
Econometrics

Homework 2

Problem 1. The LS objective function discussed in class is

Q (a, b) =
n∑
i=1

(Yi − a− bXi)
2 .

Now consider a modification of it:

Q̃ (a, b) =

[
n∑
i=1

(Yi − a− bXi)

]2
.

Let
(
α̃, β̃

)
be the minimizer of Q̃. Show that Q̃

(
α̃, β̃

)
= 0. Hint: You do not need to derive

the first order conditions.

Solution. Define Y = n−1
∑n

i=1 Yi. Note that since
(
α̃, β̃

)
is the minimizer, we have

0 ≤ Q̃
(
α̃, β̃

)
≤ Q̃

(
Y , 0

)
= 0,

where the equality is due to the fact
∑n

i=1

(
Yi − Y

)
= 0.

Problem 2. Suppose that you had a new battery for your camera, and the life of the battery
is a random variable X, with PDF

fX (x) = k × exp

(
−x
β

)
,

where x > 0 and β is a parameter. Assume now that t and s are non-negative real numbers.
(a). Use the properties of a PDF to determine the value of k.
(b). Find an expression for Pr [X ≥ t].
(c). Find an expression for the conditional probability: Pr [X ≥ t+ s | X ≥ s]. Hint: Use
Pr (A | B) = Pr(A∩B)

Pr(B)
.

(d). Suppose that your battery has already lasted for s weeks without dying. Based on your
above answers, are you more concerned that the battery is about to die than you were when
you first put it in the camera?

Solution.
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(a) We know that the PDF must integrate to 1:∫ ∞
0

fX (x) dx =

∫ ∞
0

k × exp

(
−x
β

)
dx

1 =k

∫ ∞
0

exp

(
−x
β

)
dx

1

k
=− β · exp

(
−x
β

)∣∣∣∣∞
0

k =
1

β
.

(b) This expression is straightforward now that we have the integration constant, k:

P (X ≥ t) =

∫ ∞
t

1

β
exp (−x/β) dx

which can be simplified to
P (X ≥ t) = exp (−t/β) .

(c)

P (X ≥ t+ s | X ≥ s) =
exp (−(t+s)/β)

exp (−s/β)
= exp (−t/β) .

(d) If my batteries have lasted s weeks without dying, based on my answer to part 3, I should
be just as worried as I was before, since survival of the battery tells me nothing new about
its likelihood of dying. The exponential distribution (which this is) has this very special
property, that no matter how long something has lasted, its rate/probability of failure is
constant at any given time.

Problem 3. Suppose that X is a continuous random variable with a strictly increasing and
differentiable CDF FX and PDF fX = F ′X . (a) Show that E

[
(X − a)2

]
is minimized at

a = E [X]. (b) Show that E [|X − a|] is minimized at a = F−1X (1/2) (the median). Hint:
E [|X − a|] =

∫ a
−∞ (a− x) fX (x) dx+

∫∞
a

(x− a) fX (x) dx.

Solution.
(a) Note

E
[
(X − a)2

]
= E

[
X2
]
− 2aE [X] + a2.

The first-order condition is:

∂

∂a
E
[
(X − a)2

]
= −2E [X] + 2a = 0.

(b) The first-order condition:

∂

∂a
E [|X − a|] =

∫ a

−∞
fX (x) dx−

∫ ∞
a

fX (x) dx = 0.

It implies that FX (a)− (1− FX (a)) = 0 and then, a = F−1X (1/2).
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Problem 4. Consider a simple regression model with no intercept:

Yi = βXi + Ui,

and assume that for all i = 1, . . . , n :

E [Ui | X1, . . . , Xn] = 0,

E
[
U2
i | X1, . . . , Xn

]
= σ2,

E [UiUj | X1, . . . , Xn] = 0 for i 6= j.

1. Show that the OLS estimator of β is

β̂ =

∑n
i=1XiYi∑n
i=1X

2
i

.

2. Show that for the fitted residuals Ûi = Yi − β̂Xi,

n∑
i=1

ÛiXi = 0.

3. Is it necessarily true that
∑n

i=1 Ûi = 0? Explain.

4. Show that β̂ in part (a) is unbiased.

5. Show that conditionally on X’s:

Var
[
β̂
]

=
σ2∑n
i=1X

2
i

.

Solution.
(1) The sum of squared residuals is given by

Q (b) =
n∑
i=1

(Yi − bXi)
2 .

The derivative of Q (b) is given by

dQ (b)

db
= −2

n∑
i=1

(Yi − bXi)Xi.

The first-order condition that the OLS estimator β̂ has to satisfy is

n∑
i=1

(
Yi − β̂Xi

)
Xi = 0.
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Re-arranging terms gives

0 =
n∑
i=1

(
Yi − β̂Xi

)
Xi

=
n∑
i=1

(
YiXi − β̂X2

i

)
=

n∑
i=1

YiXi − β̂
n∑
i=1

X2
i .

Solving for β̂:

β̂ =

∑n
i=1 YiXi∑n
i=1X

2
i

.

(2) Since the fitted residuals are defined as Ûi = Yi − β̂Xi, we have
n∑
i=1

ÛiXi =
n∑
i=1

(
Yi − β̂Xi

)
Xi.

This is the same expression as the first-order condition. Therefore
∑n

i=1 ÛiXi = 0.
(3) No. When the estimated regression has an intercept, the least squares problem has
another first-order condition corresponding to the derivative of the sum of squared residuals
function with respect to the intercept:

∑n
i=1

(
Yi − α̂− β̂Xi

)
= 0. This additional condition

ensures that the sum of the fitted residuals Ûi is zero. When the estimated regression has
no intercept, the equation is absent and nothing guarantees that

∑n
i=1 Ûi = 0.

(4) We have

β̂ =

∑n
i=1 YiXi∑n
i=1X

2
i

=

∑n
i=1Xi (βXi + Ui)∑n

i=1X
2
i

=

∑n
i=1 (βX2

i + UiXi)∑n
i=1X

2
i

=
β
∑n

i=1X
2
i +

∑n
i=1 UiXi∑n

i=1X
2
i

= β +

∑n
i=1 UiXi∑n
i=1X

2
i

.

In the following derivations, expectations are understood as conditional expectations given
X1, ..., Xn. We have

E
(
β̂
)

= E

(
β +

∑n
i=1 UiXi∑n
i=1X

2
i

)
= β + E

(∑n
i=1 UiXi∑n
i=1X

2
i

)
= β +

∑n
i=1XiE (Ui)∑n

i=1X
2
i

,
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where the last equation holds because once we condition on X’s, they are treated as non-
random. By the assumption, we have that for all i, E (Ui | X1, ..., Xn) = 0 and therefore

E
(
β̂
)

= β +

∑n
i=1Xi · 0∑n
i=1X

2
i

= β.

By the law of iterated expectation, the unconditional expectation is

E
(
β̂
)

= E
(
E
(
β̂ | X1, ..., Xn

))
= E (β) = β.

(5) Conditional on X’s,

V ar
(
β̂
)

= E
(
β̂ − Eβ̂

)2
= E

(
β̂ − β

)2
= E

(∑n
i=1 UiXi∑n
i=1X

2
i

)2

=

(
1∑n

i=1X
2
i

)2

E

(
n∑
i=1

UiXi

)2

,

where the last equality holds because
∑n

i=1X
2
i is not random when we condition on X’s.

Next,

E

(
n∑
i=1

UiXi

)2

= E

(
n∑
i=1

n∑
j=1

XiUiXjUj

)

= E

(
n∑
i=1

X2
i U

2
i +

n∑
i=1

∑
j 6=i

XiXjUiUj

)

=
n∑
i=1

X2
i E
(
U2
i

)
+

n∑
i=1

∑
j 6=i

XiXjE (UiUj)

=
n∑
i=1

X2
i σ

2 +
n∑
i=1

∑
j 6=i

XiXj · 0

= σ2

n∑
i=1

X2
i ,

where the last equality holds because E (U2
i ) = σ2 and E (UiUj) = 0 by the assumptions.

Now we have

V ar
(
β̂
)

=

(
1∑n

i=1X
2
i

)2

σ2

n∑
i=1

X2
i = σ2

(
1∑n

i=1X
2
i

)
.

Problem 5. The following table gives the joint probability distribution between employment
status and college graduation among those either employed or unemployed.

Y = 1 (employed) Y = 0 (unemployed)
X = 0 (no college) 0.05 0.6

X = 1 (college graduate) 0.33 0.02
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1. What is the mean of Y ?

2. What is the mean of X?

3. What is the conditional mean of Y given X = 0?

4. What is the covariance of X and Y ?

5. Are X and Y independent?

6. What is the probability of being employed?

7. What is the variance of X?

8. Suppose that you had a sample (Xi, Yi), i = 1, ..., n drawn from the joint distribution
in the table. And now suppose that you estimate the following model by using this
sample:

Yi = α + βXi + Ui, E [Ui | Xi] = 0.

What is the true value of the parameter β?

Solution.
1.

E (Y ) = 1× P (Y = 1) + 0× P (Y = 0) = 0.38.

2.
E (X) = 1× P (X = 1) + 0× P (X = 0) = 0.35.

3.

E(Y | X = 0) = 1×P (Y = 1 | X = 0) + 0×P (Y = 0 | X = 0) =
P (Y = 1, X = 0)

P (X = 0)
=

0.05

0.65
.

4.

Cov (X, Y ) = E (XY )− E (X)E (Y ) = 1× P (X = 1, Y = 1)− 0.38× 0.35 = 0.197.

5. No, since Cov (X, Y ) 6= 0.
6. P (Y = 1) = 0.38.
7.

V ar (X) = E
(
X2
)
− E (X)2 = 0.35− (0.35)2 = 0.2275.

8.
β =

Cov (X, Y )

V ar (X)
=

0.197

0.2275
= 0.86593.

Problem 6. Suppose you have a sample (Xi, Yi), i = 1, ..., n and estimate the linear model

Yi = β0 + β1Xi + Ui, E [Ui | Xi] = 0

by OLS. The OLS estimator for the slope is β̂1. Now estimate another linear model

Xi = γ0 + γ1Yi + Vi, E [Vi | Yi] = 0.

The OLS estimator for the slope is γ̂1 Is it true thatγ̂1 = β̂−11 ?
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Solution. Note:

β̂1 =

∑n
i=1

(
Xi −X

) (
Yi − Y

)∑n
i=1

(
Xi −X

)2
and

γ̂1 =

∑n
i=1

(
Yi − Y

) (
Xi −X

)∑n
i=1

(
Yi − Y

)2 6= 1

β̂1
.

Problem 7. (Wooldridge Problem 2.8) Consider the standard simple regression model Yi =
β0+β1Xi+Ui under the following assumptions: (1) (Xi, Yi), i = 1, ..., n are i.i.d. observations
(2) E [Ui | Xi] = 0 and Var [Ui | Xi] = σ2 (conditional homoskedasticity). The usual OLS
estimators β̂0 and β̂1 are unbiased for β0 and β1. Let β̃1 be the estimator of β1 obtained by
assuming the intercept is zero: β̃1 is the minimizer of

min
b

n∑
i=1

(Yi − bXi)
2 .

Hint: The estimator β̃1 is constructed under the assumption that β0 = 0. When answering
the question, keep in mind that this assumption can be false and the true value of β0 can be
different from zero.

1. Find E
[
β̃1

]
(the conditional expectation) in terms of the X’s, β0, and β1. Verify that

β̃1 is unbiased for β1 when the population intercept (β0) is zero. Are there other cases
where β̃1 is unbiased?

2. Find the variance of β̃1. (Hint: The variance does not depend on β0.)

3. Show that Var
[
β̃1

]
≤ Var

[
β̂1

]
by showing the following fact: for any sample of data,∑n

i=1X
2
i ≥

∑n
i=1

(
Xi − X̄

)2, with strict inequality unless X̄ = 0.

Solution.
(1) Easy to check:

β̃1 =

(
n∑
i=1

XiYi

)
/

(
n∑
i=1

X2
i

)
.

Plugging in Yi = β0 + β1Xi + Ui gives

β̃1 =

(
n∑
i=1

Xi (β0 + β1Xi + Ui)

)
/

(
n∑
i=1

X2
i

)
.

After standard algebra, the numerator can be written as

β0

n∑
i=1

Xi + β1

n∑
i=1

X2
i +

n∑
i=1

XiUi.

Putting this over the denominator shows we can write β̃1 as

β̃1 = β0

(
n∑
i=1

Xi

)
/

(
n∑
i=1

X2
i

)
+ β1 +

(
n∑
i=1

XiUi

)
/

(
n∑
i=1

X2
i

)
.
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Conditional on the X ′s, we have

E(β̃1) = β0

(
n∑
i=1

Xi

)
/

(
n∑
i=1

X2
i

)
+ β1.

because E(Ui) = 0 for all i. Therefore, the bias in β̃1 is given by the first term in this
equation. This bias is obviously zero when β0 = 0. It is also zero when

∑n
i=1Xi = 0,

which is the same as X = 0. In the latter case, regression through the origin is identical to
regression with an intercept.
(2) From the last expression for β̃1 in part (i) we have, conditional on the X’s,

V ar(β̃1) =

(
n∑
i=1

X2
i

)−2
V ar

(
n∑
i=1

XiUi

)

=

(
n∑
i=1

X2
i

)−2( n∑
i=1

X2
i V ar(Ui)

)

=

(
n∑
i=1

X2
i

)−2(
σ2

n∑
i=1

X2
i

)

= σ2/

(
n∑
i=1

X2
i

)

(3) The variance of the OLS estimator is V ar(β̂1) = σ2/
(∑n

i=1

(
Xi −X

)2). From the hint,∑n
i=1X

2
i ≥

∑n
i=1

(
Xi −X

)2 , and so V ar(β̃1) ≤ V ar(β̂1). A more direct way to see this is
to write

∑n
i=1

(
Xi −X

)2
=
∑n

i=1X
2
i − n(X)2 , which is less than

∑n
i=1X

2
i unless X = 0.
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