Econometrics

Homework 4

Problem 1. Suppose that $X_1, ..., X_n$ is an i.i.d. random sample from the uniform distribution on $[0, \theta]$, where $\theta > 0$ is unknown. Denote $X_{(n)} = \max\{X_1, ..., X_n\}$. Let $Q = X_{(n)}/\theta$ and $c_n = \alpha^{1/n}$. Show that $P(Q \le c_n) = \alpha$. Note that $P(Q \le 1) = 1$ and therefore, $P(c_n \le Q \le 1) = 1 - \alpha$. Use this result to show that $[X_{(n)}, X_{(n)}/c_n]$ is a valid $1 - \alpha$ confidence interval for θ :

$$P\left(\theta \in \left[X_{(n)}, X_{(n)}/c_n\right]\right) = 1 - \alpha.$$

Solution. First, note that $Q = X_{(n)}/\theta = \max\{X_1/\theta, ..., X_n/\theta\}$ and X_i/θ is distributed as a uniform distribution on [0, 1]. Then,

$$P(Q \le c_n) = P\left(\max\{X_1/\theta, ..., X_n/\theta\} \le \alpha^{1/n}\right)$$

$$= P\left(X_1/\theta \le \alpha^{1/n}, X_2/\theta \le \alpha^{1/n}, ..., X_n/\theta \le \alpha^{1/n}\right)$$

$$= P\left(X_1/\theta \le \alpha^{1/n}\right) \times \cdots \times P\left(X_n/\theta \le \alpha^{1/n}\right)$$

$$= (\alpha^{1/n})^n$$

$$= \alpha.$$

Hence,

$$P\left(\theta \in \left[X_{(n)}, X_{(n)}/c_n\right]\right) = P\left(X_{(n)} \le \theta \le X_{(n)}/c_n\right)$$
$$= P\left(c_n \le Q \le 1\right)$$
$$= 1 - \alpha.$$

Problem 2. Find A-C in the Stata output below if the number of observations is 23. Justify your answer. According to the results, is x significant? The significance level is 5%. Explain.

у			[95% Conf. I	_
	 	 	B .3096879	_

Solution.

A: standard error =
$$\frac{\widehat{\beta}_1}{t \text{ statistic}} = \frac{0.0910863}{1.32} \approx 0.069.$$

B : lower bound of the confidence interval $\widehat{}$

$$=\hat{\beta}_1 - t_{21,97.5\%} \times \text{ standard error}$$

=0.091 - 2.08 × 0.069

$$\approx -0.053$$
.

$$C = \widehat{\beta}_1 + t_{21,97.5\%} \times \text{ standard error}$$

= $0.091 + 2.08 \times 0.069$
= 0.235 .

p-value = $0.191 > 0.05 \Longrightarrow X$ is not significant.

Problem 3. Consider the following model: $Y = \alpha + \beta X + U$, where $E(U \mid X) = 0$, $E(U^2 \mid X) = \sigma^2 > 0$ and the conditional distribution of U given X is $N(0, \sigma^2)$. (a) What is $E(Y \mid X)$? What is the conditional distribution of Y given X? (b) In this question, use the following result: if the conditional distribution of Y given X is $N(m(X), s(X)^2)$ (s(X) > 0), then the conditional distribution of $\frac{Y - m(X)}{s(X)}$ given X is N(0, 1) and

$$P\left(\frac{Y - m(X)}{s(X)} \le z \mid X\right) = \Phi(z),$$

where $\Phi\left(z\right)$ is the standard normal CDF. Here, the left hand side means the conditional probability of $\frac{Y-m(X)}{s(X)} \leq z$ given X. For a random variable Z, its τ -th quantile $(\tau \in (0,1))$ q_{τ} is defined by the equation: $P\left(Z \leq q_{\tau}\right) = \tau$. Similarly, a function $q_{\tau}\left(X\right)$ is the τ -th quantile of the conditional distribution of Y given X if

$$P\left(Y \le q_{\tau}\left(X\right) \mid X\right) = \tau.$$

Find the expression of $q_{\tau}(X)$. Hint: Let z_{τ} denote the τ -th quantile of the standard normal distribution so that $\Phi(z_{\tau}) = \tau$. (c) Suppose that $E(U^2 \mid X) = e^{2X}$ and the conditional distribution of U given X is $N(0, e^{2X})$. Find the expression of $q_{\tau}(X)$.

Solution. (a) $E[Y \mid X] = \alpha + \beta X$ and $Y \mid X \sim N(\alpha + \beta X, \sigma^2)$. (b)

$$\Pr\left(\frac{Y - (\alpha + \beta X)}{\sigma} \le z_{\tau} \mid X\right) = \tau \implies \Pr\left(Y \le \sigma z_{\tau} + \alpha + \beta X \mid X\right) = \tau$$
$$\implies q_{\tau}(X) = \sigma z_{\tau} + \alpha + \beta X.$$

(c) $Y \mid X \sim N\left(\alpha + \beta X, e^{2X}\right)$

$$\Pr\left(\frac{Y - (\alpha + \beta X)}{e^X} \le z_\tau \mid X\right) = \tau \implies \Pr\left(Y \le e^X z_\tau + \alpha + \beta X \mid X\right) = \tau$$
$$\implies q_\tau(X) = e^X z_\tau + \alpha + \beta X.$$

Problem 4. The variable rdintens is expenditures on research and development (R&D) as a percentage of sales. Sales are measured in millions of dollars. The variable profmarg is profits as a percentage of sales.

Using the data for 32 firms in the chemical industry, the following equation is estimated:

$$rdintens = 0.472 + 0.321 \log (sales) + 0.050 prof marg$$

$$(1.369) \quad (0.216) \qquad (0.046)$$

$$n = 32, R^2 = 0.099.$$

- 1. Interpret the coefficient on $\log(sales)$. In particular, if sales increases by 10%, what is the estimated percentage point change in rdintens? Is this an economically large effect?
- 2. Test the hypothesis that R&D intensity does not change with *sales* against the alternative that it does increase with sales. Do the test at the 5% and 10% levels.
- 3. Interpret the coefficient on *profmarg*. Is it economically large?
- 4. Does *prof marg* have a statistically significant effect on *rdintens*?

Solution.

- 1. Holding profmarg fixed, $\Delta rdintens = 0.321 \times \log(\text{sales}) = (0.321/100) \times [100 \times \Delta \log(\text{sales})] \approx 0.00321(\%\Delta \text{sales})$. Therefore, if $\%\Delta \text{sales} = 10$, $\Delta rdintens \approx 0.032$, or only about 3/100 of a percentage point. For such a large percentage increase in sales, this seems like a practically small effect.
- 2. $H_0: \beta_1 = 0$ versus $H_1: \beta_1 > 0$, where β_1 is the population slope on $\log(sales)$. The t statistic is $0.321/0.216\approx1.486$. The 5% critical value for a one-tailed test, with degree of freedom = 32 3 = 29, is 1.699; so we cannot reject H_0 at the 5% level. But the 10% critical value is 1.311; since the t statistic is above this value, we reject H_0 in favor of H_1 at the 10% level.
- 3. This is asking for your subjective opinion. No definite answer.
- 4. Not really. Its t statistic is only 1.087, which is well below even the 10% critical value for a one-tailed test.

Problem 5. A researcher has data for 50 countries on N, the average number of newspapers purchased per adult in one year, and G, GDP per capita, measured in US \$, and fits the following regression (RSS = residual sum of squares)

$$\hat{N} = 25.0 + 0.020G, R^2 = 0.06, RSS = 4000.0.$$

The researcher believes that GDP in each country has been underestimated by 50% and that N should have been regressed on G^* , where $G^* = 2G$. Explain, how the following components of the output would have differed: (a) the coefficient of GDP; (b) R^2 .

Solution. The coefficient of GDP: $G_i^* - \overline{G}^* = 2(G_i - \overline{G})$ for all i. Hence the new slope coefficient is

$$b_{2}^{*} = \frac{\sum \left(G_{i}^{*} - \overline{G}^{*}\right) \left(N_{i} - \overline{N}\right)}{\sum \left(G_{i}^{*} - \overline{G}^{*}\right)^{2}}$$

$$= \frac{\sum 2 \left(G_{i} - \overline{G}\right) \left(N_{i} - \overline{N}\right)}{\sum 4 \left(G_{i} - \overline{G}\right)^{2}}$$

$$= \frac{b_{2}}{2}$$

$$= 0.01.$$

where $b_2 = 0.02$ is the slope coefficient in the original regression. The intercept: The new intercept is

$$b_1^* = \overline{N} - b_2^* \overline{G}^* = \overline{N} - \frac{b_2}{2} 2\overline{G} = \overline{N} - b_2 \overline{G} = b_1 = 25,$$

the original intercept.

RSS: The residual in observation i in the new regression, e_i^* , is given by

$$e_i^* = N_i - b_1^* - b_2^* G_i^* = N_i - b_1 - \frac{b_2}{2} 2G_i = e_i$$

the residual in the original regression. Hence RSS is unchanged. Then R^2 is unchanged since RSS and $\sum (N_i - \overline{N})^2$ are unchanged.

Problem 6. Suppose we observe a random sample $\{(Y_i, D_i)\}_{i=1}^n$, where Y_i is the dependent variable and D_i is a binary independent variable: for all $i=1,2,...,n,\ D_i=1$ or $D_i=0$. Suppose we regress Y_i on D_i with an intercept. Show: the LS estimate of the slope is equal to the difference between the sample averages of the dependent variable of the two groups, observations with $D_i=1$ and observations with $D_i=0$. Hint: The sample average of Y of observations with $D_i=1$ can be written as $\frac{\sum_{i=1}^n D_i Y_i}{\sum_{i=1}^n D_i}$. What is the sample average of Y of observations with $D_i=0$? Also note: $D_i=D_i^2$.

Solution. Denote $\overline{D} = n^{-1} \sum_{i=1}^{n} D_i$. The LS estimate is

$$\widehat{\beta} = \frac{\sum_{i=1}^{n} (D_i - \overline{D}) Y_i}{\sum_{i=1}^{n} (D_i - \overline{D})^2} = \frac{\sum_{i=1} (D_i - \overline{D}) Y_i}{\sum_{i=1}^{n} D_i^2 - n \overline{D}^2} = \frac{\sum_{i=1} D_i Y_i - n \overline{D} \overline{Y}}{n \overline{D} - n \overline{D}^2}.$$

The sample average of Y of observations with $D_i = 0$ is

$$\frac{\sum_{i=1}^{n} (1 - D_i) Y_i}{\sum_{i=1}^{n} (1 - D_i)}.$$

Then,

$$\frac{\sum_{i=1}^{n} D_{i} Y_{i}}{\sum_{i=1}^{n} D_{i}} - \frac{\sum_{i=1}^{n} (1 - D_{i}) Y_{i}}{\sum_{i=1}^{n} (1 - D_{i})} = \frac{\sum_{i=1}^{n} D_{i} Y_{i}}{n \overline{D}} - \frac{\sum_{i=1}^{n} (1 - D_{i}) Y_{i}}{n - n \overline{D}}$$

$$= \frac{\left(n - n \overline{D}\right) \sum_{i=1}^{n} D_{i} Y_{i} - \left(n \overline{D}\right) \sum_{i=1}^{n} (1 - D_{i}) Y_{i}}{n \overline{D} \left(n - n \overline{D}\right)}$$

$$= \frac{\sum_{i=1}^{n} D_{i} Y_{i} - \overline{D} \sum_{i=1}^{n} D_{i} Y_{i} - n \overline{D} \overline{Y} + \overline{D} \sum_{i=1}^{n} D_{i} Y_{i}}{n \overline{D} - n \overline{D}^{2}}$$

$$= \widehat{\beta}.$$

Problem 7. Consider the following model:

$$Y_i = \beta + U_i,$$

where U_i are iid N(0,1) random variables, $i=1,\ldots,n$.

- 1. Find the OLS estimator of β and its mean, variance, and distribution.
- 2. Suppose that a data set of 100 observation produced OLS estimate $\hat{\beta} = 0.167$.
 - (a) Construct 90% and 95% symmetric two-sided confidence intervals for β .
 - (b) Construct a 95% one-sided confidence interval of the form $[A, +\infty)$ for β . In other words, find a random variable A such that $\Pr(\beta \in [A, +\infty)) = 1 \alpha$, where $\alpha \in (0, 0.5)$ is a known constant chosen by the econometrician.
 - (c) Construct a 95% one-sided confidence interval of the form $(-\infty, A]$ for β .

Solution. The model is $Y_i = \beta + U_i$, with $\{U_i\}_{i=1}^n$ i.i.d random variables and $U_i \sim N(0,1)$, i = 1, ..., n. OLS estimator for β is $\widehat{\beta} = \frac{1}{n} \sum_{i=1}^n Y_i = \overline{Y}$. Notice the following

$$\widehat{\beta} = \frac{1}{n} \sum_{i=1}^{n} Y_i = \frac{1}{n} \sum_{i=1}^{n} (\beta + U_i) = \beta + \frac{1}{n} \sum_{i=1}^{n} U_i.$$

Hence,

$$E\left[\widehat{\beta}\right] = \beta + \frac{1}{n} \sum_{i=1}^{n} E\left[U_{i}\right] = \beta$$

$$Var(\widehat{\beta}) = Var(\frac{1}{n} \sum_{i=1}^{n} U_{i})$$

$$= \frac{1}{n^{2}} \sum_{i=1}^{n} Var(U_{i}) \text{ since } U_{i}\text{'s are i.i.d.}$$

$$= \frac{n}{n^{2}} = \frac{1}{n}.$$

Since $\widehat{\beta}$ is just a linear combination of iid normal random variables, $\widehat{\beta} \sim N(\beta, \frac{1}{n})$. $\widehat{\beta} = 0.167$. Confidence interval for significance level α is

$$\widehat{\beta} - z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma^2}{n}} \le \beta \le \widehat{\beta} + z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma^2}{n}}$$

Plugging in the values for $\hat{\beta} = 0.167$, $\sqrt{\frac{\sigma^2}{n}} = 0.1$, $z_{1-\frac{\alpha}{2}} = 1.645$ when $\alpha = 0.1$, $z_{1-\frac{\alpha}{2}} = 1.96$ when $\alpha = 0.05$. We obtain $CI_{90\%} = [0.0025, 0.3315]$ and $CI_{95\%} = [-0.029, 0.363]$. One sided confidence interval for significance level $\alpha = 0.05$ of the form $[a, +\infty)$ is

$$\beta \ge \widehat{\beta} - z_{1-\alpha} \sqrt{\frac{\sigma^2}{n}}.$$

Plugging in the values for $\widehat{\beta}=0.167,\ \sqrt{\frac{\sigma^2}{n}}=0.1,\ z_{1-\alpha}=1.645$. We obtain the one-sided confidence interval $CI_{95\%}=[0.0025,\infty)$.

One sided confidence interval for significance level $\alpha = 0.05$ of the form $(-\infty, a]$ is

$$\beta \le \hat{\beta} + z_{1-\alpha} \sqrt{\frac{\sigma^2}{n}}$$

Plugging in the values for $\widehat{\beta}=0.167,\ \sqrt{\frac{\sigma^2}{n}}=0.1,\ z_{1-\alpha}=1.645$. We obtain the one-sided confidence interval $CI_{95\%}=(-\infty,0.3315]$.