
Econometrics

Homework 3

Problem 1. Consider a simple linear regression model:

Yi = β0 + β1Xi + Ui, i = 1, . . . , n;

β0 6= 0;

E (Ui|X1, . . . , Xn) = 0.

Define

β̂1 =

∑n
i=1

(
Xi − X̄

)
Yi∑n

i=1

(
Xi − X̄

)2 and β̂0 = Ȳ − β̂1X̄,

β̃1 =

∑n
i=1 XiYi∑n
i=1 X

2
i

and β̃0 = 0,

where X̄ = n−1
∑n

i=1 Xi. Define also

Ûi = Yi − β̂0 − β̂1Xi,

Ũi = Yi − β̃1Xi.

For each of the following statements, indicate true or false and explain your answers.
(a)
∑n

i=1 Ûi = 0.
(b)

∑n
i=1 Ũi = 0.

(c)
∑n

i=1 Ui = 0.
(d) E (UiX

4
i ) = 0.

(e) In this model, β̂1 is the OLS estimator, and therefore the Gauss-Markov Theorem implies
that

V ar
(
β̂1|X1, . . . , Xn

)
≤ V ar

(
β̃1|X1, . . . , Xn

)
.

Assume that errors Ui’s are homoskedastic and there is no serial correlation.

Problem 2. (Wooldridge 2.10) Let β̂0 and β̂1 be the OLS intercept and slope estimators,
respectively, and let Ū be the sample average of the errors Ui, i = 1, ..., n.

1. Show that β̂1 can be written as β̂1 = β1 +
∑n

i=1wiUi where wi = di/SSTX , di = Xi−X̄
and SSTX =

∑n
i=1

(
Xi − X̄

)2.

2. Use part (i), along with
∑n

i=1wi = 0, to show that β̂1 and Ū are uncorrelated. Hint:You
are being asked to show that E

[(
β̂1 − β1

)
· Ū
]

= 0. Show first that

(
β̂1 − β1

)
Ū =

1

n

(
n∑
i=1

wiUi

)(
n∑
i=1

Ui

)
=

1

n

(
n∑
i=1

wiU
2
i +

n∑
i=1

∑
j 6=i

wiUiUj

)
.
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3. Show that β̂0 can be written as β̂0 = β0 + Ū −
(
β̂1 − β1

)
X̄.

4. Use parts (ii) and (iii) to show that (conditional onX’s) V ar
(
β̂0

)
= σ2/n+σ2X̄2/SSTX .

Hint: Show that

V ar
(
Ū
)

=
1

n2
E

(
n∑
i=1

Ui

)2

=
1

n2
E

(
n∑
i=1

U2
i +

n∑
i=1

∑
j 6=i

UiUj

)
.

5. Do the algebra to simplify the expression in part (iv) to

V ar
(
β̂0

)
=
σ2 (n−1

∑n
i=1X

2
i )∑n

i=1

(
Xi − X̄

)2 .

Hint: SSTX/n = n−1
∑n

i=1 X
2
i − X̄2.

Problem 3. (Wooldridge Problem 2.7) Consider the saving function

sav = β0 + β1inc+ u, u =
√
inc · e,

where e is a random variable with E (e) = 0 and V ar (e) = σ2
e . Assume that e is independent

of inc.

1. Show that E (u | inc) = 0. (Hint:If e is independent of inc, then E (e | inc) = E (e).)

2. Show that V ar (u | inc) = σ2
e inc, so that the homoskedasticity Assumption is violated.

In particular, the variance of sav increases with inc. (Hint:V ar (e | inc) = V ar (e), if
e and inc are independent.)

3. Provide a discussion that supports the assumption that the variance of savings increases
with family income.

Problem 4. The econometrician obtained the following output from regressing the depen-
dent variable “liver" against the independent variable “alcohol" and a constant, where “liver"
is the number of liver disease deaths per 100,000 people in a country, and “alcohol" is con-
sumption of alcohol in liters per capita in a country:

Source | SS df MS Number of obs = 21
-------------+------------------------------ F( 1, 19) = 22.62

Model | 1554.38867 1 1554.38867 Prob > F = 0.0001
Residual | 1305.8181 19 68.7272685 R-squared = 0.5435

-------------+------------------------------ Adj R-squared = 0.5194
Total | 2860.20677 20 143.010338 Root MSE = 8.2902

------------------------------------------------------------------------------
liver | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
alcohol | 3.586388 .7541228 A B C D

_cons | 10.85482 2.802408 3.87 0.001 4.989313 16.72033
------------------------------------------------------------------------------

• Several entries in the output were replaced with letters. Find A - D. Show your work.
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• Test at 5% significance level that the coefficient of “alcohol" is 5 (against the alternative
that it is different from 5).

• Test the same hypothesis as in part (b) at 10% significance level.

Problem 5. (Wooldridge Problem 3.13)

1. Consider the simple regression model Yi = β0 + β1Xi + Ui under the assumptions: for
all i = 1, . . . , n :

E (Ui|X1, . . . , Xn) = 0,

E
(
U2
i |X1, . . . , Xn

)
= σ2,

E (UiUj|X1, . . . , Xn) = 0 for i 6= j.

For some function g (x), for example g (x) = x2 or g (x) = log (1 + x2), define Zi =
g (Xi). Define a slope estimator as

β̃1 =

∑n
I=1

(
Zi − Z̄

)
Yi∑n

i=1

(
Zi − Z̄

)
Xi

.

Show that β̃1 is linear and unbiased. Remember, because E (Ui | X1, . . . , Xn) = 0, you
can treat both X’s and Z’s as nonrandom in your derivation.

2. Show that (conditional on X’s)

V ar
(
β̃1

)
=
σ2
(∑n

i=1

(
Zi − Z̄

)2
)

(∑n
i=1

(
Zi − Z̄

)
Xi

)2 .

3. Show directly (without using the Gauss-Markov theorem) that, V ar
(
β̂1

)
≤ V ar

(
β̃1

)
,

where β̂1 is the OLS estimator. Hint: The Cauchy-Schwartz inequality implies that(
n−1

n∑
i=1

(
Zi − Z̄

) (
Xi − X̄

))2

≤

(
n−1

n∑
i=1

(
Zi − Z̄

)2

)(
n−1

n∑
i=1

(
Xi − X̄

)2

)
;

notice that we can drop X̄ from the sample covariance.

Problem 6. Consider again the simple linear regression model:

Yi = β0 + β1Xi + Ui, i = 1, . . . , n;

with assumptions: (1) (Xi, Yi), i = 1, ..., n are independently and identically distributed
(i.i.d.). (2) E (Ui|Xi) = 0, for i = 1, ..., n. (3) E (U2

i |Xi) = σ2, for i = 1, ..., n, with some
σ > 0. Define the estimator

β̄1 =

∑n
i=1 Yi1{Xi≥0}∑n
i=1 1{Xi≥0} −

∑n
i=1 Yi1{Xi<0}∑n
i=1 1{Xi<0}∑n

i=1Xi1{Xi≥0}∑n
i=1 1{Xi≥0} −

∑n
i=1Xi1{Xi<0}∑n
i=1 1{Xi<0}
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where

1{Xi ≥ 0} =

{
1 if Xi ≥ 0

0 if Xi < 0

and

1 {Xi < 0} =

{
1 if Xi < 0

0 if Xi ≥ 0.

In other words, β̄1 is the difference between the averaged Y ’s conditional on X being positive
and the averaged Y ’s conditional on X being negative divided by the difference between the
averaged X conditional on X being positive and the averaged X conditional on X being
negative. Assume

∑n
i=1Xi1{Xi≥0}∑n
i=1 1{Xi≥0} 6=

∑n
i=1Xi1{Xi<0}∑n
i=1 1{Xi<0} .

1. Show that β̄1 is unbiased.

2. Is the conditional variance of β̄1 less than or equal to σ2∑n
i=1(Xi−X̄)

2 ? Explain.

Problem 7. Suppose that a random variable X has a normal distribution with unknown
mean µ. To simplify the analysis, we shall assume that σ2 is known. Given a sample of
observations, an estimator of µ is the sample mean, X. When performing a (two-sided) test
of the null hypothesis H0 : µ = µ0 at 5% significance level, it is usual to choose the upper and
lower 2.5% tails of the normal distribution as the rejection regions, as shown in the first figure.
s.d. is equal to

√
σ2/n, the standard deviation of X. The density function of N (µ0, σ

2/n) is
shown in the first figure. H0 is rejected when

∣∣X − µ0

∣∣ /s.d. > 1.96. However, suppose that
someone instead chooses the central 5% of the distribution as the rejection region, as in the
second figure. Give a technical explanation, using appropriate statistical concepts, of why
this is not a good idea.
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