Econometrics

Homework 7

Problem 1. that (Y_i, X_i, Z_i) , i = 1, ..., n is a sequence of i.i.d. discrete random vectors and $Y_i \in \{0, 1, 2\}, Z_i \in \{0, 1\}$ and $X_i \in \{0, 1\}$.

(i) Show that for any $a \in \{0, 1\}$, we have

$$E[Y_i|X_i = a] = E[Y_i|X_i = a, Z_i = 0] P[Z_i = 0|X_i = a] + E[Y_i|X_i = a, Z_i = 1] P[Z_i = 1|X_i = a].$$

- (ii) Show $E[Z_iX_i] = P[Z_i = 1, X_i = 1]$.
- (iii) Show $E[E[Z_i|X_i = 1]X_i] = E[Z_iX_i]$.
- (iv) Show that $\hat{\theta} = \frac{\sum_{i=1}^{n} Z_i X_i}{\sum_{i=1}^{n} X_i}$ is a consistent estimator of $\theta = P[Z_i = 1 | X_i = 1]$.
- (v) Find a formula for σ^2 such that

$$\sqrt{n}\left(\hat{\theta}-\theta\right) \to_d N\left(0,\sigma^2\right).$$

Solution.

(i) By LIE, we have E[Y|X] = E[E[Y|X,Z]|X]. Notice that E[Y|X,Z] is a function of (X,Z). Once we know X=a, the randomness of E[Y|X=a,Z] is due to the randomness of Z solely. We now have

$$\mathrm{E}\left[Y|X=a\right] = \mathrm{P}\left[Z=1|X=a\right] \\ \mathrm{E}\left[Y|X=a,Z=1\right] + \mathrm{P}\left[Z=0|X=a\right] \\ \mathrm{E}\left[Y|X=a,Z=0\right].$$

(ii)

$$\begin{split} \mathbf{E}\left[ZX\right] = & \mathbf{P}\left[X=1, Z=1\right] \cdot 1 + \mathbf{P}\left[X=1, Z=0\right] \cdot 0 \\ & + \mathbf{P}\left[X=0, Z=1\right] \cdot 0 + \mathbf{P}\left[X=0, Z=0\right] \cdot 0 \\ = & \mathbf{P}\left[X=1, Z=1\right]. \end{split}$$

(iii) Notice that E[Z|X=1] is a constant.

$$\begin{split} \mathbf{E} \left[\mathbf{E} \left[Z | X = 1 \right] X \right] = & \mathbf{E} \left[Z | X = 1 \right] \mathbf{E} \left[X \right] \\ = & \mathbf{P} \left[Z = 1 | X = 1 \right] \mathbf{P} \left[X = 1 \right] \\ = & \mathbf{P} \left[Z = 1, X = 1 \right] \\ = & \mathbf{E} \left[Z X \right], \end{split}$$

where the last equality follows from Part (ii).

(iv) By Slutsky's lemma and Part (iii), we have

$$\hat{\theta} = \frac{\sum_{i=1}^{n} Z_{i} X_{i}}{\sum_{i=1}^{n} X_{i}} = \frac{\frac{1}{n} \sum_{i=1}^{n} Z_{i} X_{i}}{\frac{1}{n} \sum_{i=1}^{n} X_{i}} \to_{p} \frac{E[ZX]}{E[X]} = P[Z = 1 | X = 1].$$

(v) Denote $\epsilon_i = Z_i - \mathbb{E}[Z|X=1]$. Now we have

$$\hat{\theta} = \frac{\sum_{i=1}^{n} Z_{i} X_{i}}{\sum_{i=1}^{n} X_{i}} = \frac{\sum_{i=1}^{n} \left(\mathbb{E} \left[Z | X = 1 \right] + \epsilon_{i} \right) X_{i}}{\sum_{i=1}^{n} X_{i}} = \mathbb{E} \left[Z | X = 1 \right] + \frac{\sum_{i=1}^{n} \epsilon_{i} X_{i}}{\sum_{i=1}^{n} X_{i}}$$

which gives

$$\sqrt{n}\left(\hat{\theta} - \theta\right) = \frac{\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \epsilon_i X_i}{\frac{1}{n} \sum_{i=1}^{n} X_i}.$$

By LLN, $\frac{1}{n} \sum_{i=1}^{n} X_i \to_p E[X]$. By Part (iii),

$$E[\epsilon_i X_i] = E[(Z_i - E[Z_i | X_i = 1]) X_i] = 0.$$

By CLT, $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \epsilon_i X_i \to_d N(0, \mathbb{E}[\epsilon_i^2 X_i^2])$. By Slutsky's lemma and the lemma on Page 7 of Lecture 17, we have

$$\sqrt{n}\left(\hat{\theta} - \theta\right) \to_d N\left(0, \frac{\mathrm{E}\left[\epsilon_i^2 X_i^2\right]}{\mathrm{E}\left[X_i\right]^2}\right).$$

Problem 2. Let $\{(Y_i, X_i, D_i)\}_{i=1}^n$ be a sequence of i.i.d. observations. D_i is a dummy variable. Consider the following binary choice model:

$$Y_i = 1 \left(\beta_0 + \beta_1 X_i + \beta_2 X_i D_i \geqslant U_i \right),$$

where the conditional CDF of U_i is given by

$$P[U_i \leqslant t | X_i, D_i] = \frac{\exp(t)}{1 + \exp(t)}.$$

- (i) Define and derive the expression of the log-likelihood function for the i.i.d. observations $\{(Y_i, X_i, D_i)\}_{i=1}^n$.
- (ii) Derive the average derivative (or average partial effect) with respect to X_i in terms of the observations and the parameters.
- (iii) Let the MLE's for β_0 , β_1 and β_2 be denoted by $\hat{\beta}_0$, $\hat{\beta}_1$ and $\hat{\beta}_2$. Provide an estimator of the average derivative in (ii).

Solution.

(i) Define

$$G(t) = \frac{\exp(t)}{1 + \exp(t)}.$$

Then by the chain rule for differentiation, we have

$$g(t) = \frac{\mathrm{d}G(t)}{\mathrm{d}t} = \frac{\exp(t)}{(1 + \exp(t))^2}.$$

By construction of the model, we have

$$P[Y_{i} = 1 | X_{i}, D_{i}] = P[\beta_{0} + \beta_{1}X_{i} + \beta_{2}X_{i}D_{i} \geqslant U_{i} | X_{i}, D_{i}]$$

$$= \frac{\exp(\beta_{0} + \beta_{1}X_{i} + \beta_{2}X_{i}D_{i})}{1 + \exp(\beta_{0} + \beta_{1}X_{i} + \beta_{2}X_{i}D_{i})}$$

$$= G(\beta_{0} + \beta_{1}X_{i} + \beta_{2}X_{i}D_{i})$$

and

$$P[Y_i = 0|X_i, D_i] = 1 - G(\beta_0 + \beta_1 X_i + \beta_2 X_i D_i).$$

Denote $Z = \{(Y_i, X_i, D_i)\}_{i=1}^n$ for simplicity. The likelihood function is

$$L(b_0, b_1, b_2; Z) = \prod_{i=1}^{n} G(b_0 + b_1 X_i + b_2 X_i D_i)^{Y_i} (1 - G(\beta_0 + \beta_1 X_i + \beta_2 X_i D_i))^{1-Y_i}$$

and the corresponding log-likelihood function is

$$\ell(b_0, b_1, b_2; Z) = \sum_{i=1}^{n} \left\{ Y_i \log \left(G(b_0 + b_1 X_i + b_2 X_i D_i) \right) + (1 - Y_i) \log \left(1 - G(b_0 + b_1 X_i + b_2 X_i D_i) \right) \right\}$$

(ii)

$$\frac{\partial \mathbf{E}\left[Y_{i}|X_{i}=x,D_{i}=d\right]}{\partial x} = \frac{\partial \mathbf{P}\left[Y_{i}=1|X_{i}=x,D_{i}=d\right]}{\partial x}$$
$$=g\left(\beta_{0}+\beta_{1}x+\beta_{2}xd\right)\left(\beta_{1}+\beta_{2}d\right)$$

The average derivative is

$$E\left[g\left(\beta_0 + \beta_1 X_i + \beta_2 X_i D_i\right) \left(\beta_1 + \beta_2 D_i\right)\right]. \tag{1}$$

(iii) The "sample analogue" of (1) estimator is

$$\frac{1}{n}\sum_{i=1}^{n}g\left(\hat{\beta}_{0}+\hat{\beta}_{1}X_{i}+\hat{\beta}_{2}X_{i}D_{i}\right)\left(\hat{\beta}_{1}+\hat{\beta}_{2}D_{i}\right).$$

Problem 3. In this question, you will derive the asymptotic distribution of the OLS estimator under endogeneity. Consider the usual linear regression model (without intercept) $Y_i = \beta X_i + U_i$. Assume, however, that X_i is endogenous:

$$E\left(X_{i}U_{i}\right)=\mu\neq0,$$

where μ is unknown. Let $\hat{\beta}_n$ denote the OLS estimator of β . Make the following additional assumptions:

A1. Data are iid.

A2. $0 < Q = E(X_i^2) < \infty$.

A3. $0 < E(U_i - \delta X_i) X_i^2 < \infty$, where $\delta = Q^{-1}\mu$.

- (i) Find the probability limit of $\hat{\beta}_n$.
- (ii) Re-write the model as $Y_i = (\beta + \delta)X_i + (U_i \delta X_i)$ and find $E(X_i(U_i \delta X_i))$.
- (iii) Using the result in (ii), derive the asymptotic distribution of $\hat{\beta}_n$ and find its asymptotic variance. Explain how this result differs from the asymptotic normality of OLS with exogenous regressors.
- (iv) Can $\hat{\beta}_n$ and its asymptotic distribution be used for constructing a confidence interval about β ? Explain why or why not.
- (v) Suppose that the errors U_i 's are homoskedastic:

$$E\left(U_i^2|X_i\right) = \sigma^2 = constant.$$

Consider the usual estimator of the asymptotic variance of OLS designed for a model with homoskedastic errors and exogenous regressors:

$$\left(n^{-1}\sum_{i=1}^{n}\left(Y_{i}-\hat{\beta}_{n}X_{i}\right)^{2}\right)\left(n^{-1}\sum_{i=1}^{n}X_{i}^{2}\right)^{-1}.$$

Is it consistent for the asymptotic variance of the OLS estimator if X_i 's are in fact endogenous? Explain why or why not.

Solution.

(i) Write

$$\hat{\beta}_n = \beta + \frac{\frac{1}{n} \sum_{i=1}^n X_i U_i}{\frac{1}{n} \sum_{i=1}^n X_i^2}$$

$$\rightarrow_p \beta + Q^{-1} \mu$$

$$= \beta + \delta,$$

where convergence of $n^{-1} \sum_{i=1}^{n} X_i^2 \to_p Q$ and $n^{-1} \sum_{i=1}^{n} X_i U_i \to_p E(X_i U_i) = \mu$ hold by the WLLN.

(ii)

$$E(X_i(U_i - \delta X_i)) = E(X_iU_i) - E(X_i^2)Q^{-1}\mu$$
$$= \mu - QQ^{-1}\mu$$
$$= 0$$

(iii) Write

$$\hat{\beta}_n - (\beta + \delta) = \frac{\frac{1}{n} \sum_{i=1}^n X_i \epsilon_i}{\frac{1}{n} \sum_{i=1}^n X_i^2},$$

where

$$\epsilon_i = U_i - \delta X_i$$

and uncorrelated with X_i by the result in (ii). Furthermore, $X_i \epsilon_i$ satisfies the assumptions of the CLT. Hence, this is a regression with all the usual assumptions, however, it has a new regression coefficient $\beta + \delta$ and new errors ϵ_i 's. We have:

$$\sqrt{n}\left(\hat{\beta}_n - (\beta + \delta)\right) \to_d N\left(0, Q^{-2}E\left(U_i - \delta X_i\right)^2 X_i^2\right).$$

Comparing to the case with exogenous regressors, the center of the asymptotic distribution is shifted by δ . Also, the asymptotic variance depends on δX_i through $E(U_i - \delta X_i)^2 X_i^2$.

- (iv) Asymptotic inference about β based on the OLS estimator will be invalid since the asymptotic distribution of the OLS estimator is centered at $\beta + \delta$. The OLS estimator can be only used for testing hypotheses about $\beta + \delta$.
- (v) First, we need to describe the probability limit of the estimator proposed. Write:

$$n^{-1} \sum_{i=1}^{n} \left(Y_i - \hat{\beta}_n X_i \right)^2 = n^{-1} \sum_{i=1}^{n} \left(\left(U_i - \delta X_i \right) + \left(\beta + \delta - \hat{\beta}_n \right) X_i \right)^2$$
$$= n^{-1} \sum_{i=1}^{n} \left(\epsilon_i + \left(\beta + \delta - \hat{\beta}_n \right) X_i \right)^2,$$

where

$$\epsilon_i = U_i - \delta X_i$$
.

In view of the result in (i), $\beta + \delta - \hat{\beta}_n \rightarrow_p 0$, and therefore

$$n^{-1} \sum_{i=1}^{n} \left(Y_i - \hat{\beta}_n X_i \right)^2 \to_p E\left(\epsilon_i^2\right).$$

Hence, the proposed estimator converges in probability to $E(U_i - \delta X_i)^2 Q^{-1}$. This would be the same as the asymptotic variance in (iii) if the errors $\epsilon_i = U_i - X_i'\delta$ were homoskedastic. It is given that U_i 's are homoskedastic. However, even if U_i 's are homoskedastic, $\epsilon_i = U_i - \delta X_i$ would be heteroskedastic:

$$E(\epsilon_i^2|X_i) = \sigma^2 + (\delta X_i)^2 - 2E(U_i|X_i) \,\delta X_i \neq constant,$$

unless $E(U_i|X_i) = 0.5\delta X_i$. Since $\delta = Q^{-1}\mu$, and $\mu = E(X_iU_i)$, the law of iterated expectation implies that if $E(U_i|X_i) = 0.5\delta X_i$, then

$$\mu = E(X_iU_i)$$

$$= E(X_iE(U_i|X_i))$$

$$= E(X_i \times 0.5\delta X_i)$$

$$= 0.5Q\delta$$

$$= 0.5Q \times Q^{-1}\mu$$

$$= 0.5\mu.$$

However, the only solution to $\mu = 0.5\mu$ is $\mu = 0$, which contradicts the assumption that $E(X_iU_i) \neq 0$. It follows therefore that $\epsilon_i = U_i - \delta X_i$ are heteroskedastic. Hence, the estimator would be inconsistent for the asymptotic variance of the OLS estimator.

Problem 4. Consider the model

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + U_i, \tag{2}$$

where X_{1i} is an exogenous regressor and X_{2i} is an endogenous regressor. Assume that data are iid and conditions required for LLNs hold. For each of the following statements, indicate true or false, and explain your answer.

- (i) Let $\hat{\beta}_1$ denote the estimated coefficient on X_1 in the OLS regression of Y against a constant, X_1 , and X_2 . Since X_1 is exogenous, $\hat{\beta}_1$ consistently estimates β_1 .
- (ii) Let $\hat{\beta}_1$ denote the estimated coefficient on X_1 in the OLS regression of Y against a constant and X_1 . If $Cov(X_{1i}, X_{2i}) = 0$, then $\hat{\beta}_1$ consistently estimates β_1 .
- (iii) Consider the following IV estimator of β_2 that uses X_1 as an IV:

$$\hat{\beta}_2 = \frac{\sum_{i=1}^n (X_{1i} - \bar{X}_1) Y_i}{\sum_{i=1}^n (X_{1i} - \bar{X}_1) X_{2i}}.$$

If $Cov(X_{1i}, X_{2i}) \neq 0$ and $\beta_1 = 0$, then $\hat{\beta}_2$ consistently estimates β_2 .

Solution.

(i) False. If X_1 and X_2 are correlated, $\hat{\beta}_1$ is inconsistent. Let \tilde{X}_{1i} denote fitted residuals in the regression of X_1 against a constant and X_2 :

$$\tilde{X}_{1i} = X_{1i} - \hat{\gamma}_0 - \hat{\gamma}_1 X_{2i},$$

where $\hat{\gamma}$'s denote the OLS estimators.

$$\hat{\beta}_{1} = \frac{\sum \tilde{X}_{1i} Y_{i}}{\sum \tilde{X}_{1i}^{2}}$$

$$= \beta_{1} + \frac{n^{-1} \sum \tilde{X}_{1i} U_{i}}{n^{-1} \sum \tilde{X}_{1i}^{2}}.$$

Next,

$$n^{-1} \sum \tilde{X}_{1i} U_i = n^{-1} \sum X_{1i} U_i - \hat{\gamma}_0 n^{-1} \sum U_i - \hat{\gamma}_1 n^{-1} \sum X_{2i} U_i.$$

Since X_{1i} is exogenous,

$$n^{-1} \sum X_{1i} U_i \to_p 0.$$

We can also expect that

$$n^{-1} \sum U_i \to_p 0.$$

However, since X_{2i} is endogenous,

$$n^{-1} \sum X_{2i} U_i \to_p E X_{2i} U_i \neq 0.$$

Note also that

$$\hat{\gamma}_1 = \frac{n^{-1} \sum (X_{2i} - \bar{X}_2) X_{1i}}{n^{-1} \sum (X_{2i} - \bar{X}_2)^2} \to_p \frac{Cov(X_{2i}, X_{1i})}{Var(X_{2i})}.$$

Hence, if X_1 and X_2 are correlated, then $\hat{\beta}_1$ will be inconsistent.

(ii) True. Write

$$Y_i = \beta_0 + \beta_1 X_{1i} + V_i,$$

 $V_i = \beta_2 X_{2i} + U_i.$

We have $Cov(X_{1i}, V_i) = \beta_2 Cov(X_{1i}, X_{2i}) + Cov(X_{1i}, U_i)$. Since X_1 is exogenous in the original model, $Cov(X_{1i}, U_i) = 0$. If $Cov(X_{1i}, X_{2i}) = 0$, then X_1 is uncorrelated with V in the new regression equation and, therefore, exogenous. Hence, $\hat{\beta}_1$ is a consistent estimator.

(iii) True. Since $\beta_1=0,\,X_1$ is excluded from the structural equation. By the assumption, X_1 and U are uncorrelated. Since X_1 and X_2 are correlated, X_1 is a valid IV.