Appendix to “Inference on the Distribution of Individual

Treatment Effects in Nonseparable Triangular Models”

Jun Ma* Vadim Marmerf Zhengfei Yu!

The appendix contains two sections. Appendix A is devoted to the proofs of the results in Section

3. Appendix B is devoted to the proofs of the results in Section 4.

Notation. Denote U; = (¢;, D;, Z;) and U = (¢, D, Z). For notational simplicity, we suppress
the dependence of n, on x and write n instead. Since the domains are often clear from the definitions,
we suppress the dependence of the sup-norm on the domain and write |[|-||, for simplicity. Similarly,
we suppress the dependence of BL; (D) on the domain D and write BL; for simplicity. For a subset A
of D endowed with a norm |[|-|| and 6 > 0, let A% := {x € D : Jy € A such that ||z —y|| < 6} denote
the d-enlargement of A. It is easy to see that A° must be an open set. “<” denotes inequality up
to a universal constant. “With probability approaching one” is abbreviated to “wpal”. f|5 denotes

the restriction of a function f with a domain A on a sub-domain B C A.

A Proofs of results in Section 3
We denote P, f :==n"t>"" f(U;), Pf =E[f (U)| X = z] and G,, == v/n (P, — P). Let

Ydz (UZ ’ v, h7 hl) =

and v, (Us | v, h, ') = 3 e 0.1y Vdo (Ui | v, b, 1'). Then we can write

Fax (v|z) = Fax (0] 2) = Poys (- | v,v/n - Hy, 0)
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and

-~ ~ H, 1
FA|X(U"T)_FA\X(U|$)_ Z {!pdz <Ax+)_!pdzAx}(v):'Gn'7x ('|,Ua\/’7l'HCC70)'
d€{0,1} Sdz vn

(A1)

Using these notations, we show the following lemma.

Lemma 1. Under the assumptions in the statement of Theorem 1, (16) holds.

Proof of Lemma 1. The conclusion of the lemma follows from (A1) and G, Vg, (- | v,+/n - H;,0) =
op (1), uniformly in [v,,7,], for d € {0,1}. The latter result is equivalent to the claim that for all
e>0,

Pr [ sup ‘(Gn’ydm (- |v,vn- Hx,O)‘ >e| <e, (A2)
UE[yx,ﬁz]

when n is sufficiently large. Note that H, concentrates on the space C'[e,, €;], which is a closed subset
of >° [e,, €. Fix some € > 0. It follows from the tightness of H, that there exists some compact set
K C C[e,, €] such that Pr[H, € K] > 1 —¢/2. By this result, (13) and the portmanteau lemma
that for all § > 0 when n is sufficiently large,

Pr \/ﬁ~HI€K5/2} > Pr [erK‘s/?} >1—§. (A3)
Let B (hg,0) == {h € (®e,, €] : ||h — ho|l, < I} denote the open ball of radius § in £ [e,, €]
centered around hg. Note that K is also compact in the larger space (> [e,,€;]. Then by the
compactness of K, there exists some ps € N and hy, ..., hp; € K such that K C 26:1 B (hg,d/2). By

the triangle inequality, K%/2 C URe, B (hi,d). Therefore, by this result and (A3), for each § > 0,

Pr [\/E-er GB(hk,é)] >1—%, (A4)
k=1

when n is sufficiently large. By the triangle inequality,

sup sup  |Gpydx (- | v, h,0)]
helURe | B(hy,8)vE[L, U]

< sup max sup [Gupyax (- | v, h,0)
vE[v,,To|F=1Pshe B(hy,,0)
< sup max sup |Gpvge (| v, h i)+ sup max  |Gpyge (- v, b, 0)]. (AD)

vE[v, To )K= Po REB Ry, ,8) Ve, Falk=1r s

Let ¢, = infec ) |sax (€)|. We have ¢, > 0 under Assumption 1(g). By using the elementary
equality

lu<z)—1(u<0) = 1(xz>010<u<z)—1(z<0)l(x<u<O0)
= 1(z>0)010<u<|z])=1(x<0)I(—|z|<u<0), (A6)



and the triangle inequality, for all h € B (hy,d), we have

”Ydl‘ (UZ | v, h’7 hk)’

, h (&) ) . hy (i) y o
< ‘n(Ax(qH\/ﬁ%(q)s ) 1<Ax(z>+\/ﬁ,§dx(q)s ) 1(D; = d)
5 o) -
< (v e A e St e ) 1 D=
= Iy (Ui|v,6 h). (AT)

Therefore, by this result and the triangle inequality,

sup ‘Gn’Yd:c ( | v, ha hk)| S |Gan:l? ( | v, 67 hk)| + 2\/ﬁ . ]P)Fd:l? ( | v, 5) hk) .
hGB(hk,é)

Now by this result and (A5),

sup  sup [Guyae (- | 0,0 ST (9)+  sup  2Vn-Pla(-|v,6,h),  (A8)
MEULZy Bt 8)vEle o) (v h)€le, 2] XK

where

T,(0) = sup max |Gpyee (-] v, hg0)|+ sup max [Gplye (-] v,0,h)l.
ve[yz’ﬁx]kzlp--ypé Ue[yz’ﬁw]k:17...7p§

By Kosorok (2007, Lemma 9.7, iii and vi), for any h € K,

h (e)
—1(A — < —1(A <) :v € |y,
{eri(a@+ 2 o <o) - 1@ 0o e o)
is a Vapnik-Cervonenkis(VC) class of functions (see, e.g., Kosorok, 2007, Chapter 9.1.1 for its defi-
nition) which has a VC index independent of n and is uniformly bounded by the constant envelope
2. Note that since K is a compact subset of C [e,,€,], we have supy,cf |1, < M for some M > 0
(Dudley, 2002, Theorem 2.4.7). By Kosorok (2007, Theorem 9.3) and Chen and Kato (2020, Corol-

lary 5.5), we have

log (n)
E| sup [Gpyae (-] v,h,0)]| < oy/log(n)+ : (A9)
vElv, T] K Vn
where
o2 = sup Py, (-|v,h,0)
vE[v,,,Ts]

< o e (o 20 ) —ra (- 25
< up v — v —

vE[v,,,Ts] Alx \/ﬁ *Sdx alx \/ﬁ " Sdx

= O(n_l/Q),



where the inequality follows from (A6) and the triangle inequality. Therefore, for all h € K,
SUDyelv 5,] [GnYde (+ | 0,1, 0)] = 0p (1) and this result implies that for all 6 > 0,

sup  max |Gpyay (- | v, h, 0)] =0p (1) . (A10)
vely, ) F=1eDs

By similar arguments, for all h € K and § > 0, sup,¢y_ 3,] |Gnluz (- | v,6,h)| = 0, (1) and this
result implies that for all § > 0,

sup  max |Gnlaz (- | v, 6, hi)] = 0p(1). (A11)

vEly,, O] F=Lps
(A11) and (A10) imply that for each 6 > 0, T}, (§) = o, (1).

Now we show that

lim limsup sup Vn -Ply, (-] v,6,h) =0. (A12)
610 ntoo (v,h) €V, Uz X K

By change of variables u = /n (4, ; (e) —v),

\f’PFdJE('MJ 4, h)

€z, j 5 h (6) (5 ) ,
= < Ay —=——— < ) ,d | z)d
\FZ - ( i ,J(€)+\/ﬁ'%(e) v+\/ﬁ&m fepyx (e,d' | x) de
A (e )=) (AL (Pt w))
= Z/ 1[u>— -
=17 V(A j(ex,j-1)—v) Sdz <A;j. (n=12u+ v)) Sdz
h A;l» n~Y2y + v
x1 [u<— ( i )) 2 'z j (n_1/2u + v) du. (A13)

Sda (A;; (n=1/2u + v)) Sdx

Assume that A, ; is increasing without loss of generality. We have

Vn(Az,j(€a,5)—v) h (Aij (n 1Py v)) K3
/\/ﬁ(ﬂz,j(%,j—l)—v) e _§dx <A;, —1/2u +v )
h(AL (nm1/2
s _Cdz< i;(n 1/:uj—vj))> T R ( TPut U)
Vil (er,5)-0) ~ (v)) h(A)(n Puke)  h(AW) |
= / A -1 -1 (. —1/2 - -1 " Sds
Vn(Ag j(exj—1)—v) §dx z,j (v)) Sda (A:B»J' (n /2y + v)) Sdar (A:w- (1})) Sdx

» (u o n(ate) | (aztPusn))  on(an o) 5
Sdo <A (v )) Sdz (A:;; (n12u+ U)) Sdz (A;; (v)> Sz



x1 <|u\ < ]V[g;_ 5) Pd'z,j (n_l/Qu + v) du
S L h (A;é (n=! 2+ ”)> h (A;;' (”)> _1/2 Al4
= \su + uesﬂ}jﬁv) o (A;’} (n=1/2u + v)) - S (A (v)) uesql/lﬁv)pd’x,j (n u+ v) . (A14)

where

%00) = [Vit(Aey eago) = 00V = (B0 ) ViAo (P50,

Since K is a compact subset of C [e,,€,], K is uniformly equicontinuous (Dudley, 2002, Theorem
2.4.7): for all € > 0, there exists some & > 0 such that supyc g |3y <x [P (z) — b (y)| < e. Since K is

uniformly equicontinuous and ¢y, is continuous and bounded away from zero,

h (A;} (n—1/2u + u)) h (A;;. (U))
lim sup sup —
nTOO(U,h)E[Ezﬁx]XK UEUn (v) Sda (A_l (n—l/Qu + ’U)) Sdx (A;j (U))

mhj

= 0. (A15)

It is also easy to see that sup,ey, (v) Pd'a,j (n_1/2u + v) is bounded uniformly in v € [v,, V], when
n is sufficiently large. (A12) follows from this result, (A13), (A14) and (A15).

Next, we show that (A4), (A8), (A12) and the result that T, (§) = o, (1) for all 6 > 0 imply
(A2). By (A12), there exists some Jp > 0 such that

sup Vn Pl (-] v,80,h) <
(v,h)€Ev,, x| x K

: (A16)

IS

for all sufficiently large n. We have

Pr sup ’Gn'}/dz ( | v, \/ﬁ : Hxa0)| > 5]

[v€[v,,Vx]
[ Psg
< Pr sup sup  |GpYae (- | v,h,0)| >e| +Pr|/n-H, ¢ U B (hg, o)
| heUR20, B(hi o) € [La-Te] k=1
< Pr sup  2vn Pl (- | 0,00, h) + T (80) > €| + =
| (v,h)€[v, Ta]x K 2

[ 9 g
< Pr|T, (5 f} =
< I‘_n(o)>2+2

for all sufficiently large n, where the first inequality follows from the union bound, the second
inequality follows from (A4) and (A8), and the third inequality follows from (A16). The conclusion
follows from this result and the result that Pr [T}, (dp) > /2] < £/2 for all sufficiently large n. W

The following lemma shows the Hadamard differentiability of ¥, (at A;) and derives the form
of the Hadamard derivative (at Ay).



Lemma 2. Under the assumptions in the statement of Theorem 1, Wy, is Hadamard differentiable

at A, tangentially to C'le,, €z]:

l*pdoc (Aac + tnhn) - &pdan:
ln

— Yazhol| =0, (A17)

o0

|
ntoo

where {(hn,tn)}oey is a sequence in £ [e,, €] x R that converges to (ho,0) € C'le,, €] X R and

Vg 2 £ [€,, €] = £° [V, Vg] is a continuous linear operator defined by

Gaeh (v) = =Y paray )] 0 (A7} (0)) s v € [, ],
j=1

for all h € £ [e,, €.

Proof of Lemma 2. By change of variables u = (A, (e) — v) /ty,

!pd;v (Ax + tnhn) - g/da;Ax
tn

- Z /Ez"j {1 (Asj (€) + tnhn (€) <v) — 1 (Ayj(€) <0)} fle.pyx (6,d | ) de

Az,j(ez,j)7”

N i /A(tnl) {1 (0= = (A7 (G +0)) ) = 1(w S 0)} para (bon + v) du(A18)

Assume that A, ; is strictly increasing without loss of generality. Then, by (A6) and the triangle

inequality,

aj(ej)—v
Aj(;:)fv {11 (u < —hn (Aj—l (tnu + v))> ~1 (u < —ho (A;l (tat + v))) } pare.j (tntt + v) du

Agj (fz,j)—v
tn

< Loty L0l < ol + on — oll0)
x1 (u > —ho (A;,} (v)) . )ho (A;j. (tnu + v)) ~ ho (A;,} (v)) ] A — hOHOO)
x1 (u < —ho (A;j. (v)) + )ho (A;j (tnu + v)) — ho (A;j. (v))’ + || — hOHOO)
XPd'z,j (thu +v)du
< 9 {|hn —holl, + sup |ho (A;;. (ot + v)> ~ ho (A;;. (v)) ‘} { SUP P (ot + v)} , (A19)
u€U) (v) uEX, (v)
where
Ay j(€gj—1) —v Ay j(egj)—v
%)= | B0y (= = Roll), B A Gl + 1 = ol



It follows from the uniform continuity of hy that

lim sup sup
nTooyel, oL lue?, (v)

ho (A7) (taut-0)) = ho (473 ()| = 0. (A20)

Similarly,

A:t,j (ea:’j)fv

/Ay(tna—l)— {ﬂ (“ < —ho (Aa?j' (tnu + U))) -1 (u < —ho (A;,} (v))) } paraj (tnu +v) du

tn
Az,j(ez,j)*v

< /4\(1) 1 (Jul < holloo) 1 (1 < —ho (475 @) + [ro (A7) (tau+0) = ko (473 @)])

tn

x1 (u > —hg (A;’} (v)) - )ho (A;j (tnu + v)) — ho (A;’} (v)) D pd'z,j (thu +v) du

< 2 { sup |ho (A;; (tnu + v)) — ho (A;; (v)) ’} { SUP  Parzj (tnu + v)} . (A21)
uEX,) (v) ’

u€U,) (v)
By (A20) and the fact that sup,cq(v) Paz.j (n*1/2u + v) is bounded uniformly in v € [v,,7,] for
all sufficiently large n, the right hand sides of the second inequalities in (A19) and (A21) are both

0(1), uniformly in v € [v,,,].

Therefore, by the calculations above and (A18),

de (Aa: + tnhn) - deAas
128
m Am](ez,j)fv
_ fn _ -1 _ .
- Zl /Aw-(ez,jl)v {Il (u < —ho <Am,j (v))) 1(u< 0)} pdrz,j (tnu +v) du+ o (1) (A22)
J= tn

uniformly in v € [v,,7;]. By (A6) and the triangle inequality,

Aﬂ;,j(el',j)7U

/Ax,j(e:;l)v {]l <u < —hg (A;; (v))) —1(u< 0)} {para; (tnu+v) — pagj (v)} du

tn

Agj(eai)=v
tn

< ey L0l < Dolloe) [P (s 0) = pure (v)] du

tn

< 2hollw { SUD [paraj (tntt + ) = paraj (v)l}

wueEYy) (v
= of(1),

uniformly in v € [v,,U;]. By this result and (A22),

!pdz (A:c + tnhn) - WdrA:c
2




Az]( z])—v

i para ( / (:;_1)_”{1(“ —ho (A o (v)))—]l(ug())}du—l—o(l),

tn

uniformly in v € [v,,7;]. The conclusion follows from this result and (A6). |
Let
Ryw(y) = Pr[Y < du: (), D:le:@“HPr [Y<y, =d | X =]
Liw (Wiy) = L0iS0aw®),Di=d)+1(Yi<y Di= =d) -~ Rax(v) ().

Cdz (Pdz (¥))

It is easy to see that we have

I(ej <e) - Fyx(&|z)

Cda: (g (d¢ x, ez))

Liz Wy, g (d,z,€¢)) = 7w (Z;). (A23)

Let dus (y) denote the leave-in version of (E&_i) (y) that minimizes the sample analogue of (5),
which is defined by the right hand side of (6) with all ranges of summation changed to Z 1. Under
the assumptions in the statement of Theorem 1, by Lemma 2 of MMY , we have the Bahadur-type
representation result

(gdm ( ) ¢d:r Z de Wu y) + gdx ( ) ) (A24)

=1
where &4, (y) = O, ((log (n) /n)3/4>, uniformly in y € [yd'x’gd’x] Lemma 2 of MMY shows that
|€dz |l oo < T wpal for some deterministic sequence {ry} - ; which is proportional to (log (n) / n)g/ 4
It is clear from the proof of Lemma 2 of MMY that the linearization result (A24) also holds for
&52;2) (y) and the remainder term denoted by §C(I;Z) (y) has the same order of magnitude, uniformly

in:i=1,..,n.

By using (A23) and (A24), we can write

Ai-a = (% (1) - 86, (¥)) + (1= D) (&5;” (YD) = 610 (1)
= ZLOx (1,2,¢)) Zle 9(0,7,6)) ¢ +&,
B D; (1-D;) .. ,
B {COx (Ei) Slz (Ei) } e ( Z) e (A25)

where & = —D;e{-" (Vi) + (1 — D;) €57 (v7).

Now by (A25), we can write

Fax(|z)—Fax (v]2)



::LG: 3 <IL<AZ-+Z;EE:;+&§U)—IL<AZ-+H‘”(€i)§v>>]l(Di:d’). (A26)

i=1 defoa} Sdz (61)

Using these results and notations, we can show the following lemma.

Lemma 3. Under the assumptions in the statement of Theorem 1, (14) holds.

Proof of Lemma 3. Let &, := max {|¢1], ..., |6,]}. It follows from (A24) that &, < r,, wpal, where
rn =0 ((log (n) /n)3/4>. By this result, (A6), (A26) and the triangle inequality, we have

N (ﬁM (v] )~ Fax (0] )|

e oa ) Y g
= f;de%:l} ( £n<Al+§dx(€i)§ +£n>]l(Dl 7)
< Vi (Fape @l @) = Fax (] 2)) + v (Fapx (v 2) = Fapx (v = ra | 7)) , (A27)

where the second inequality holds wpal.

Write

Fax(wtrn|z)—Fax@l|z)=

{Fax w+rala) = Fax @wla)} — {Fax w]o) = Fax @2} (A28)

By Lemma 1 and the functional delta method,

ﬁA|X(v|x) FA‘X (v]x)= Z WV (f He )(v)+op(1), (A29)

de{0,1} dz

uniformly in v € [v,,7;]. By Slutsky’s theorem (Kosorok, 2007, Theorem 7.15(ii)), Lemma 2 and
the functional delta method,

Vi (Fap o+l )= Fa0]0) = v ¥ {ou (4 2o} cwanf @)+ 0,0,

de{0,1} Sdz
- H,
_ %(W - n-rn><v>+op<1>, (A30)
def{0,1} da

uniformly in v € [v,, U], where the first equality follows from the same arguments as those used to
prove Lemma 1 and the second equality follows from the functional delta method. It now follows
from the linearity of 4., (A28), (A29), (A30) and r,, = O ((log (n) /n)3/4> that the first term on
the right hand side of the second inequality in (A27) is o, (1), uniformly in v € [v,,7,]. By using
similar arguments, we can show that the second term on the right hand side of the second inequality
in (A27) also is 0, (1), uniformly in v € [v,,7,]. The conclusion of the lemma follows from these
results and (A27). [



Now we show that the conclusion in Theorem 1 follows from Lemmas 1, 2 and 3.

Proof of Theorem 1. By Lemma 3 and (A29), we have
vn (ﬁmx (v|z)— FVA|X (v | :r;)) = \/ﬁwa' (v) Hy, (A;; (v)) +0,(1)

J=1

IZZ%J o) {1 (62875 @) = Fax (473 0) [0) e () + 0, (1), (A3D)

=1 j=1

uniformly in v € [v,, 7], and therefore

1 n
Sp(v|z) = — 1(A;(e) <v)— Fpx (v]x)
. vl s w12)
+ 3w (0) (1 (6 < A73 ) = Fyx (475 @) [ 2)) m (Z0) ¢ + 0, (1) (A32)
j=1
uniformly in v € [v,,V;]. Let

Ly (Ui | v) =1 (4 (&) <wv)+ iww (v) <]1 <ei < A;} (U)) - Fx <A;; (v) | x)) 7z (Z;)
j=1

and the leading terms on the right hand side of (A32) can be written as Gy, (- | v). It clear that
since E [7, (Z) | X = z] = 0 and Z and € are conditionally independent given X = z, the two leading
terms on the right hand side of (A32) are uncorrelated. By Kosorok (2007, Lemma 9.7, (iii), (iv)
and (vi)),

e wa,j (v) (]l (e < A;j. (v)) - Fyx (A;} (v) | m)) DV E Uy, Tyl

and {e— 1(A; (e) <v):v € [v,,Vg]} are both VC classes of functions. By Kosorok (2007, Theo-
rem 8.19), they are also Donsker classes. By this result, (A32), Kosorok (2007, Theorem 9.30(i)),
Kosorok (2007, Corollary 9.32(i) and (v)), Kosorok (2007, Lemma 7.23(i)) and also the fact that
E[ry (Z)| X =z] = 0 and Z and e are conditionally independent given X = z, Sp (- | ) weakly
converges to a tight Gaussian random element in ¢*° [v,,7;] with zero mean and the covariance

structure given by

(Faix (vA [ 2) = Fax (v ] 2) Fax (v | 2)) + (pﬂi +P6|i,)

)30 (0)wa () (Faxe (873 (0) A A1 (0) [ 2) = Fu (873 (0) | 2) Fux (451 () [ ).

Jj=1k=1

10



where v, v’ € [v,, V], which has the same distribution as F (- | z) (Kosorok, 2007, Lemma 7.3). Then
the conclusion in Part (i) follows immediately. The conclusion in Part (ii) follows from Part (i) and
the CMT. |

Proof of Corollary 1. For any 7 € (0, 1) and sufficiently small € > 0 such that Qa|x (7 | z) +¢ is

an interior point of ¥ x—,, we have

Pr(Qax (7 2) < Qux (7| @) +¢| >

Pr Hﬁmx (Qax (t|x)+e|x) = Fax (Qax (t]2)+¢| ff)‘ < Fpx (Qax (t]2)+¢x) —T],
(A33)

where the inequality follows from Van der Vaart (2000, Lemma 21.2(i)) and by Theorem 1, the right
hand side of the inequality converges to one. By similar arguments, for all sufficiently small € > 0

such that Qa|x (7 | ) — € is an interior point of A x—g,
r[Qax (7 12) = Qux (T 2) — 2] = 1,

as n 1 oo. It follows that @A|X (7| 2) =p Qax (1| ) for all 7 € (0,1).

Now fix some small € > 0 such that [a,b] = [Qa|x (z | #) — &, Qa|x (T | ) + €] is an inner closed
sub interval of 75 x— 7 It follows from the consistency of @A|X (r | z) and @A|X (T | ) that wpal,

for all 7 € [z,7], QA|X (17 | ) can be written as the image of the restriction FA|X (- | x)‘[ , under
a,
the map ¢, defined in the statement of Van der Vaart (2000, Lemma 21.3). Clearly, Qax (7 | )

is the image of the restriction Fa|x (- | under the same map. Let FA|X (- | ) be a modifi-

x”[a,b}
cation of F)ox (- | z) defined in the following way. Let FA|X (v|z) be Falx (v]z) for all v € R if
@A‘X (r|x) > a and @A|X (T | x) < band let FA‘X (v|x) be Fplx (v|z) for all v € R otherwise.

Then, @A|X (t]z)—or (FA|X (- | x)‘[ b]) =0 for all 7 € [7,7] wpal and therefore

Qu (v 100 =0 (B 10| ) = opan). (A34)

[a,b]

uniformly in 7 € [1,7], for any ay, | 0. Similarly, we also have

ﬁmx (v]2) = Fax (v ] 2) = o0p (), (A35)

implied by Theorem 1(i) with [v,,7,] = [a,b] and (A35), /n <FA|X( | z)

converges in distribution in ¢*° [a,b] to a tight Gaussian process. By thls result, (A34

)

uniformly in v € [a,b], for any «, | 0. By the convergence in distribution of SF( | x) in > [a, b]
)

11



Van der Vaart (2000, Lemma 21.4(i)), and the functional delta method,

Sorla) = vilor (Fax ¢l ) =6 (FaxC12)],,) |+ o)

_ Sr(Qax(r]2) =) +op(1), (A36)

faix (Qax (7| 2) | z)

uniformly in 7 € [7,7]|. The conclusion in Part (i) follows from this result and Theorem 1(i) and the
CMT. Part (ii) follows from Part (i) and the CMT. [

B Proofs of results in Section 4

¢l > 5] = 0p (1). It is easy to check that & = o;r, (1) if

> 5] < e wpal. It essentially follows from the Markov’s inequality

We write &, = op( ) if for all € > 0, Pry [

&
that if &, = oy, (1), then we also have &, = 0;2 (1): for all £,0 > 0,

and only if for all € > 0, Pr; [

Pr{|gn| > €]

Pr[Pry [|&n] > €] > 0] < 5

10, (B1)

asn T oo. If &, depends only on the original data, then Pr [|€,] > €] = 1 (|§n| > ) and 1 (|£n| >¢e) =
0 wpal Moreover, it is also easy to see that properties of 0, carry over to op (e.g., op (an) —i—op (Bn)
op (Bn) if an = O(By)). Let g7 (d,z,-) denote the inverse of g (d,z,-), ;r = DT (1,9:,YiT

_|_
(1 — D;r) g ! (O,:L‘,Yj), U;r = (EI,DQL,ZZT) and A}L = A, <ej) Denote IF’IL =n1 S f (U;r)
and GL =/n <IP’IL — IPn)

Let
~ 1 <& ~
F2|X(v|x) = nE}H(AIg
~ 1 &
F2|X(v\x) = 1]1<I§>
- BN L () |
Flyc@la) = =3 31 A, () + L 1(pf=a),
i=1 de{0,1} Sdz (EZ)

The following lemma is a bootstrap analogue of Lemma 1.

12



Lemma 4. Under the assumptions in the statement of Theorem 2, we have
=t = H; i (),-1/2
Flyy 0lo) = Fyyw]z) = Y Aot o7 | WA (0) =0 <n )
de{0,1}

uniformly in v € [v,, Uy

Proof of Lemma 4. We can write

- ~ T
Flyy@la)=Fyw]a)— Y {npdz (Az + H) — wdxAm} (v)

de{0,1}

= = (G1+6.) 2 (-l ova- mL0).

It suffices to show that for all € > 0, the event
Pri [ sup ‘(GL%—Gn) Yz <~]v,\/ﬁ-H;£,O>‘ >€] <e (B2)
VE([v,,Ta]

occurs wpal.

By Van der Vaart (2000, Theorem 23.7), v/n (HJ« — Hz> ~t H in €°° [e,., €] as n T oo. Therefore
for all € > 0, the event

ol [h (\/ﬁ (H; - Hx»] —E[h (Hx)]\ <e (B3)

sup
heBILy

occurs wpal. Now we show that for any open subset G of {*° [¢,,€,] and any ¢ > 0, we have

Pr. [ﬁ (H;g - Hz) = G} >Pr[H, € G] —¢ (B4)

[eS)
m=1

holds wpal. To show (B4), first we note that there exists a sequence { f,,, } in BL; that converges

pointwise to £ [e,, €] © f — 1 (f € G) from below (see, e.g., the proof of Kosorok, 2007, Lemma 7.1
for one construction). By the monotone convergence theorem, lim,1o0 E[fn, (Hz)] = Pr[H, € GJ.
Then, by (B3), for any ¢ > 0,

Pry [V (H - Hy) € G| 2 B[ f (Vi (] = ) )| = B[f (BL)] -2, vm € N,

holds wpal. (B4) follows from these results.

Now fix some ¢ > 0 and also the compact set K C C [¢,, €] such that Pr[H, € K] > 1 —¢/4.
As in the proof of Lemma 1, for all § > 0, find hq, ..., hy, € K such that K92 C U, B (hg,d). By

13



(B4) with G = K°%?2, for each § > 0, the event

s
PI’Jf \/ﬁ(Hl—Hz) S UB(hk,d)] > 1—% (B5)
k=1
occurs wpal.
By the triangle inequality and (A7),
sup sup ‘(GL—FG,Z)W:E (.’v,h—i—\/ﬁ-Hm,O)‘

helUpl | B(hy,8)vE[v,,Vz]

IN

sup ~max  sup ‘(GL + Gn) Vi ( | v, h+/n - Hy, 0))
v€[v,,To)F=LPshe B(hy,8)

sup ~max  sup ‘(GL—FGH) Vda ( ]v,h—l—\/ﬁ.Hm,hk—l—\/ﬁ.Hm)
v€[v,, T |k D5 he B(hy,6)

(GL—FGn)’ydx (-]v,hk—k\/ﬁ-Hx,O)‘

IN

+ sup max
ve[yx,ﬁz]kzlv'“:pé

7Y () + I (9), (B6)

IN

where

TI(6) == sup max

Ue[yz7ﬂz]k:1""’p6

(GLJan)vdx (-|v,hk+\/ﬁ-Hx,0)‘

+ sup max
., 1k=1,....ps
vE[v,,Ts]

r,(6) = sup 2vn - Ply, (| v,6,h++/n- Hy) . (B7)
(v,h)Ev, Uz XK

(GL +Gn> Tiw (-] 0,6, hi + /n - Hy)

First we show that 7} () = o}, (1) for all § > 0. It follows from the same arguments as those
used to show (A2) that for all h € K,

Gn’}/dac ( | ’U,h—|—\/ﬁ-Hw,0) = Op (1)7 (BS)

uniformly in [v,,7,]. Let 62 := SUPyelu, 7,] P.y3, (- |v,h++/n- Hy,0). By using the same argu-

ments as those used to show (A9), we have

< 5/log () + 1"3%”) — 0, (1),

vE [EI Ko

ET[ sup ]‘GL'de(' | v,h,O)‘

where the equality follows from (A7), supycg [|h]| < M and the fact that ||\/n- Hy| . = Op(1).
Now it follows from this result, (B8) and (B1) that for all 6 > 0, the first term on the right hand
side of the definition of T} (6) in (B7) is O}L, (1). By similar arguments, the second term on the right
hand side of the definition of T} (§) in (B7) is also o;, (1) for all § > 0.

Next we show that for all k > 0, we can choose § to be sufficiently small such that I, (§) < &

14



wpal. We apply the same calculations (A13) and (A14) (with h replaced by h + \/n - H;) for
VPl (-] v,0,h+ +/n- H,). The convergence in distribution of y/n- H, in £*° [e,,€,] implies that

Vv/n - H, is stochastically equicontinuous, i.e., for all k,7 > 0, there exists some § > 0 such that

Pr sup ‘\/ﬁHx(l’)*\/ﬁHm(y)’>H

z,Y€e, Eal:lz—y| <8

<,

for all large enough n. Then by this property, we have, for all k,n > 0,

Prl s . Vn - H, (A;,} (n=/2u + u)) Vi (A;’} (v))

VEW,,Tz| | uEXn (v) Sd (A;; (n_l/zu + U)) Sdzx (A;,; (U)) T

for all large enough n. It follows from this result and (A15) that

(h+/n- Hy) (A;j (n=Y2u + v)) (h+/n- Hy) (A;j. (u))

sup sup - =o0p (1),
(v h)eloy Telx K | ueZn(v) ar (451 (112 +v) ) car (475 () b

z,j

and therefore, for any k > 0,

n-H, L2 40 n-H, Ly
. |V Hy) (A7) (7 Put o)) (v H) (A3 ) .

(v,h)E[v, Vo)X K | u€n(v) Sd (A—l (n—l/zu + v)) Sdx (A;} (v))

x7j

wpal. The desired property follows from this result, (A13) and (A14) (with h replaced by h++/n-H,),
and the fact that sup,cq, () Pdz.j (n=Y2u +v) is bounded uniformly in v € [v,,7,], when n is

sufficiently large.

By the property shown in the preceding paragraph, we can find some dg > 0 such that I, (5p) <
£/2 wpal. Then, by this result, (B5) and (B6), we have

Pri | sup )(GIL—FGn) Yz ( |v,\/ﬁ-Hl,O)‘ >

_ve[yx U]

IA

PI'T sup sup (GL + Gn) Ydz ( | v, h + \/ﬁ . H:E’ 0)‘ S -
_hGUZ@l B(hy,,00) V€ e Va]

Vi (HE - H,) ¢ Us <hk,5o>]

k=1

—|—Pl"]L

IN

Pry |:T;£ (60) + I, (60) > 5] + g

— Pry [Tg (6) + I (8) > 5] 1 (rn (%) > g) + Py [Tg (80) + I (8) > 5] 1 (rn (60) < g) + %

IA

Pry [T;{ () > g} + %
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where the second and the last inequality hold wpal, since 1 (I}, (dp) > £/2) = 0 wpal. (B2) follows
from this result and the fact that T} (8p) = 0;5 (1), which implies that Pry [TnT (0) > 5/2] < g/2

occurs wpal. |

Let $Ilm (y) denote the leave-in version of (Eé;i) (y). Under the assumptions in the main text,
MMY show the following bootstrap analogue of the Bahadur-type representation result (A24) (see
the proof of Lemma S6 of MMY ):

B )~ 00 ) = = 3" Lae (W) + €1, ()
=1

where the remainder term on the right hand side satisfies the condition that Pry H’dbﬁ” > rn} <
(e.9]
71, wpal for some positive deterministic sequences {r,} -, and {r},} ~, that are proportional to

(log (n) /n)g‘/4 and n~! respectively. Then we have the following bootstrap analogue of (A25):

Al — Al =

T
y (o)
L + - H, (€I)+£ja

SO0z (Ej) Slx (EI>

5;2 } satisfies the condition that Pry [é,i > rn} = 0, (1) for some r, pro-

portional to (log (n) /n)**. Using these results and notations, we can show the following bootstrap

PIERERY

where 5* ‘= max { ’5{

analogue of Lemma 3.

Lemma 5. Under the assumptions in the statement of Theorem 2, ﬁg'X (v]x)— lﬁmx (v]x) =

0; (n=Y2), uniformly in v € [v,,7,).

Proof of Lemma 5. By (A6) and the triangle inequality,

Vi (Bl 0] 0) = Flyy (0] 2))]
< ﬁ(ﬁTAIX (U+§j1 | x) —ﬁmx (v | a:)) +\/ﬁ<ﬁTA|X (v] ) —ﬁmx (v—f_jz | $)>, (B9)

where &), satisfies Pry [@; > rn] = op (1) for some r,, = O ((log (n) /n)3/4).

By Lemma 2, the bootstrap functional delta method (Kosorok, 2007, Theorem 12.1 and Equation
(12.1)) and (B1),

n (HY - H,
\/ﬁ{wdx<Az+I—I;>_de<Am+}Ix>}<v)_wdx \F(H H) (v)+05 (1), (B10)

Sdzx Sdx Sdzx
uniformly in v € [v,,7,]. Then, by Lemma 4,
Flovtr|z)—Fl (v] )
AlX n AlX
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H] H]
— -z _ _ —— T -1/2
g {de (Az + - rn> 78 (Ax + §d:c> } (v) + o, (n )

de{0,1}
T
- Z {Wdz (Am‘i‘lj[x_rn) — Yy <Am+1{x_rn>}(v)
de{o1} Sdx Sdx
H} H,
- Z {Lpd:c <Ax + ) - Lpd:c <A:c + > } (U)
de{01} Sdzx Sdz
+ > {% (Ax ML rn> — Wy, <A$ + H> } (v) + o} (n*m) ,  (B11)
de{01} Sdx Sdzx

uniformly in v € [v,,T;]. It was shown in the proof of Lemma 3 that the third term on the right hand
side of the second equality in (B11) is o, (n_l/ 2). It follows from Slutsky’s theorem, the bootstrap
functional delta method and (B1) that the first term on the right hand side of the second equality
in (B11) has the same linearization as the right hand side of (B10). It follows from these results
that ﬁhx (v+r,|z)— ﬁTA|X (v|z)= 0}; (n=Y/2), uniformly in v € [v,,7,]. By this result and the

union bound, for any ¢ > 0,

Pry | sup ﬁ(F’TAX<v+E_L|x>—F’L|X(U|:E)>>6]
’UE[QI,Ex]
< Py ?up ]\/ﬁ (F’TA‘X (v+7r, | x) fF’TA‘X (v | CL‘)) >e| + Pry [EJL > Tn}
VEV,,Va
= op(1).

By similar arguments, the second term on the right hand side of (B9) is also OZT) (1). Thus, the

conclusion of the lemma follows immediately from these results. |
By using Lemmas 4 and 5, we now prove Theorem 2.

Proof of Theorem 2. First note that we have

Skwla) = v (Bl @la) = Fyy@la) +va (Flyc (0] 2) = Fax (0] 2))

—vn (Eax (0] 2) = Fax (v 2)
= Vn Y, {%x <A$ + HT) — Wy, <Ax+ Z)} (v)

de{0,1} Sde
Vi (Bl (v 2) = Fapy (v ] 2)) + 0} (1)
= Sh(vla)+of (1), (B12)
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uniformly in v € [v,, U], where

v (#l - 1)

Sdz

5’} (v|x) = Z Ve

de{0,1}

(0) + Vi (Fiyx 0] 2) = Fax (v )

the second equality follows from Lemmas 1, 3, 4, 5 and (B1), the third equality follows from (B10).
Note that we can write 5’} (v|zx)= Ghie (-] v). By Van der Vaart (2000, Theorem 23.7), we have
SEC 1) =4 F (| @) in 6 [u,, )

Since (B12) implies that for all € > 0,
B (g) =Pr {PrT [HS}; (-]x)— S'jp (-] x)HOO > 5} > 5] 10,

asn 1 co. By Pollard (2002, Lemma 22), there exists a deterministic sequence {e,, },- ; that converges

to zero and also satisfies 5 (g,,) | 0 as n 1 oco. Therefore,
Pr { St(- | z)— Sk (-
T F .Z‘) F( ’ LL’) > En S En, (B13)
o0

occurs wpal. Then we have

By [h (S| x))} ~E; | (SL(- )|
B [ (1 (sk ) Sk )) L(ske1o-skeiaf| > e)]]
o [ (st 1) < (st €1)) 1 (Jsb 10~ s <)

< 3-¢ep, (B14)

sup
heBLy

IN

sup
heBL4

where the first inequality follows from the triangle inequality and the second inequality holds wpal
and follows from the the definition of BL;, which is the shorthand notation forBL; (¢*° [v,,Us])
here, and (B13). By 5’}( | ) ~»4 F(-|2) and using (B14), we have S}( | z) ~¢ F(-|x) in
0 v, Ug). [

Proof of Corollary 2. By Theorem 1(ii) and Van der Vaart (2000, Lemma 2.11), we have

zlelglPr[Sp(Mx)Su]—Pr[F(U|3:)§u]|—>O, (B15)

as n T 00, and since the CDF of ||F (- | )., is continuous everywhere on R, by Theorem 1(i) and
CMT, we also have

Sup Prl[Se (- [ 2)llo <] = Pr{|F (- [ 2)[l, <ull =0, (B16)

as n T oo.
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For p € (0,1), let
Spp(v| ) =inf {u € R: Pry {S} (v]x) < u] > p} (B17)

be the p-th quantile of the resampling distribution of S} (v | ). Since quantiles are equivariant to

monotone transformations, we have

'§F,a/2 (U | :‘C)

Spa2(v|x) = ﬁA\X (v]z)+ ~ Jn
sriap(]) = Fax(v]n+ B2l
Then,
Pr[Fax (v 2) € [spaje (v 2),8p1-a2 (| 2)]] = Pr[=Sr(v|z)<3pi_qp(v]|)]
—{1=Pr[Sr(v|z) < =Spap(v|z)]}.

(B18)

Let ¢ (p) denote the p-th quantile of F (v | z) for any p € (0,1). By (31) and Pollard (2002,
Lemma 22), there exists some ¢, | 0 such that for all p € (0, 1),

o(l) = Pr ilé% Pry [S; (v]z) < u] —Pr[lF(v]z) < u]‘ > En]
> Pr Pry [S};(v | z) < q(p—i—sn)} —PriF(v]|z) < q(p—{—sn)]‘ >€n}
> Pr :PrT [S;[7 (v]|z) < q(p—i—sn)} < p}
> Prispy(v]z)>qp+en)l, (B19)

where the second inequality follows from Van der Vaart (2000, Lemma 21.1(ii)), and the third
inequality follows from the definition (B17) of 5, (v | ) and Van der Vaart (2000, Lemma 21.1(i)).

By similar arguments, there exists some &/, | 0 such that for all p € (0,1),

o(1)

Pr HPrT [S}(vm)gq(p—s;)} —Pr[F(v[w)Sq(p—s;)]‘ 25;1]

Pr [PrT [S;ﬂ (vlz)<q(p-— E;L)] > p]
Pr[Spp(v]z)<q(p—ce,)]. (B20)

Vv

Vv

It is clear that since F (v | ) has a normal distribution, ¢ is continuous everywhere on (0, 1). By this
result, (B19) and (B20), 55, (v | ) =, ¢ (p) for all p € (0,1). By this result, Slutsky’s theorem and
the symmetry of the distribution of F (v | z), we have Pr [—Sp (v | ) < 8p1_ap (v | z)] = 1 — /2
and Pr [Sp (v | #) < =842 (v | )] = 1 — /2. The conclusion in Part (i) follows from these facts
and (B18).
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Now we prove Part (ii). It is easy to see that
Pr[Fapx (v 2) € CBp (v] @), Yo € [u,, 5] = Pr[ISp (- | )0 < s8] - (B21)

Let ¢""f (p) denote the p-th quantile of ||F (- | 2)|| for any p € (0,1). By (32), the continuity of the
CDF of ||F (- | )| and the same arguments used to show (B19) and (B20), for any p € (0, 1), there
exists some &,,¢), | 0 such that Pr [s}’g > ¢unf (p + 5n)} = 0(1) and Pr [3}‘;”1'5 < ¢"f(p— ¢! )} =

n

loo

o (1). By these results, we have
Pr[ISe (| @)l > s#a] = PrlISe(12)le > sHl o sl < ¢ (1-a - 2))]
+Pr IS5 (- | 2)llg > S0 520 > ¢ (1= 0 — )]

< Pr[ISe (@)l > ¢ (1—a—2)] +o()

= Pr[IF(2)le > ¢ (1=a—e)| +0(1)
= a+o(l), (B22)

where the second equality follows from (B16) and the third equality follows from Van der Vaart (2000,
Lemma 21.1(ii)) and the continuity of the CDF of ||F (- | z)

can show that

|- By using the same arguments, we

Pr ISk (- | o)l < ¥ o] = Pr[ISe (@)l < s o, st > ¢ (1 -+ 2n)]
+Pr IS5 (- | )]0 < S s 0 < " (1= 0+ 20)]

< Pr[I8e (@)l <@ (1= ateq)| +0(1)

= Pr[lIF (o)l < (1-aten)| +o(1)
= l—a+o0(1).

It follows from this result and (B22) that Pr [HS’F (o)l < sj{‘ilf_a] —+ 1—oaasn T oo. The

conclusion in Part (ii) follows from this result and (B21). [

Proof of Corollary 3. By using Theorem 2(i) and the bootstrap analogue of the CMT, we have
Sjp (v | x) ~4 F(v] ). By this result and similar arguments, we can easily show that a result similar
to (B4) also holds for S}; (v | z). It follows from this result and the fact that F (v | 2) is a normal ran-
dom variable that for all € > 0, we can find some M > 0 such that Pr; HS} (v | 33)‘ > M} < e wpal.

It easily follows that ﬁLX (v|x) —ﬁA|X (v|x)= o;r, (1) for all v in the interior of .75 x—,. It follows

from this result, ﬁmx (v | x)=Faix (v]x) =o0p(1)and (B1) that ﬁLX (v|z)=Fpax (v|x)= 02, (1).
By this result and an inequality similar to (A33), we have Pr; [@TA‘X (Tl2) <Qax(T]z)+ 6} —p 1
as n 1 oo for all sufficiently small ¢ > 0 such that Q|x (7 | ) + ¢ is an interior point of 5| x—-

By similar arguments, for all sufficiently small ¢ > 0 such that Qx (7 | ¥) — ¢ is an interior point
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of yA\X=x’ Pry [@me (t|x)> QA|X (1|z)—¢| =plasntoo.

Let [a, b] be the interval defined in the proof of Corollary 1. Then, it follows that
Pri [Qlyx (71 2) <band Qly ¢ (7| 2) > a| =, 1. (B23)

Similarly, if @TA|X (T|z) < band @TA|X (r]x) > a, for all 7 € [1,7], @TA|X (T | ) can be written
as ¢r (FLX (-] x)‘[ab]) Let F2|X (v]x) be FLlX (v|z) for all v € R if QTA|X (r]x) > a and

@TA\X (T|z) < b and let FLX (v|z) be Fajx (v|z) for all v € R otherwise. Then, since for any

e >0and oy | 0,
<o
[a,b]

> Pry [QJrA'X (T|x) <band QTA‘X (r]x) >a]7

Pry [ sup

TE[T,T]

Qly 7 10) = 00 (Fly (1)

by (B23), we have

Ay 71060 (Fly (10| ) =oh (o), (B21)

[a,0]
uniformly in 7 € [r,7], for any a,, | 0. And, similarly, ﬁLX (v|x)— FL‘X (v|z) = op(ay),
uniformly in v € [a, b], for all oy, | 0. By this result, (A35) and (B1),

Vi (Bl (0] 2) = Fapx (v] 2)) = S} (0] @) + 0} (1), (B25)

uniformly in v € [a,b]. By this result, Theorem 2 with [v,,7,] = [a,b] and also the the same

argument as that in the proof of Theorem 2, \/n <F2X (- | x)‘ - FA|X (-] 1:)‘[ b}) converges in
a,

[a.0]
distribution in ¢*° [a,b] to the same limit as that of /n <FAX (-] m)‘[ 0o Fax (-] :L‘){[a b]>. A
bootstrap analogue of (A36), i.e., 7

shiria) = vadoo (FiyCia| ) - (Fax o] )+

_ S Qaxlw)e)
 fax (Qux (T 2) | 2) Foph),

uniformly in 7 € [1,7], follows from this result, (A34), (B24), Van der Vaart (2000, Lemma 21.4),
the bootstrap version of the functional delta method (Kosorok, 2007, Theorem 12.1 and Equation
(12.1)), (B25) and (B1). The conclusion in Part (i) follows easily from the CMT. Conclusions in

Parts (ii) and (iii) follow from the same arguments as those used in the proof of Corollary 2. [
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