
Econometrics

Homework 3

Problem 1. Consider a simple linear regression model:

Yi = β0 + β1Xi + Ui, i = 1, . . . , n;

β0 6= 0;

E (Ui|X1, . . . , Xn) = 0.

Define

β̂1 =

∑n
i=1

(
Xi − X̄

)
Yi∑n

i=1

(
Xi − X̄

)2 and β̂0 = Ȳ − β̂1X̄,

β̃1 =

∑n
i=1 XiYi∑n
i=1 X

2
i

and β̃0 = 0,

where X̄ = n−1
∑n

i=1 Xi. Define also

Ûi = Yi − β̂0 − β̂1Xi,

Ũi = Yi − β̃1Xi.

For each of the following statements, indicate true or false and explain your answers.
(a)
∑n

i=1 Ûi = 0.
(b)

∑n
i=1 Ũi = 0.

(c)
∑n

i=1 Ui = 0.
(d) E (UiX

4
i ) = 0.

(e) In this model, β̂1 is the OLS estimator, and therefore the Gauss-Markov Theorem implies
that

V ar
(
β̂1|X1, . . . , Xn

)
≤ V ar

(
β̃1|X1, . . . , Xn

)
.

Assume that errors Ui’s are homoskedastic and there is no serial correlation.

Solution. (a) True. Ûi’s are the fitted residuals from a regression with an intercept, and∑
i Ûi = 0 is the normal equation obtained from the OLS first-order conditions for the

intercept.
(b) False (in general). Ũi’s are the fitted residuals from a regression without an intercept,
and therefore the OLS first-order condition corresponding to the intercept does not have to
hold.
(c) False (in general). EUi = 0, however, a sample average of (finitely many) Ui’s does not
have to be zero.
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(d) True. By the law of iterated expectation (LIE),

E
(
UiX

4
i

)
= E

(
E
(
UiX

4
i |Xi

))
= E

(
X4
i E (Ui|Xi)

)
= E

(
X4
i · 0

)
= 0.

(e) False. Since β̃1 is a biased estimator, the Gauss-Markov Theorem does not apply in this
case. In fact, one can show that β̃1 has a smaller conditional variance given X1, . . . , Xn.

Problem 2. (Wooldridge 2.10) Let β̂0 and β̂1 be the OLS intercept and slope estimators,
respectively, and let Ū be the sample average of the errors Ui, i = 1, ..., n.

1. Show that β̂1 can be written as β̂1 = β1 +
∑n

i=1wiUi where wi = di/SSTX , di = Xi−X̄
and SSTX =

∑n
i=1

(
Xi − X̄

)2.

2. Use part (i), along with
∑n

i=1wi = 0, to show that β̂1 and Ū are uncorrelated. Hint:You
are being asked to show that E

[(
β̂1 − β1

)
· Ū
]

= 0. Show first that

(
β̂1 − β1

)
Ū =

1

n

(
n∑
i=1

wiUi

)(
n∑
i=1

Ui

)
=

1

n

(
n∑
i=1

wiU
2
i +

n∑
i=1

∑
j 6=i

wiUiUj

)
.

3. Show that β̂0 can be written as β̂0 = β0 + Ū −
(
β̂1 − β1

)
X̄.

4. Use parts (ii) and (iii) to show that (conditional onX’s) V ar
(
β̂0

)
= σ2/n+σ2X̄2/SSTX .

Hint: Show that

V ar
(
Ū
)

=
1

n2
E

(
n∑
i=1

Ui

)2

=
1

n2
E

(
n∑
i=1

U2
i +

n∑
i=1

∑
j 6=i

UiUj

)
.

5. Do the algebra to simplify the expression in part (iv) to

V ar
(
β̂0

)
=
σ2 (n−1

∑n
i=1X

2
i )∑n

i=1

(
Xi − X̄

)2 .

Hint: SSTX/n = n−1
∑n

i=1 X
2
i − X̄2.

Solution. (1) Omitted. (2) Because (conditional on the X’s) Cov(β̂1, U) = E
[
(β̂1 − β1)U

]
,

we show that the latter is zero. But, from part (i), E
[
(β̂1 − β1)U

]
= E

[
(
∑n

i=1wiUi)U
]
.

Because the Ui are pairwise uncorrelated (they are independent) E
(
UiU

)
= E (U2

i /n) =
σ2/n, (because E(UiUh) = 0, i 6= h ). Therefore,

n∑
i=1

wiE(UiU) =
n∑
i=1

wi(σ
2/n) = (σ2/n)

n∑
i=1

wi = 0.
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(3) The formula for the OLS intercept is β̂0 = Y − β̂X and, plugging in Y = β0 + β1X + U
gives

β̂0 = (β0 + β1X + U)− β̂1X = β0 + U − (β̂1 − β1)X.

(4) Because β̂1and U are uncorrelated, and E
(
β̂0

)
= β0,

V ar(β̂0) = V ar(U) + V ar(β̂1)X
2

= σ2/n+ (σ2/SSTX)X
2

= σ2/n+ σ2X
2
/SSTX,

which is what we want to show. (5) Using the hint and substitution gives

V ar(β̂0) = σ2
[
(SSTX/n) +X

2
]
/SSTX

= σ2

[(
n−1

n∑
i=1

X2
i −X

2

)
+X

2

]
/SSTX

= σ2(n−1

n∑
i=1

X2
i )/SSTX .

Problem 3. (Wooldridge Problem 2.7) Consider the saving function

sav = β0 + β1inc+ u, u =
√
inc · e,

where e is a random variable with E (e) = 0 and V ar (e) = σ2
e . Assume that e is independent

of inc.

1. Show that E (u | inc) = 0. (Hint:If e is independent of inc, then E (e | inc) = E (e).)

2. Show that V ar (u | inc) = σ2
e inc, so that the homoskedasticity Assumption is violated.

In particular, the variance of sav increases with inc. (Hint:V ar (e | inc) = V ar (e), if
e and inc are independent.)

3. Provide a discussion that supports the assumption that the variance of savings increases
with family income.

Solution. (1) When we condition on inc in computing an expectation,
√
inc becomes a con-

stant. So E(u|inc) = E(
√
inc·e|inc) =

√
incE(e|inc) =

√
inc·0 because E(e|inc) = E(e) =

0. (2) Again, when we condition on inc in computing a variance,
√
inc becomes a constant.

So V ar(u|inc) = V ar(
√
inc·e|inc) = (

√
inc)2V ar(e|inc) = σ2

e inc because V ar(e|inc) = σ2
e .

(3) Families with low incomes do not have much discretion about spending; typically, a low-
income family must spend on food, clothing, housing, and other necessities. Higher income
people have more discretion, and some might choose more consumption while others more
saving. This discretion suggests wider variability in saving among higher income families.

Problem 4. The econometrician obtained the following output from regressing the depen-
dent variable “liver" against the independent variable “alcohol" and a constant, where “liver"
is the number of liver disease deaths per 100,000 people in a country, and “alcohol" is con-
sumption of alcohol in liters per capita in a country:
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Source | SS df MS Number of obs = 21
-------------+------------------------------ F( 1, 19) = 22.62

Model | 1554.38867 1 1554.38867 Prob > F = 0.0001
Residual | 1305.8181 19 68.7272685 R-squared = 0.5435

-------------+------------------------------ Adj R-squared = 0.5194
Total | 2860.20677 20 143.010338 Root MSE = 8.2902

------------------------------------------------------------------------------
liver | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
alcohol | 3.586388 .7541228 A B C D

_cons | 10.85482 2.802408 3.87 0.001 4.989313 16.72033
------------------------------------------------------------------------------

• Several entries in the output were replaced with letters. Find A - D. Show your work.

• Test at 5% significance level that the coefficient of “alcohol" is 5 (against the alternative
that it is different from 5).

• Test the same hypothesis as in part (b) at 10% significance level.

Solution. To find A, compute

T =
β̂1 − β1,0√
V̂ ar

(
β̂1

) =
3.586− 0

0.754
= 4.756.

B is the p-value for testing H0 : β1 = 0 against H1 : β1 6= 0. Since the degree of freedom is
21-2=19, and since the largest critical value in the t-table is

t19,1−0.0005 = 3.883

which is smaller than T = 4.756, we conclude the p-value (B) is smaller than 0.0005 × 2 =
0.001. C and D are the lower and upper bounds for 95% confidence interval for β1. First

t19,1−0.05/2 = 2.093.

Next,

[C,D] =
[
β̂1 − tn−2,1−0.05/2 × (standard error) , β̂1 + tn−2,1−0.05/2 × (standard error)

]
= [3.586− 2.093× 0.754, 3.586 + 2.093× 0.754]

= [2.008, 5.164] .

The 95% confidence interval for β1 is [2.008, 5.164], which includes 5. Therefore H0 : β1 = 5
cannot be rejected in favor of H1 : β1 6= 5 at 5% significance level.
The 90% confidence interval for β1 is[

β̂1 − tn−2,1−0.10/2 × (standard error) , β̂1 + tn−2,1−0.10/2 × (standard error)
]

= [3.586− 1.729× 0.754, 3.586 + 1.729× 0.754]

= [2.282, 4.890] .

Since 5 is outside of the confidence interval, we reject H0 : β1 = 5 in favor of H1 : β1 6= 5 at
10% significance level.
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Problem 5. (Wooldridge Problem 3.13)

1. Consider the simple regression model Yi = β0 + β1Xi + Ui under the assumptions: for
all i = 1, . . . , n :

E (Ui|X1, . . . , Xn) = 0,

E
(
U2
i |X1, . . . , Xn

)
= σ2,

E (UiUj|X1, . . . , Xn) = 0 for i 6= j.

For some function g (x), for example g (x) = x2 or g (x) = log (1 + x2), define Zi =
g (Xi). Define a slope estimator as

β̃1 =

∑n
I=1

(
Zi − Z̄

)
Yi∑n

i=1

(
Zi − Z̄

)
Xi

.

Show that β̃1 is linear and unbiased. Remember, because E (Ui | X1, . . . , Xn) = 0, you
can treat both X’s and Z’s as nonrandom in your derivation.

2. Show that (conditional on X’s)

V ar
(
β̃1

)
=
σ2
(∑n

i=1

(
Zi − Z̄

)2
)

(∑n
i=1

(
Zi − Z̄

)
Xi

)2 .

3. Show directly (without using the Gauss-Markov theorem) that, V ar
(
β̂1

)
≤ V ar

(
β̃1

)
,

where β̂1 is the OLS estimator. Hint: The Cauchy-Schwartz inequality implies that(
n−1

n∑
i=1

(
Zi − Z̄

) (
Xi − X̄

))2

≤

(
n−1

n∑
i=1

(
Zi − Z̄

)2

)(
n−1

n∑
i=1

(
Xi − X̄

)2

)
;

notice that we can drop X̄ from the sample covariance.

Solution. (i) For notational simplicity, define SZX =
∑n

i=1(Zi − Z)Xi. Then we can write
β̃1 as

β̃1 =

∑n
i=1(Zi − Z)Yi

SZX
.

This is clearly a linear function of the Y ’s: take the weights to be wi = (Zi − Z)/SZX . To
show unbiasedness, as usual we plug Yi = β0 + β1Xi + Ui into this equation, and simplify:

β̃1 =

∑n
i=1(Zi − Z) (β0 + β1Xi + Ui)

SZX

=
β0

∑n
i=1(Zi − Z) + β1SZX +

∑n
i=1(Zi − Z)Ui

SZX

= β1 +

∑n
i=1(Zi − Z)Ui

SZX
,
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where we use the fact that
∑n

i=1(Zi −Z) = 0 always. Now SZX is a function of the Z’s and
X’s and the expected value of each Ui is zero conditional on all Z’s and X’s in the sample.
Therefore, conditional on these values,

E(β̃1) = β1 + E

(∑n
i=1(Zi − Z)Ui

SZX

)
= β1.

because E(Ui) = 0 for all i.
(ii) Again conditional on the Z’s and X’s in the sample,

V ar(β̃1) =
V ar

[∑n
i=1(Zi − Z)Ui

]
S2
ZX

=

∑n
i=1(Zi − Z)2V ar(Ui)

S2
ZX

= σ2

∑n
i=1(Zi − Z)2

S2
ZX

because of the homoskedasticity assumption [V ar(Ui) = σ2 for all i]. Given the definition of
Szx, this is what we wanted to show.
(iii) We know that V ar(β̂1) = σ2/

[∑n
i=1(Xi −X)2

]
. Now we can rearrange the inequality in

the hint, drop X from the sample covariance, and cancel n−1 everywhere, to get
∑n

i=1(Zi −
Z)2/S2

ZX ≥ 1/
([∑n

i=1(Xi −X)2
])
. When we multiply through by σ2 we get V ar(β̃1) >

V ar(β̂1), which is what we wanted to show.

Problem 6. Consider again the simple linear regression model:

Yi = β0 + β1Xi + Ui, i = 1, . . . , n;

with assumptions: (1) (Xi, Yi), i = 1, ..., n are independently and identically distributed
(i.i.d.). (2) E (Ui|Xi) = 0, for i = 1, ..., n. (3) E (U2

i |Xi) = σ2, for i = 1, ..., n, with some
σ > 0. Define the estimator

β̄1 =

∑n
i=1 Yi1{Xi≥0}∑n
i=1 1{Xi≥0} −

∑n
i=1 Yi1{Xi<0}∑n
i=1 1{Xi<0}∑n

i=1Xi1{Xi≥0}∑n
i=1 1{Xi≥0} −

∑n
i=1Xi1{Xi<0}∑n
i=1 1{Xi<0}

where

1{Xi ≥ 0} =

{
1 if Xi ≥ 0

0 if Xi < 0

and

1 {Xi < 0} =

{
1 if Xi < 0

0 if Xi ≥ 0.

In other words, β̄1 is the difference between the averaged Y ’s conditional on X being positive
and the averaged Y ’s conditional on X being negative divided by the difference between the
averaged X conditional on X being positive and the averaged X conditional on X being
negative. Assume

∑n
i=1Xi1{Xi≥0}∑n
i=1 1{Xi≥0} 6=

∑n
i=1Xi1{Xi<0}∑n
i=1 1{Xi<0} .
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1. Show that β̄1 is unbiased.

2. Is the conditional variance of β̄1 less than or equal to σ2∑n
i=1(Xi−X̄)

2 ? Explain.

Solution. (i) As we have done in class we should: (1) substitute Yi = β0 + β1Xi + Ui and
then (2) use the properties of expectations to simplify.

E[β̄1] =E

 ∑n
i=1 Yi1{Xi≥0}∑n
i=1 1{Xi≥0} −

∑n
i=1 Yi1{Xi<0}∑n
i=1 1{Xi<0}∑n

i=1Xi1{Xi≥0}∑n
i=1 1{Xi≥0} −

∑n
i=1Xi1{Xi<0}∑n
i=1 1{Xi<0}


=E

∑n
i=1(β0+Xiβ1+Ui)1{Xi≥0}∑n

i=1 1{Xi≥0} −
∑n

i=1(β0+Xiβ1+Ui)1{Xi<0}∑n
i=1 1{Xi<0}∑n

i=1Xi1{Xi≥0}∑n
i=1 1{Xi≥0} −

∑n
i=1Xi1{Xi<0}∑n
i=1 1{Xi<0}


rearranging

=E


(
β0

∑n
i=1 1{Xi≥0}∑n
i=1 1{Xi≥0} + β1

∑n
i=1Xi1{Xi≥0}∑n
i=1 1{Xi≥0} +

∑n
i=1 Ui1{Xi≥0}∑n
i=1 1{Xi≥0}

)
−
(
β0

∑n
i=1 1{Xi<0}∑n
i=1 1{Xi<0} + β1

∑n
i=1Xi1{Xi<0}∑n
i=1 1{Xi<0} +

∑n
i=1 Ui1{Xi<0}∑n
i=1 1{Xi<0}

)
∑n

i=1Xi1{Xi≥0}∑n
i=1 1{Xi≥0} −

∑n
i=1Xi1{Xi<0}∑n
i=1 1{Xi<0}


simplifying

=β1 + E

 ∑n
i=1 Ui1{Xi≥0}∑n
i=1 1{Xi≥0} −

∑n
i=1 Ui1{Xi<0}∑n
i=1 1{Xi<0}∑n

i=1Xi1{Xi≥0}∑n
i=1 1{Xi≥0} −

∑n
i=1Xi1{Xi<0}∑n
i=1 1{Xi<0}


using iterated expectations

=β1 + E

E
 ∑n

i=1 Ui1{Xi≥0}∑n
i=1 1{Xi≥0} −

∑n
i=1 Ui1{Xi<0}∑n
i=1 1{Xi<0}∑n

i=1Xi1{Xi≥0}∑n
i=1 1{Xi≥0} −

∑n
i=1Xi1{Xi<0}∑n
i=1 1{Xi<0}

|X1, ..., Xn


using the linearity of E[·|X1, ..., Xn] we have

=β1 + E

∑n
i=1 E[Ui|X1,...,Xn]1{Xi≥0}∑n

i=1 1{Xi≥0} −
∑n

i=1 E[Ui|X1,...,Xn]1{Xi<0}∑n
i=1 1{Xi<0}∑n

i=1Xi1{Xi≥0}∑n
i=1 1{Xi≥0} −

∑n
i=1Xi1{Xi<0}∑n
i=1 1{Xi<0}


E[Ui|X1, ..., Xn] = 0 by assumption, so

=β1

(ii) The previous part showed β̄1 is unbiased. It is also linear because it is equal
∑n

i=1 c̄iYi
with

c̄i =

1{Xi≥0}∑n
i=1 1{Xi≥0} −

1{Xi<0}∑n
i=1 1{Xi<0}∑n

i=1Xi1{Xi≥0}∑n
i=1 1{Xi≥0} −

∑n
i=1Xi1{Xi<0}∑n
i=1 1{Xi<0}

.

Therefore, by the Gauss-Markov theorem, V ar(β̄1) > V ar(β̂1).

Problem 7. Suppose that a random variable X has a normal distribution with unknown
mean µ. To simplify the analysis, we shall assume that σ2 is known. Given a sample of
observations, an estimator of µ is the sample mean, X. When performing a (two-sided) test
of the null hypothesis H0 : µ = µ0 at 5% significance level, it is usual to choose the upper and
lower 2.5% tails of the normal distribution as the rejection regions, as shown in the first figure.
s.d. is equal to

√
σ2/n, the standard deviation of X. The density function of N (µ0, σ

2/n) is
shown in the first figure. H0 is rejected when

∣∣X − µ0

∣∣ /s.d. > 1.96. However, suppose that
someone instead chooses the central 5% of the distribution as the rejection region, as in the
second figure. Give a technical explanation, using appropriate statistical concepts, of why
this is not a good idea.
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Solution. The following discussion assumes that you are performing a 5 per cent significance
test, but it applies to any significance level. If the null hypothesis is true, it does not matter
how you define the 5 per cent rejection region. By construction, the risk of making a Type
I error will be 5 per cent. Issues relating to Type II errors are irrelevant when the null
hypothesis is true.
The reason that the central part of the conditional distribution is not used as a rejection
region is that it leads to problems when the null hypothesis is false. The probability of not
rejecting H0 when it is false will be lower. To use the obvious technical term, the power
of the test will be lower. The figure opposite shows the power functions for the test using
the conventional upper and lower 2.5 per cent tails and the test using the central region.
The horizontal axis is the difference between the true value and the hypothetical value µ0 in
terms of standard deviations. The vertical axis is the power of the test. The first figure has
been drawn for the case where the true value is greater than the hypothetical value. The
second figure is for the case where the true value is lower than the hypothetical value. It is
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the same, but reflected horizontally.
The greater the difference between the true value and the hypothetical mean, the more likely
it is that the sample mean will lie in a tail of the distribution conditional on H0 being true,
and so the more likely it is that the null hypothesis will be rejected by the conventional
test. The figures show that the power of the test approaches 1 asymptotically. However, if
the central region of the distribution is used as the rejection region, the probability of the
sample mean lying in it will diminish as the difference between the true and hypothetical
values increases, and the power of the test approaches zero asymptotically. This is an extreme
example of a very bad test procedure.
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