average marginal effect is found to be 0.5685. Discuss these findings.

Solution.

(i) Being male has a small but highly significant negative effect. This is plausible because males tend to
marry later than females and the cohort is still relatively young. Age has a highly significant positive
effect, again plausible because older people are more likely to have married than younger people. Schooling
has no apparent effect at all. It is not obvious whether this is plausible. Cognitive ability has a highly
significant positive effect. Again, it is not obvious whether this is plausible.

(ii) Obviously one would expect a high positive correlation between being married and having children and
this would account for the huge and highly significant coefficient. However getting married and having
children are often a joint decision, and accordingly it is simplistic to suppose that one characteristic is a
determinant of the other. The finding should not be taken at face value.

Problem 6. (16 Points) Which of the following can and which cannot cause the usual OLS-based t-statistic to
be invalid (that is, not to have the t distributions under H0, even in large samples)? Explain briefly.

(i) Heteroskedasticity.

(ii) A sample correlation coefficient of 0.95 between two regressors.

(iii) Omitting an important explanatory variable.

(iv) Using the bootstrap critical value.

Solution.

(i) The t-statistic is invalid if the conventional standard error is used. It is valid if the heteroskedasticity-
robust (White) standard error is used.

(ii) Valid. The t-statistic is asymptotically standard normal even if two regressors are highly correlated.
However, the “no multicollinearity” assumption is violated if the correlation is 1 or -1. In this case, the
t-statistic is invalid.

(iii) Invalid. The OLS estimator is inconsistent in this case.

(iv) Valid. The bootstrap critical value is just another way to approximate the exact distribution of the
t-statistic.
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Problem 7. (12 points) Consider the regression model

Yi = βXi + Ui,

E [Ui | Xi] = 0,

E
[
U2
i | Xi

]
= σ2,

where β ∈ R is an unknown scalar parameter. Assume that {(Yi, Xi) : i = 1, . . . , n} are i.i.d. Consider the
following estimator of β:

β̃n =

∑n
i=1 Yi∑n
i=1Xi

and the OLS estimator:

β̂n =

∑n
i=1XiYi∑n
i=1X

2
i

.

Let βn = γβ̃n + (1− γ) β̂n for some γ ∈ [0, 1].

(i) Show that βn →p β as n→∞.

(ii) Show that
√
n
(
βn − β

)
is asymptotically normal, and find the asymptotic variance.

(iii) What would the optimal γ be? Explain.

Solution.

(i) Write

β̃n =

∑n
i=1 Yi∑n
i=1Xi

= β +
n−1

∑n
i=1 Ui

n−1
∑n
i=1Xi

and

β̂n =

∑n
i=1XiYi∑n
i=1X

2
i

= β +
n−1

∑n
i=1 UiXi

n−1
∑n
i=1X

2
i

.

By using n−1
∑n
i=1 Ui →p 0, n−1

∑n
i=1 UiXi →p 0, n−1

∑n
i=1X

2
i →p E

[
X2
i

]
6= 0 and n−1

∑n
i=1Xi →p

E [Xi] 6= 0, we have β̃n →p β, β̂n →p β and βn = γβ̃n + (1− γ) β̂n →p γβ + (1− γ)β = β.

(ii) Write

βn = γβ̃n + (1− γ) β̂n = β + γ ·
n−1

∑n
i=1 Ui

n−1
∑n
i=1Xi

+ (1− γ)
n−1

∑n
i=1 UiXi

n−1
∑n
i=1X

2
i

.

Then, we can write

√
n
(
βn − β

)
= γ ·

n−1/2
∑n
i=1 Ui

n−1
∑n
i=1Xi

+ (1− γ)
n−1/2

∑n
i=1 UiXi

n−1
∑n
i=1X

2
i

= γ ·
n−1/2

∑n
i=1 Ui

E [Xi]
+ (1− γ)

n−1/2
∑n
i=1 UiXi

E [X2
i ]

+γ ·
(

1

n−1
∑n
i=1Xi

− 1

E [Xi]

)
n−1/2

n∑
i=1

Ui

+ (1− γ)

(
1

n−1
∑n
i=1X

2
i

− 1

E [X2
i ]

)
n−1/2

n∑
i=1

UiXi. (7)

By using n−1/2
∑n
i=1 Ui →d N

(
0,E

[
U2
i

])
, n−1/2

∑n
i=1 UiXi →d N

(
0,E

[
X2
i

]
σ2
)
,

1

n−1
∑n
i=1Xi

− 1

E [Xi]
→p 0

and
1

n−1
∑n
i=1X

2
i

− 1

E [X2
i ]
→p 0,

we have

γ ·
(

1

n−1
∑n
i=1Xi

− 1

E [Xi]

)
n−1/2

n∑
i=1

Ui →p 0 (8)
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and

(1− γ)

(
1

n−1
∑n
i=1X

2
i

− 1

E [X2
i ]

)
n−1/2

n∑
i=1

UiXi →p 0. (9)

Write

γ ·
n−1/2

∑n
i=1 Ui

E [Xi]
+ (1− γ)

n−1/2
∑n
i=1 UiXi

E [X2
i ]

= n−1/2
n∑
i=1

(
γUi

E [Xi]
+

(1− γ)UiXi

E [X2
i ]

)
.

We have
E

[
γUi

E [Xi]
+

(1− γ)UiXi

E [X2
i ]

]
= 0.

By central limit theorem,

n−1/2
n∑
i=1

(
γUi

E [Xi]
+

(1− γ)UiXi

E [X2
i ]

)
→d N

(
0,E

[(
γUi

E [Xi]
+

(1− γ)UiXi

E [X2
i ]

)2
])

. (10)

By (7), (8), (9) and (10),

√
n
(
βn − β

)
→d N

(
0,E

[(
γUi

E [Xi]
+

(1− γ)UiXi

E [X2
i ]

)2
])

.

The asymptotic variance is

E

[(
γUi

E [Xi]
+

(1− γ)UiXi

E [X2
i ]

)2
]

= γ2
σ2

(E [Xi])
2 + 2γ (1− γ)

σ2

E [X2
i ]

+ (1− γ)
2 σ2

E [X2
i ]
,

where the equality follows from the law of iterated expectations.

(iii) The optimal γ minimizes the asymptotic variance. Note that (E [Xi])
2 ≤ E

[
X2
i

]
. Therefore, for all

γ ∈ [0, 1],

γ2
σ2

(E [Xi])
2 + 2γ (1− γ)

σ2

E [X2
i ]

+ (1− γ)
2 σ2

E [X2
i ]
≥

(
γ2 + 2γ (1− γ) + (1− γ)

2
) σ2

E [X2
i ]

=
σ2

E [X2
i ]
.

The right hand side is attained by setting γ = 0.

Problem 8. (16 Points) Suppose we observe an i.i.d. sample {(Yi, Di) : i = 1, ..., n} where the explanatory
variable Di is binary: Di ∈ {0, 1} so that Di = D2

i . Suppose that Yi is generated by Yi = α+ βiDi +Ui, where
the marginal effect βi is random.

(i) Suppose that Ui is the error term independent from Di and βi. Also assume that βi is independent from
Di. Show that the OLS estimator consistently estimates E [βi].

(ii) Assume that Cov [Ui, Di] 6= 0 but a binary IV Zi ∈ {0, 1} that is independent of (Ui, βi) is available.
Assume that Di and Zi are positively correlated. Give a real-life example to show that the model is
plausible.

(iii) By using the law of iterated expectations, show that E [YiZi] = E [Yi | Zi = 1] E [Zi]. Similarly,

E [Yi | Zi = 0] =
E [Yi (1− Zi)]

E [1− Zi]
.

(iv) Show that the instrumental variable estimator β̂ converges in probability to

β =
E [Yi | Zi = 1]− E [Yi | Zi = 0]

E [Di | Zi = 1]− E [Di | Zi = 0]
.

Solution.
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(i) Denote β̄ = E [βi]. Write

Yi = α+ βiDi + Ui ⇐⇒ Yi = α+ β̄Di + Ui +
(
βi − β̄

)
Di

and
Yi = α+ β̄Di + Vi,

where in this model, the error term is Vi = Ui +
(
βi − β̄

)
Di. We have

E [Vi] = E [Ui] + E
[(
βi − β̄

)
Di

]
= 0

and
E [ViDi] = E [UiDi] + E

[(
βi − β̄

)
Di

]
= 0.

Then OLS of Yi against Di consistently estimates β̄.

(ii) Any example with a binary endogenous explanatory variable and a binary IV is fine.

(iii) By the law of iterated expectations and noticing that

Zi · E [Yi | Zi] =

{
E [Yi | Zi = 1] if Zi = 1

0 if Zi = 0,

we have

E [YiZi] = E [E [YiZi | Zi]] = E [Zi · E [Yi | Zi]]
= Pr [Zi = 1] · E [Yi | Zi = 1] + Pr [Zi = 1] · 0 = Pr [Zi = 1] · E [Yi | Zi = 1] = E [Zi] · E [Yi | Zi = 1] .

(iv) The IV estimator:

β̂ =
n−1

∑n
i=1

(
Yi − Y

) (
Zi − Z

)
n−1

∑n
i=1

(
Di −D

) (
Zi − Z

) →p
Cov (Yi, Zi)

Cov (Di, Zi)
.

Then,

E [Yi | Zi = 1]− E [Yi | Zi = 0] =
E [YiZi]

E [Zi]
− E [Yi (1− Zi)]

E [1− Zi]

=
E [YiZi] (1− E [Zi])− E [Zi] (E [Yi]− E [YiZi])

E [Zi] (1− E [Zi])
=

E [YiZi]− E [Zi] E [Yi]

E [Zi] (1− E [Zi])
.

Note that since Zi is binary,

E [Zi] (1− E [Zi]) = E [Zi]− (E [Zi])
2

= E
[
Z2
i

]
− (E [Zi])

2
= Var [Zi] .

Then, it follows that

E [Yi | Zi = 1]− E [Yi | Zi = 0] =
E [YiZi]− E [Zi] E [Yi]

E [Zi] (1− E [Zi])
=

Cov [Zi, Yi]

Var [Zi]
.

Similarly,

E [Di | Zi = 1]− E [Di | Zi = 0] =
Cov [Zi, Di]

Var [Zi]
.

Therefore,
Cov (Yi, Zi)

Cov (Di, Zi)
=

E [Yi | Zi = 1]− E [Yi | Zi = 0]

E [Di | Zi = 1]− E [Di | Zi = 0]
.

Problem 9. (4 Points) The “no multicollinearity” condition is not satisfied by the difference-in-difference model
Yi = α+ γTi + λGi + δDi + Ui since Di = Ti ×Gi. Is this statement true or false? Explain.

Solution. False. Di is not a linear function of (Ti, Gi). Therefore, the “no multicollinearity” condition is not
violated.
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Problem 10. (4 points) Consider the simple regression model (with i.i.d. observations):

Y ∗i = β0 + β1Xi + Ui.

Assume that E [Ui] = E [XiUi] = 0. However, instead of observing Y ∗i , we only observed Yi = Y ∗i +ei. We think
of Yi as some measurement of Y ∗i that is subject to error. Assume

E [ei] = E [eiUi] = E [Y ∗i ei] = E [Xiei] = 0.

Suppose we estimate the model using OLS with the observed Yi in place of Y ∗i . Does the OLS consistently
estimate β1? Explain.

Solution. Yes. The OLS consistently estimate β1. Write

Yi − ei = β0 + β1Xi + Ui ⇐⇒ Yi = β0 + β1Xi + Ui + ei

and
Yi = β0 + β1Xi + Vi,

where in this model, the error term is Vi = Ui + ei. Since E [Vi] = E [ViXi] = 0, OLS using Yi in place of Y ∗i
consistently estimates β1.
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