
Econometrics

Homework 6

Problem 1. Consider a simple regression model (with an intercept):

Yi = β0 + β1Xi + Ui,

and the IV estimator of β1:

β̂1 =

∑n
i=1

(
Zi − Z̄

)
Yi∑n

i=1

(
Zi − Z̄

)
Xi

,

where

Z̄ = n−1
n∑
i=1

Zi.

Suppose that Zi is a dummy variable. Show that β̂1 can be written as

β̂1 =
Ȳ1 − Ȳ0
X̄1 − X̄0

,

where X̄0 and Ȳ0 are the sample averages of Xi and Yi over the part of the sample with
Zi = 0, and X̄1 and Ȳ1 are the sample averages of Xi and Yi over the part of the sample
with Zi = 1, by following the steps below. Let n1 be the number of observations in the part
of the sample with Zi = 1. Let n0 be the number of observations in the part of the sample
with Zi = 0. Hint: n1 =

∑n
i=1 Zi, n0 = n −

∑n
i=1 Zi =

∑n
i=1 (1− Zi). Ȳ1 =

∑n
i=1 ZiYi/n1

and Ȳ0 =
∑n

i=1 (1− Zi)Yi/n0

(i) Show that
∑n

i=1

(
Zi − Z̄

)
Yi =

∑n
i=1 Zi

(
Yi − Ȳ

)
.

(ii) Show that
∑n

i=1 Zi
(
Yi − Ȳ

)
= n1

(
Ȳ1 − Ȳ

)
.

(iii) Show that Ȳ =
(
n1Ȳ1 + n0Ȳ0

)
/n.

(iv) Show that n1

(
Ȳ1 − Ȳ

)
= (n1n0/n)

(
Ȳ1 − Ȳ0

)
.

(v) Show how (i)-(iv) imply that β̂1 =
(
Ȳ1 − Ȳ0

)
/
(
X̄1 − X̄0

)
.

Solution. 1.
n∑
i=1

(
Zi − Z̄

)
Yi =

n∑
i=1

(
Zi − Z̄

) (
Yi − Ȳ + Ȳ

)
=

n∑
i=1

(
Zi − Z̄

) (
Yi − Ȳ

)
+ Ȳ

n∑
i=1

(
Zi − Z̄

)
=

n∑
i=1

Zi
(
Yi − Ȳ

)
− Z̄

n∑
i=1

(
Yi − Ȳ

)
=

n∑
i=1

Zi
(
Yi − Ȳ

)
,
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since
∑n

i=1

(
Zi − Z̄

)
=
∑n

i=1

(
Yi − Ȳ

)
= 0.

2.
n∑
i=1

Zi
(
Yi − Ȳ

)
=

n∑
i=1

ZiYi − Ȳ
n∑
i=1

Zi = n1Ȳ1 − n1Ȳ .

3.

n1Ȳ1 + n0Ȳ0 =
n∑
i=1

ZiYi +
n∑
i=1

(1− Zi)Yi

=
n∑
i=1

{ZiYi + (1− Zi)Yi}

=
n∑
i=1

Yi.

4.

n1

(
Ȳ1 − Ȳ

)
= n1

{
Ȳ1 −

(
n1Ȳ1 + n0Ȳ0

)
/n
}

= n1

{
(n0/n) Ȳ1 − (n0/n) Ȳ0

}
= (n1n0/n)

(
Ȳ1 − Ȳ0

)
.

5.

β̂1 =

∑n
i=1

(
Zi − Z̄

)
Yi∑n

i=1

(
Zi − Z̄

)
Xi

=
(n1n0/n)

(
Ȳ1 − Ȳ0

)
(n1n0/n)

(
X̄1 − X̄0

)
=

Ȳ1 − Ȳ0
X̄1 − X̄0

.

Problem 2. Consider the model

Yi = β0 + β1X1i + β2X2i + Ui, (1)

where X1i is an exogenous regressor and X2i is an endogenous regressor. Assume that data
are iid and conditions required for LLNs hold. For each of the following statements, indicate
true or false, and explain your answer.

(i) Let β̂1 denote the estimated coefficient on X1 in the OLS regression of Y against a
constant, X1, and X2. Since X1 is exogenous, β̂1 consistently estimates β1.

(ii) Let β̂1 denote the estimated coefficient on X1 in the OLS regression of Y against a
constant and X1. If Cov(X1i, X2i) = 0, then β̂1 consistently estimates β1.

(iii) Consider the following IV estimator of β2 that uses X1 as an IV:

β̂2 =

∑n
i=1(X1i − X̄1)Yi∑n
i=1(X1i − X̄1)X2i

.

If Cov(X1i, X2i) 6= 0 and β1 = 0, then β̂2 consistently estimates β2.
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Solution.

(i) False. If X1 and X2 are correlated, β̂1 is inconsistent. Let X̃1i denote fitted residuals
in the regression of X1 against a constant and X2:

X̃1i = X1i − γ̂0 − γ̂1X2i,

where γ̂’s denote the OLS estimators.

β̂1 =

∑
X̃1iYi∑
X̃2

1i

= β1 +
n−1

∑
X̃1iUi

n−1
∑
X̃2

1i

.

Next,
n−1

∑
X̃1iUi = n−1

∑
X1iUi − γ̂0n−1

∑
Ui − γ̂1n−1

∑
X2iUi.

Since X1i is exogenous,
n−1

∑
X1iUi →p 0.

We can also expect that
n−1

∑
Ui →p 0.

However, since X2i is endogenous,

n−1
∑

X2iUi →p EX2iUi 6= 0.

Note also that

γ̂1 =
n−1

∑
(X2i − X̄2)X1i

n−1
∑

(X2i − X̄2)2
→p

Cov(X2i, X1i)

V ar(X2i)
.

Hence, if X1 and X2 are correlated, then β̂1 will be inconsistent.

(ii) True. Write

Yi = β0 + β1X1i + Vi,

Vi = β2X2i + Ui.

We have Cov(X1i, Vi) = β2Cov(X1i, X2i) +Cov(X1i, Ui). Since X1 is exogenous in the
original model, Cov(X1i, Ui) = 0. If Cov(X1i, X2i) = 0, then X1 is uncorrelated with
V in the new regression equation and, therefore, exogenous. Hence, β̂1 is a consistent
estimator.

(iii) True. Since β1 = 0, X1 is excluded from the structural equation. By the assumption,
X1 and U are uncorrelated. Since X1 and X2 are correlated, X1 is a valid IV.

Problem 3. Suppose that the linear model

PS = β0 + β1Funds + β2Risk + U

satisfies E [U ] = E [U · Funds] = E [U · Risk] = 0. PS is the percentage of a person’s savings
invested in the stock market, Funds is the number of mutual funds that the person can
choose from, and Risk is some measure of risk tolerance (larger Risk means the person has
a higher tolerance for risk).
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(i) If Funds and Risk are positively correlated, does the slope coefficient in the simple
regression of PS on Funds overestimate or underestimate β1, in large samples?

(ii) We are unable to observe Risk directly, but we have data on the amount of life insurance
a worker has, Insurance. Assume that Insurance is noisy measure of Risk, Insurance =
Risk + e, with E [e] = E [Risk · e] = E [Funds · e] = E [eU ] = 0. Will the OLS estimate
of the coefficient on Funds in a regression of PS on Funds and Insurance be a consistent
estimate of β1?

(iii) Suppose we also have data on how often a worker gambles, Gamble. Assume that
Gamble is an independent noisy measure of Risk, Gamble = Risk + v, with E [v] =
E [vU ] = E [ve] = E [Risk · v] = E [Funds · v] = 0. Explain how we can consistently
estimate β1 using our data on PS, Funds, Insurance, and Gamble.

Solution.

(i) The slope coefficient in the simple regression of PS on Funds converges in probability
to β1+β2

Cov(Funds,Risk)
Var(Funds)

. We expect β2 ≥ 0. Therefore, the slope coefficient in the simple
regression overestimates β1.

(ii) No. Insurance is endogenous, due to measurement error.

(iii) Run an IV regression, using Gamble as an instrument for Insurance.

Problem 4. Aggregate demand QD for a certain commodity is determined by its price P ,
aggregate income Y , and population, POP ,

QD = β1 + β2P + β3Y + β4POP + UD

and aggregate supply is given by

QS = α1 + α2P + US

where UD and US are independently distributed error terms: UD and US are independent
from all other variables and they are also independent from each other. Remember that the
quantity and the price are determined simultaneously in the equilibrium QS = QD = Q. We
observe only the equilibrium values Q so that the observed price must satisfy the equation
(demand = supply):

β1 + β2P + β3Y + β4POP + UD = α1 + α2P + US.

(i) Show that the OLS (ordinary least squares) estimator of α2 will be inconsistent if OLS
is used to fit the supply equation.

(ii) Show that a consistent estimator of α2 is

α̃2 =

∑n
i=1

(
Yi − Y

) (
Qi −Q

)∑n
i=1

(
Yi − Y

) (
Pi − P

) .
(Y = n−1

∑n
i=1 Yi, Q = n−1

∑n
i=1Qi, P = n−1

∑n
i=1 Pi.)
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Solution.

(i) The reduced form equation (which expresses P as a function of the explanatory vari-
ables and the error terms) for P is

P =
1

α2 − β2
(
β1 − α1 + β3Y + β4POP + UD − US

)
.

Therefore in the supply equation

QS = α1 + α2P + US,

P is correlated with US. The OLS estimator is

α̂OLS2 =

∑n
i=1

(
Pi − P

) (
Qi −Q

)∑n
i=1

(
Pi − P

)2
=α2 +

∑n
i=1

(
Pi − P

) (
US
i − U

S
)

∑n
i=1

(
Pi − P

)2
−→pα2 +

Cov
(
Pi, U

S
i

)
Var (Pi)

and

Cov
(
Pi, U

S
i

)
=Cov

(
1

α2 − β2
(
β1 − α1 + β3Yi + β4POPi + UD

i − US
i

)
, US

i

)
=− 1

α2 − β2
Var

(
US
i

)
6=0

assuming that Y and POP are exogenous and so Cov
(
US, Y

)
= Cov

(
US, POP

)
= 0.

We are told that US and UD are distributed independently, so that Cov
(
US, UD

)
= 0.

(ii) The instrument variable estimator is

α̂IV2 =

∑n
i=1

(
Yi − Y

) (
Qi −Q

)∑n
i=1

(
Yi − Y

) (
Pi − P

)
=α2 +

∑n
i=1

(
Yi − Y

) (
US − US

)
∑n

i=1

(
Yi − Y

) (
Pi − P

)
−→pα2 +

Cov
(
Yi, U

S
i

)
Cov (Pi, Yi)

.

The desired result follows from the assumptions Cov
(
Yi, U

S
i

)
= 0 and Cov (Pi, Yi) 6= 0.

Problem 5. Consider the following linear model:

Y = β0 + β1X + U.
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Suppose E [U ] = 0 and E [XU ] 6= 0, but you have two valid instruments, Z1 and Z2

(E [Z1U ] = E [Z2U ] = 0). Write the first-stage regression as

X = πX0 + πX1 Z1 + πX2 Z2 + ε, (2)

where E [ε] = E [εZ1] = E [εZ2] = 0.

(i) Explain how you compute the 2SLS estimator of β1.

(ii) Also write the linear regression of Y on Z1 and Z2 as

Y = πY0 + πY1 Z1 + πY2 Z2 + ν, (3)

where E [ν] = E [νZ1] = E [νZ2] = 0. Let π̂X1 and π̂Y1 denote the OLS estimators of the
regressions (2) and (3). Show that

β̂ILS,11 =
π̂Y1
π̂X1

is a consistent estimator of β1. You may take as given that π̂X1 →p π
X
1 and π̂Y1 →p π

Y
1 .

(iii) Using the coefficients on Z2 instead of Z1, we define

β̂ILS,21 =
π̂Y2
π̂X2

.

Like β̂ILS,11 , β̂ILS,21 is a consistent estimator of β1. In some data, suppose we find
β̂ILS,11 − β̂ILS,21 is large. What might this indicate about our instruments?

Solution.

(i) First stage: regress X on Z1, Z2 and a constant and get fitted value X̂. Second stage:
regress Y on X̂ and a constant. The OLS coefficient for X̂ is the 2SLS estimate for β1.

(ii) Plug X = πX0 + πX1 Z1 + πX2 Z2 + ε into Y = β0 + β1X + U :

Y = β0 + β1
(
πX0 + πX1 Z1 + πX2 Z2 + ε

)
+ U

=
(
β0 + β1π

X
0

)
+ β1π

X
1 Z1 + β1π

X
2 Z2 + (β1ε+ U) .

V = β1ε + U satisfies E [V Z1] = E [V Z2] = E [V ] = 0. Therefore, πY1 = β1π
X
1 ,

πY0 = β0+β1π
X
0 and πY2 = β1π

X
2 . π̂Y1 consistently estimates πY1 = β1π

X
1 . π̂X1 consistently

estimates πX1 . Therefore, β̂ILS,11 = π̂Y1 /π̂
X
1 consistently estimates πY1 /πX1 = β1.

(iii) If both instruments are valid, β̂ILS,11 − β̂ILS,21 should converge in probability to zero
and we should find that β̂ILS,11 − β̂ILS,21 is small. If we find β̂ILS,11 − β̂ILS,21 is large, this
indicates that one of the instruments could be invalid: E [Z1U ] 6= 0 or E [Z2U ] 6= 0.

Problem 6. In an econometric model, we say that a parameter is identified if we can
recover its value perfectly given the joint distribution of the observable variables. Suppose
that (Y,X) is the observable variables and U is the unobservable variable.
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(i) Suppose that Y = β0 + β1X + U and E [U ] = E [XU ] = 0. Show that β1 is identified.
I.e., if you know the joint distribution of (Y,X), how do you determine the value of
the parameter β1?

(ii) Suppose that Y is binary and Y = 1 (β0 + β1X ≥ U) and U is a standard normal
(N (0, 1)) random variable that is independent of X. If you know the joint distribution
of (Y,X), how do you determine the value of the parameter β1? Hint: E [Y | X] =
E [1 (β0 + β1X ≥ U) | X] = Φ (β0 + β1X), where Φ is the standard normal CDF.

Solution. Take

Cov [Y,X] = Cov [β0 + β1X + U,X] = Cov [β1X + U,X] =

β1Cov [X,X] + Cov [U,X] = β1Var [X] .

Therefore, β1 = Cov [Y,X] /Var [X]. This quantity can be recovered if you know the joint
distribution of (Y,X).
Similarly, E [Y | X] = Φ (β0 + β1X) gives β0 + β1X = Φ−1 (E [Y | X]), where Φ−1 is the
inverse function of Φ (Φ is strictly increasing). Then,

Cov
[
Φ−1 (E [Y | X]) , X

]
= Cov [β0 + β1X,X] = β1Var [X] .

Therefore, β1 = Cov [Φ−1 (E [Y | X]) , X] /Var [X]. This quantity can be recovered if you
know the joint distribution of (Y,X).

Problem 7. Let (Xi, Yi), i = 1, ..., n be an i.i.d. random sample where Yi > 0 and Xi > 0
is a discrete random variable for all i. The conditional density of Y given X belong to the
family:

fY |X (y|x, λ) =
λexp (−λy) (λy)x

x!
,

y > 0, λ > 0, i.e., the conditional density of Y given X is fY |X (·|·, λ∗) for some λ∗ > 0. Write
the likelihood function for estimating λ∗. Provide the maximum likelihood estimator for λ∗
as a solution of an equation. Give the asymptotic distribution for the maximum likelihood
estimator, i.e. find the asymptotic variance VML of

√
n
(
λ̂ML − λ∗

)
→d N (0,VML) .

Suggest a consistent estimator of VML.

Solution. The log likelihood function is

` (λ) =
N∑
i=1

log

(
λexp (−λYi) (λYi)

Xi

Xi!

)
=

N∑
i=1

{log (λ)− λYi +Xilog (λYi)− log (Xi!)} .

Take derivative with respect to λ:

d` (λ)

dλ
=

N∑
i=1

{
1

λ
− Yi +

Xi

λ

}
.
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The maximum likelihood estimator is the solution to the first order condition
N∑
i=1

{
1

λ
− Yi +

Xi

λ

}
= 0.

Solving this gives

λ̂ML =
N +

∑N
i=1Xi∑N

i=1 Yi
.

To derive the asymptotic distribution of λ̂MLE, take

d2` (λ)

dλ2
= −

∑N
i=1 1 +Xi

λ2
.

The asymptotic variance VML is

VML = −N
(

E

[
d2` (λ)

dλ2

∣∣∣∣
λ=λ∗

])−1
= −N

(
E

[
−
∑N

i=1 1 +Xi

λ2∗

])−1
=

λ2∗
1 + E [Xi]

.

A consistent estimator is just
λ̂2ML

1 + 1
N

∑N
i=1Xi

.

Since the sample is i.i.d. 1
N

∑N
i=1Xi −→p E [Xi]. It follows from this result, consistency of

λ̂ML, and Slutsky’s lemma that

λ̂2ML

1 + 1
N

∑N
i=1Xi

−→p
λ2∗

1 + E [Xi]
.

Problem 8. Define a density function

f (x | θ) =

{(
1 + 1−2θ

θ−1

)
x

1−2θ
θ−1 x ∈ (0, 1)

0 x /∈ (0, 1) ,

where 0 < θ < 1 is a parameter. X1, ..., Xn is an independent and identically distributed
sample with true density f (· | θ∗) for some θ∗.

(i) Show that f (· | θ) is a probability density function, for all 0 < θ < 1.

(ii) Show that θ∗ =
∫ 1

0
xf (x | θ∗) dx. I.e., in this parametrization, θ∗ is also the population

mean.

Solution.

(i) Compute∫ 1

0

f (x | θ) dx =

(
1 +

1− 2θ

θ − 1

)∫ 1

0

x
1−2θ
θ−1 dx =

(
1 +

1− 2θ

θ − 1

)
1

1 + 1−2θ
θ−1

x1+
1−2θ
θ−1

∣∣∣∣∣
1

0

= 1.

Therefore, f (x | θ) ≥ 0 and
∫ 1

0
f (x | θ) dx = 1.
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(ii) Compute

∫ 1

0

xf (x | θ∗) dx =

(
1 +

1− 2θ∗
θ∗ − 1

)∫ 1

0

x·x
1−2θ∗
θ∗−1 dx =

(
1 +

1− 2θ∗
θ∗ − 1

)
1

1− θ∗
θ∗−1

x1−
θ∗
θ∗−1

∣∣∣∣∣
1

0

= θ∗.

The method of moment estimator: n−1
∑n

i=1Xi.

• The log-maximum likelihood function is

logL (θ;X1, ..., Xn) = nlog

(
θ

1− θ

)
+

1− 2θ

θ − 1

n∑
i=1

log (Xi) .

Differentiating with respect to θ:

∂logL

∂θ
=

n

θ (1− θ)
+

1

(1− θ)2
n∑
i=1

log (Xi) .

Solving the first order condition, the maximum likelihood estimator is

θ̂ =
n

n−
∑n

i=1 log (Xi)
,

which is different from the method of moments estimator.
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