
Econometrics

Homework 7

Problem 1. that (Yi, Xi, Zi), i = 1, ..., n is a sequence of i.i.d. discrete random vectors and
Yi ∈ {0, 1, 2}, Zi ∈ {0, 1} and Xi ∈ {0, 1}.

(i) Show that for any a ∈ {0, 1}, we have

E [Yi|Xi = a] =E [Yi|Xi = a, Zi = 0] P [Zi = 0|Xi = a]

+ E [Yi|Xi = a, Zi = 1] P [Zi = 1|Xi = a] .

(ii) Show E [ZiXi] = P [Zi = 1, Xi = 1] .

(iii) Show E [E [Zi|Xi = 1]Xi] = E [ZiXi] .

(iv) Show that θ̂ =
∑n

i=1 ZiXi∑n
i=1 Xi

is a consistent estimator of θ = P [Zi = 1|Xi = 1].

(v) Find a formula for σ2 such that
√
n
(
θ̂ − θ

)
→d N

(
0, σ2

)
.

Solution.

(i) By LIE, we have E [Y |X] = E [E [Y |X,Z] |X]. Notice that E [Y |X,Z] is a function
of (X,Z). Once we know X = a, the randomness of E [Y |X = a, Z] is due to the
randomness of Z solely. We now have

E [Y |X = a] =P [Z = 1|X = a] E [Y |X = a, Z = 1] + P [Z = 0|X = a] E [Y |X = a, Z = 0] .

(ii)

E [ZX] =P [X = 1, Z = 1] · 1 + P [X = 1, Z = 0] · 0
+ P [X = 0, Z = 1] · 0 + P [X = 0, Z = 0] · 0

=P [X = 1, Z = 1] .

(iii) Notice that E [Z|X = 1] is a constant.

E [E [Z|X = 1]X] =E [Z|X = 1] E [X]

=P [Z = 1|X = 1] P [X = 1]

=P [Z = 1, X = 1]

=E [ZX] ,

where the last equality follows from Part (ii).
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(iv) By Slutsky’s lemma and Part (iii), we have

θ̂ =

∑n
i=1 ZiXi∑n
i=1Xi

=
1
n

∑n
i=1 ZiXi

1
n

∑n
i=1Xi

→p
E [ZX]

E [X]
= P [Z = 1|X = 1] .

(v) Denote εi = Zi − E [Z|X = 1]. Now we have

θ̂ =

∑n
i=1 ZiXi∑n
i=1Xi

=

∑n
i=1 (E [Z|X = 1] + εi)Xi∑n

i=1Xi

= E [Z|X = 1] +

∑n
i=1 εiXi∑n
i=1Xi

which gives
√
n
(
θ̂ − θ

)
=

1√
n

∑n
i=1 εiXi

1
n

∑n
i=1Xi

.

By LLN, 1
n

∑n
i=1Xi →p E [X]. By Part (iii),

E [εiXi] = E [(Zi − E [Zi|Xi = 1])Xi] = 0.

By CLT, 1√
n

∑n
i=1 εiXi →d N (0,E [ε2iX

2
i ]). By Slutsky’s lemma and the lemma on Page

7 of Lecture 17, we have

√
n
(
θ̂ − θ

)
→d N

(
0,

E [ε2iX
2
i ]

E [Xi]
2

)
.

Problem 2. Let {(Yi, Xi, Di)}ni=1 be a sequence of i.i.d. observations. Di is a dummy
variable. Consider the following binary choice model:

Yi = 1 (β0 + β1Xi + β2XiDi > Ui) ,

where the conditional CDF of Ui is given by

P [Ui 6 t|Xi, Di] =
exp (t)

1 + exp (t)
.

(i) Define and derive the expression of the log-likelihood function for the i.i.d. observations
{(Yi, Xi, Di)}ni=1.

(ii) Derive the average derivative (or average partial effect) with respect to Xi in terms of
the observations and the parameters.

(iii) Let the MLE’s for β0, β1 and β2 be denoted by β̂0, β̂1 and β̂2. Provide an estimator of
the average derivative in (ii).

Solution.

(i) Define

G (t) =
exp (t)

1 + exp (t)
.
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Then by the chain rule for differentiation, we have

g (t) =
dG (t)

dt
=

exp (t)

(1 + exp (t))2
.

By construction of the model, we have

P [Yi = 1|Xi, Di] =P [β0 + β1Xi + β2XiDi > Ui|Xi, Di]

=
exp (β0 + β1Xi + β2XiDi)

1 + exp (β0 + β1Xi + β2XiDi)

=G (β0 + β1Xi + β2XiDi)

and
P [Yi = 0|Xi, Di] = 1−G (β0 + β1Xi + β2XiDi) .

Denote Z = {(Yi, Xi, Di)}ni=1 for simplicity. The likelihood function is

L (b0, b1, b2;Z) =
n∏

i=1

G (b0 + b1Xi + b2XiDi)
Yi (1−G (β0 + β1Xi + β2XiDi))

1−Yi

and the corresponding log-likelihood function is

` (b0, b1, b2;Z) =
n∑

i=1

{Yilog (G (b0 + b1Xi + b2XiDi)) + (1− Yi) log (1−G (b0 + b1Xi + b2XiDi))} .

(ii)

∂E [Yi|Xi = x,Di = d]

∂x
=
∂P [Yi = 1|Xi = x,Di = d]

∂x
=g (β0 + β1x+ β2xd) (β1 + β2d) .

The average derivative is

E [g (β0 + β1Xi + β2XiDi) (β1 + β2Di)] . (1)

(iii) The “sample analogue” of (1) estimator is

1

n

n∑
i=1

g
(
β̂0 + β̂1Xi + β̂2XiDi

)(
β̂1 + β̂2Di

)
.

Problem 3. In this question, you will derive the asymptotic distribution of the OLS es-
timator under endogeneity. Consider the usual linear regression model (without intercept)
Yi = βXi + Ui. Assume, however, that Xi is endogenous:

E (XiUi) = µ 6= 0,

where µ is unknown. Let β̂n denote the OLS estimator of β. Make the following additional
assumptions:
A1. Data are iid.
A2. 0 < Q = E (X2

i ) <∞.
A3. 0 < E (Ui − δXi)X

2
i <∞ , where δ = Q−1µ.
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(i) Find the probability limit of β̂n.

(ii) Re-write the model as Yi = (β + δ)Xi + (Ui − δXi) and find E (Xi(Ui − δXi)).

(iii) Using the result in (ii), derive the asymptotic distribution of β̂n and find its asymptotic
variance. Explain how this result differs from the asymptotic normality of OLS with
exogenous regressors.

(iv) Can β̂n and its asymptotic distribution be used for constructing a confidence interval
about β? Explain why or why not.

(v) Suppose that the errors Ui’s are homoskedastic:

E
(
U2
i |Xi

)
= σ2 = constant.

Consider the usual estimator of the asymptotic variance of OLS designed for a model
with homoskedastic errors and exogenous regressors:(

n−1
n∑

i=1

(
Yi − β̂nXi

)2)(
n−1

n∑
i=1

X2
i

)−1
.

Is it consistent for the asymptotic variance of the OLS estimator if Xi’s are in fact
endogenous? Explain why or why not.

Solution.

(i) Write

β̂n = β +
1
n

∑n
i=1XiUi

1
n

∑n
i=1X

2
i

→p β +Q−1µ

= β + δ,

where convergence of n−1
∑n

i=1X
2
i →p Q and n−1

∑n
i=1XiUi →p E (XiUi) = µ hold

by the WLLN.

(ii)

E (Xi(Ui − δXi)) = E (XiUi)− E
(
X2

i

)
Q−1µ

= µ−QQ−1µ
= 0.

(iii) Write

β̂n − (β + δ) =
1
n

∑n
i=1Xiεi

1
n

∑n
i=1X

2
i

,

where
εi = Ui − δXi
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and uncorrelated with Xi by the result in (ii). Furthermore, Xiεi satisfies the assump-
tions of the CLT. Hence, this is a regression with all the usual assumptions, however,
it has a new regression coefficient β + δ and new errors εi’s. We have:

√
n
(
β̂n − (β + δ)

)
→d N

(
0, Q−2E (Ui − δXi)

2X2
i

)
.

Comparing to the case with exogenous regressors, the center of the asymptotic dis-
tribution is shifted by δ. Also, the asymptotic variance depends on δXi through
E (Ui − δXi)

2X2
i .

(iv) Asymptotic inference about β based on the OLS estimator will be invalid since the
asymptotic distribution of the OLS estimator is centered at β+ δ. The OLS estimator
can be only used for testing hypotheses about β + δ.

(v) First, we need to describe the probability limit of the estimator proposed. Write:

n−1
n∑

i=1

(
Yi − β̂nXi

)2
= n−1

n∑
i=1

(
(Ui − δXi) +

(
β + δ − β̂n

)
Xi

)2
= n−1

n∑
i=1

(
εi +

(
β + δ − β̂n

)
Xi

)2
,

where
εi = Ui − δXi.

In view of the result in (i), β + δ − β̂n →p 0, and therefore

n−1
n∑

i=1

(
Yi − β̂nXi

)2
→p E

(
ε2i
)
.

Hence, the proposed estimator converges in probability to E (Ui − δXi)
2Q−1. This

would be the same as the asymptotic variance in (iii) if the errors εi = Ui −X ′iδ were
homoskedastic. It is given that Ui’s are homoskedastic. However, even if Ui’s are
homoskedastic, εi = Ui − δXi would be heteroskedastic:

E(ε2i |Xi) = σ2 + (δXi)
2 − 2E (Ui|Xi) δXi 6= constant,

unless E (Ui|Xi) = 0.5δXi. Since δ = Q−1µ, and µ = E (XiUi), the law of iterated
expectation implies that if E (Ui|Xi) = 0.5δXi, then

µ = E (XiUi)

= E (XiE(Ui|Xi))

= E (Xi × 0.5δXi)

= 0.5Qδ

= 0.5Q×Q−1µ
= 0.5µ.

However, the only solution to µ = 0.5µ is µ = 0, which contradicts the assumption
that E (XiUi) 6= 0. It follows therefore that εi = Ui − δXi are heteroskedastic. Hence,
the estimator would be inconsistent for the asymptotic variance of the OLS estimator.
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Problem 4. Consider the model

Yi = β0 + β1X1i + β2X2i + Ui, (2)

where X1i is an exogenous regressor and X2i is an endogenous regressor. Assume that data
are iid and conditions required for LLNs hold. For each of the following statements, indicate
true or false, and explain your answer.

(i) Let β̂1 denote the estimated coefficient on X1 in the OLS regression of Y against a
constant, X1, and X2. Since X1 is exogenous, β̂1 consistently estimates β1.

(ii) Let β̂1 denote the estimated coefficient on X1 in the OLS regression of Y against a
constant and X1. If Cov(X1i, X2i) = 0, then β̂1 consistently estimates β1.

(iii) Consider the following IV estimator of β2 that uses X1 as an IV:

β̂2 =

∑n
i=1(X1i − X̄1)Yi∑n
i=1(X1i − X̄1)X2i

.

If Cov(X1i, X2i) 6= 0 and β1 = 0, then β̂2 consistently estimates β2.

Solution.

(i) False. If X1 and X2 are correlated, β̂1 is inconsistent. Let X̃1i denote fitted residuals
in the regression of X1 against a constant and X2:

X̃1i = X1i − γ̂0 − γ̂1X2i,

where γ̂’s denote the OLS estimators.

β̂1 =

∑
X̃1iYi∑
X̃2

1i

= β1 +
n−1

∑
X̃1iUi

n−1
∑
X̃2

1i

.

Next,
n−1

∑
X̃1iUi = n−1

∑
X1iUi − γ̂0n−1

∑
Ui − γ̂1n−1

∑
X2iUi.

Since X1i is exogenous,
n−1

∑
X1iUi →p 0.

We can also expect that
n−1

∑
Ui →p 0.

However, since X2i is endogenous,

n−1
∑

X2iUi →p EX2iUi 6= 0.

Note also that
γ̂1 =

n−1
∑

(X2i − X̄2)X1i

n−1
∑

(X2i − X̄2)2
→p

Cov(X2i, X1i)

V ar(X2i)
.

Hence, if X1 and X2 are correlated, then β̂1 will be inconsistent.

6



(ii) True. Write

Yi = β0 + β1X1i + Vi,

Vi = β2X2i + Ui.

We have Cov(X1i, Vi) = β2Cov(X1i, X2i) +Cov(X1i, Ui). Since X1 is exogenous in the
original model, Cov(X1i, Ui) = 0. If Cov(X1i, X2i) = 0, then X1 is uncorrelated with
V in the new regression equation and, therefore, exogenous. Hence, β̂1 is a consistent
estimator.

(iii) True. Since β1 = 0, X1 is excluded from the structural equation. By the assumption,
X1 and U are uncorrelated. Since X1 and X2 are correlated, X1 is a valid IV.
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