
Appendix to “Inference on the Distribution of Individual

Treatment Effects in Nonseparable Triangular Models”

Jun Ma∗ Vadim Marmer† Zhengfei Yu‡

The appendix contains two sections. Appendix A is devoted to the proofs of the results in Section
3. Appendix B is devoted to the proofs of the results in Section 4.

Notation. Denote Ui := (εi, Di, Zi) and U := (ε,D,Z). For notational simplicity, we suppress
the dependence of nx on x and write n instead. Since the domains are often clear from the definitions,
we suppress the dependence of the sup-norm on the domain and write ‖·‖∞ for simplicity. Similarly,
we suppress the dependence of BL1 (D) on the domain D and write BL1 for simplicity. For a subset A
of D endowed with a norm ‖·‖ and δ > 0, let Aδ := {x ∈ D : ∃y ∈ A such that ‖x− y‖ < δ} denote
the δ-enlargement of A. It is easy to see that Aδ must be an open set. “>” denotes inequality up
to a universal constant. “With probability approaching one” is abbreviated to “wpa1”. f |B denotes
the restriction of a function f with a domain A on a sub-domain B ⊆ A.

A Proofs of results in Section 3

We denote Pnf := n−1
∑n

i=1 f (Ui), Pf := E [f (U) | X = x] and Gn :=
√
n (Pn − P). Let

γdx
(
Ui | v, h, h′

)
:={
1

(
∆x (εi) +

h (εi)√
n · ςdx (εi)

≤ v
)
− 1

(
∆x (εi) +

h′ (εi)√
n · ςdx (εi)

≤ v
)}

1
(
Di = d′

)
and γx (Ui | v, h, h′) :=

∑
d∈{0,1} γdx (Ui | v, h, h′). Then we can write

qF∆|X (v | x)− F̃∆|X (v | x) = Pnγx
(
· | v,

√
n ·Hx, 0

)
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and

qF∆|X (v | x)−F̃∆|X (v | x)−
∑

d∈{0,1}

{
Ψdx

(
∆x +

Hx

ςdx

)
− Ψdx∆x

}
(v) =

1√
n
·Gnγx

(
· | v,

√
n ·Hx, 0

)
.

(A1)
Using these notations, we show the following lemma.

Lemma 1. Under the assumptions in the statement of Theorem 1, (16) holds.

Proof of Lemma 1. The conclusion of the lemma follows from (A1) and Gnγdx (· | v,
√
n ·Hx, 0) =

op (1), uniformly in [vx, vx], for d ∈ {0, 1}. The latter result is equivalent to the claim that for all
ε > 0,

Pr

[
sup

v∈[vx,vx]

∣∣Gnγdx
(
· | v,

√
n ·Hx, 0

)∣∣ > ε

]
≤ ε, (A2)

when n is sufficiently large. Note that Hx concentrates on the space C [εx, εx], which is a closed subset
of `∞ [εx, εx]. Fix some ε > 0. It follows from the tightness of Hx that there exists some compact set
K ⊆ C [εx, εx] such that Pr [Hx ∈ K] > 1 − ε/2. By this result, (13) and the portmanteau lemma
that for all δ > 0 when n is sufficiently large,

Pr
[√

n ·Hx ∈ Kδ/2
]
≥ Pr

[
Hx ∈ Kδ/2

]
> 1− ε

2
. (A3)

Let B (h0, δ) := {h ∈ `∞ [εx, εx] : ‖h− h0‖∞ < δ} denote the open ball of radius δ in `∞ [εx, εx]

centered around h0. Note that K is also compact in the larger space `∞ [εx, εx]. Then by the
compactness of K, there exists some pδ ∈ N and h1, ..., hpδ ∈ K such that K ⊆

⋃pδ
k=1B (hk, δ/2). By

the triangle inequality, Kδ/2 ⊆
⋃pδ
k=1B (hk, δ). Therefore, by this result and (A3), for each δ > 0,

Pr

[
√
n ·Hx ∈

pδ⋃
k=1

B (hk, δ)

]
> 1− ε

2
, (A4)

when n is sufficiently large. By the triangle inequality,

sup
h∈

⋃pδ
k=1B(hk,δ)

sup
v∈[vx,vx]

|Gnγdx (· | v, h, 0)|

≤ sup
v∈[vx,vx]

max
k=1,...,pδ

sup
h∈B(hk,δ)

|Gnγdx (· | v, h, 0)|

≤ sup
v∈[vx,vx]

max
k=1,...,pδ

sup
h∈B(hk,δ)

|Gnγdx (· | v, h, hk)|+ sup
v∈[vx,vx]

max
k=1,...,pδ

|Gnγdx (· | v, hk, 0)| . (A5)

Let ςdx := infe∈[εx,εx] |ςdx (e)|. We have ςdx > 0 under Assumption 1(g). By using the elementary
equality

1 (u ≤ x)− 1 (u ≤ 0) = 1 (x > 0)1 (0 < u ≤ x)− 1 (x < 0)1 (x < u ≤ 0)

= 1 (x > 0)1 (0 < u ≤ |x|)− 1 (x < 0)1 (− |x| < u ≤ 0) , (A6)
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and the triangle inequality, for all h ∈ B (hk, δ), we have

|γdx (Ui | v, h, hk)|

≤
∣∣∣∣1(∆x (εi) +

h (εi)√
n · ςdx (εi)

≤ v
)
− 1

(
∆x (εi) +

hk (εi)√
n · ςdx (εi)

≤ v
)∣∣∣∣1 (Di = d′

)
≤ 1

(
v − δ√

n · ςdx
< ∆x (εi) +

hk (εi)√
n · ςdx (εi)

≤ v +
δ√

n · ςdx

)
1
(
Di = d′

)
=: Γdx (Ui | v, δ, hk) . (A7)

Therefore, by this result and the triangle inequality,

sup
h∈B(hk,δ)

|Gnγdx (· | v, h, hk)| ≤ |GnΓdx (· | v, δ, hk)|+ 2
√
n · PΓdx (· | v, δ, hk) .

Now by this result and (A5),

sup
h∈

⋃pδ
k=1B(hk,δ)

sup
v∈[vx,vx]

|Gnγdx (· | v, h, 0)| ≤ Tn (δ) + sup
(v,h)∈[vx,vx]×K

2
√
n · PΓdx (· | v, δ, h) , (A8)

where

Tn (δ) := sup
v∈[vx,vx]

max
k=1,...,pδ

|Gnγdx (· | v, hk, 0)|+ sup
v∈[vx,vx]

max
k=1,...,pδ

|GnΓdx (· | v, δ, hk)| .

By Kosorok (2007, Lemma 9.7, iii and vi), for any h ∈ K,{
e 7→ 1

(
∆x (e) +

h (e)√
n · ςdx (e)

≤ v
)
− 1 (∆x (e) ≤ v) : v ∈ [vx, vx]

}
is a Vapnik-Červonenkis(VC) class of functions (see, e.g., Kosorok, 2007, Chapter 9.1.1 for its defi-
nition) which has a VC index independent of n and is uniformly bounded by the constant envelope
2. Note that since K is a compact subset of C [εx, εx], we have suph∈K ‖h‖∞ < M for some M > 0

(Dudley, 2002, Theorem 2.4.7). By Kosorok (2007, Theorem 9.3) and Chen and Kato (2020, Corol-
lary 5.5), we have

E

[
sup

v∈[vx,vx]
|Gnγdx (· | v, h, 0)|

]
> σγ

√
log (n) +

log (n)√
n

, (A9)

where

σ2γ := sup
v∈[vx,vx]

Pγ2dx (· | v, h, 0)

≤ sup
v∈[vx,vx]

{
F∆|X

(
v +

M√
n · ςdx

)
− F∆|X

(
v − M√

n · ςdx

)}
= O

(
n−1/2

)
,
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where the inequality follows from (A6) and the triangle inequality. Therefore, for all h ∈ K,
supv∈[vx,vx] |Gnγdx (· | v, h, 0)| = op (1) and this result implies that for all δ > 0,

sup
v∈[vx,vx]

max
k=1,...,pδ

|Gnγdx (· | v, hk, 0)| = op (1) . (A10)

By similar arguments, for all h ∈ K and δ > 0, supv∈[vx,vx] |GnΓdx (· | v, δ, h)| = op (1) and this
result implies that for all δ > 0,

sup
v∈[vx,vx]

max
k=1,...,pδ

|GnΓdx (· | v, δ, hk)| = op (1) . (A11)

(A11) and (A10) imply that for each δ > 0, Tn (δ) = op (1).

Now we show that

lim
δ↓0

limsup
n↑∞

sup
(v,h)∈[vx,vx]×K

√
n · PΓdx (· | v, δ, h) = 0. (A12)

By change of variables u =
√
n (∆x,j (e)− v),

√
n · PΓdx (· | v, δ, h)

=
√
n

m∑
j=1

∫ εx,j

εx,j−1

1

(
v − δ√

n · ςdx
≤ ∆x,j (e) +

h (e)√
n · ςdx (e)

≤ v +
δ√

n · ςdx

)
f(ε,D)|X

(
e, d′ | x

)
de

=
m∑
j=1

∫ √n(∆x,j(εx,j)−v)
√
n(∆x,j(εx,j−1)−v)

1

u ≥ − h
(
∆−1x,j

(
n−1/2u+ v

))
ςdx

(
∆−1x,j

(
n−1/2u+ v

)) − δ

ςdx


×1

u ≤ − h
(
∆−1x,j

(
n−1/2u+ v

))
ςdx

(
∆−1x,j

(
n−1/2u+ v

)) +
δ

ςdx

 ρd′x,j

(
n−1/2u+ v

)
du. (A13)

Assume that ∆x,j is increasing without loss of generality. We have

∫ √n(∆x,j(εx,j)−v)
√
n(∆x,j(εx,j−1)−v)

1

u ≥ − h
(
∆−1x,j

(
n−1/2u+ v

))
ςdx

(
∆−1x,j

(
n−1/2u+ v

)) − δ

ςdx


×1

u ≤ − h
(
∆−1x,j

(
n−1/2u+ v

))
ςdx

(
∆−1x,j

(
n−1/2u+ v

)) +
δ

ςdx

 ρd′x,j

(
n−1/2u+ v

)
du

≤
∫ √n(∆x,j(εx,j)−v)
√
n(∆x,j(εx,j−1)−v)

1

u ≤ − h
(
∆−1x,j (v)

)
ςdx

(
∆−1x,j (v)

) +

∣∣∣∣∣∣
h
(
∆−1x,j

(
n−1/2u+ v

))
ςdx

(
∆−1x,j

(
n−1/2u+ v

)) − h
(
∆−1x,j (v)

)
ςdx

(
∆−1x,j (v)

)
∣∣∣∣∣∣+

δ

ςdx


×1

u ≥ − h
(
∆−1x,j (v)

)
ςdx

(
∆−1x,j (v)

) −
∣∣∣∣∣∣
h
(
∆−1x,j

(
n−1/2u+ v

))
ςdx

(
∆−1x,j

(
n−1/2u+ v

)) − h
(
∆−1x,j (v)

)
ςdx

(
∆−1x,j (v)

)
∣∣∣∣∣∣− δ

ςdx


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×1
(
|u| ≤ M + δ

ςdx

)
ρd′x,j

(
n−1/2u+ v

)
du

≤

 2δ

ςdx
+ 2 sup

u∈Un(v)

∣∣∣∣∣∣
h
(
∆−1x,j

(
n−1/2u+ v

))
ςdx

(
∆−1x,j

(
n−1/2u+ v

)) − h
(
∆−1x,j (v)

)
ςdx

(
∆−1x,j (v)

)
∣∣∣∣∣∣
 sup

u∈Un(v)
ρd′x,j

(
n−1/2u+ v

)
, (A14)

where

Un (v) :=

[√
n (∆x,j (εx,j−1)− v) ∨ −

(
M + δ

ςdx

)
,
√
n (∆x,j (εx,j)− v) ∧

(
M + δ

ςdx

)]
.

Since K is a compact subset of C [εx, εx], K is uniformly equicontinuous (Dudley, 2002, Theorem
2.4.7): for all ε > 0, there exists some κ > 0 such that suph∈K,|x−y|≤κ |h (x)− h (y)| < ε. Since K is
uniformly equicontinuous and ςdx is continuous and bounded away from zero,

lim
n↑∞

sup
(v,h)∈[vx,vx]×K

 sup
u∈Un(v)

∣∣∣∣∣∣
h
(
∆−1x,j

(
n−1/2u+ v

))
ςdx

(
∆−1x,j

(
n−1/2u+ v

)) − h
(
∆−1x,j (v)

)
ςdx

(
∆−1x,j (v)

)
∣∣∣∣∣∣
 = 0. (A15)

It is also easy to see that supu∈Un(v) ρd′x,j
(
n−1/2u+ v

)
is bounded uniformly in v ∈ [vx, vx], when

n is sufficiently large. (A12) follows from this result, (A13), (A14) and (A15).

Next, we show that (A4), (A8), (A12) and the result that Tn (δ) = op (1) for all δ > 0 imply
(A2). By (A12), there exists some δ0 > 0 such that

sup
(v,h)∈[vx,vx]×K

√
n · PΓdx (· | v, δ0, h) <

ε

4
, (A16)

for all sufficiently large n. We have

Pr

[
sup

v∈[vx,vx]

∣∣Gnγdx
(
· | v,

√
n ·Hx, 0

)∣∣ > ε

]

≤ Pr

 sup
h∈

⋃pδ0
k=1B(hk,δ0)

sup
v∈[vx,vx]

|Gnγdx (· | v, h, 0)| > ε

+ Pr

[
√
n ·Hx /∈

pδ0⋃
k=1

B (hk, δ0)

]

≤ Pr

[
sup

(v,h)∈[vx,vx]×K
2
√
n · PΓdx (· | v, δ0, h) + Tn (δ0) > ε

]
+
ε

2

≤ Pr
[
Tn (δ0) >

ε

2

]
+
ε

2
,

for all sufficiently large n, where the first inequality follows from the union bound, the second
inequality follows from (A4) and (A8), and the third inequality follows from (A16). The conclusion
follows from this result and the result that Pr [Tn (δ0) > ε/2] ≤ ε/2 for all sufficiently large n. �

The following lemma shows the Hadamard differentiability of Ψdx (at ∆x) and derives the form
of the Hadamard derivative (at ∆x).
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Lemma 2. Under the assumptions in the statement of Theorem 1, Ψdx is Hadamard differentiable
at ∆x tangentially to C [εx, εx]:

lim
n↑∞

∥∥∥∥Ψdx (∆x + tnhn)− Ψdx∆x

tn
− ψdxh0

∥∥∥∥
∞

= 0, (A17)

where {(hn, tn)}∞n=1 is a sequence in `∞ [εx, εx] × R that converges to (h0, 0) ∈ C [εx, εx] × R and
ψdx : `∞ [εx, εx]→ `∞ [vx, vx] is a continuous linear operator defined by

ψdxh (v) := −
m∑
j=1

∣∣ρd′x,j (v)
∣∣h(∆−1x,j (v)

)
, v ∈ [vx, vx] ,

for all h ∈ `∞ [εx, εx].

Proof of Lemma 2. By change of variables u = (∆x,j (e)− v) /tn,

Ψdx (∆x + tnhn)− Ψdx∆x

tn

=
1

tn

m∑
j=1

∫ εx,j

εx,j−1

{1 (∆x,j (e) + tnhn (e) ≤ v)− 1 (∆x,j (e) ≤ v)} f(ε,D)|X
(
e, d′ | x

)
de

=
m∑
j=1

∫ ∆x,j(εx,j)−v
tn

∆x,j(εx,j−1)−v
tn

{
1

(
u ≤ −hn

(
∆−1x,j (tnu+ v)

))
− 1 (u ≤ 0)

}
ρd′x,j (tnu+ v) du.(A18)

Assume that ∆x,j is strictly increasing without loss of generality. Then, by (A6) and the triangle
inequality,∣∣∣∣∣∣∣

∫ ∆j(εj)−v
tn

∆j(εj−1)−v
tn

{
1

(
u ≤ −hn

(
∆−1j (tnu+ v)

))
− 1

(
u ≤ −h0

(
∆−1j (tnu+ v)

))}
ρd′x,j (tnu+ v) du

∣∣∣∣∣∣∣
≤

∫ ∆x,j(εx,j)−v
tn

∆x,j(εx,j−1)−v
tn

1 (|u| ≤ ‖h0‖∞ + ‖hn − h0‖∞)

×1
(
u > −h0

(
∆−1x,j (v)

)
−
∣∣∣h0 (∆−1x,j (tnu+ v)

)
− h0

(
∆−1x,j (v)

)∣∣∣− ‖hn − h0‖∞)
×1
(
u ≤ −h0

(
∆−1x,j (v)

)
+
∣∣∣h0 (∆−1x,j (tnu+ v)

)
− h0

(
∆−1x,j (v)

)∣∣∣+ ‖hn − h0‖∞
)

×ρd′x,j (tnu+ v) du

≤ 2

{
‖hn − h0‖∞ + sup

u∈U ′n(v)

∣∣∣h0 (∆−1x,j (tnu+ v)
)
− h0

(
∆−1x,j (v)

)∣∣∣}{ sup
u∈U ′n(v)

ρd′x,j (tnu+ v)

}
, (A19)

where

U ′
n (v) :=

[
∆x,j (εx,j−1)− v

tn
∨ (−‖h0‖∞ − ‖hn − h0‖∞) ,

∆x,j (εx,j)− v
tn

∧ (‖h0‖∞ + ‖hn − h0‖∞)

]
.
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It follows from the uniform continuity of h0 that

lim
n↑∞

sup
v∈[vx,vx]

sup
u∈U ′n(v)

∣∣∣h0 (∆−1x,j (tnu+ v)
)
− h0

(
∆−1x,j (v)

)∣∣∣ = 0. (A20)

Similarly,∣∣∣∣∣∣∣
∫ ∆x,j(εx,j)−v

tn

∆x,j(εx,j−1)−v
tn

{
1

(
u ≤ −h0

(
∆−1x,j (tnu+ v)

))
− 1

(
u ≤ −h0

(
∆−1x,j (v)

))}
ρd′x,j (tnu+ v) du

∣∣∣∣∣∣∣
≤

∫ ∆x,j(εx,j)−v
tn

∆x,j(εx,j−1)−v
tn

1 (|u| ≤ ‖h0‖∞)1
(
u ≤ −h0

(
∆−1x,j (v)

)
+
∣∣∣h0 (∆−1x,j (tnu+ v)

)
− h0

(
∆−1x,j (v)

)∣∣∣)
×1
(
u > −h0

(
∆−1x,j (v)

)
−
∣∣∣h0 (∆−1x,j (tnu+ v)

)
− h0

(
∆−1x,j (v)

)∣∣∣) ρd′x,j (tnu+ v) du

≤ 2

{
sup

u∈U ′n(v)

∣∣∣h0 (∆−1x,j (tnu+ v)
)
− h0

(
∆−1x,j (v)

)∣∣∣}{ sup
u∈U ′n(v)

ρd′x,j (tnu+ v)

}
. (A21)

By (A20) and the fact that supu∈U ′n(v)
ρd′x,j

(
n−1/2u+ v

)
is bounded uniformly in v ∈ [vx, vx] for

all sufficiently large n, the right hand sides of the second inequalities in (A19) and (A21) are both
o (1), uniformly in v ∈ [vx, vx].

Therefore, by the calculations above and (A18),

Ψdx (∆x + tnhn)− Ψdx∆x

tn

=
m∑
j=1

∫ ∆x,j(εx,j)−v
tn

∆x,j(εx,j−1)−v
tn

{
1

(
u ≤ −h0

(
∆−1x,j (v)

))
− 1 (u ≤ 0)

}
ρd′x,j (tnu+ v) du+ o (1) ,(A22)

uniformly in v ∈ [vx, vx]. By (A6) and the triangle inequality,∣∣∣∣∣∣∣
∫ ∆x,j(εx,j)−v

tn

∆x,j(εx,j−1)−v
tn

{
1

(
u ≤ −h0

(
∆−1x,j (v)

))
− 1 (u ≤ 0)

}{
ρd′x,j (tnu+ v)− ρd′x,j (v)

}
du

∣∣∣∣∣∣∣
≤

∫ ∆x,j(εx,j)−v
tn

∆x,j(εx,j−1)−v
tn

1 (|u| ≤ ‖h0‖∞)
∣∣ρd′x,j (tnu+ v)− ρd′x,j (v)

∣∣ du
≤ 2 ‖h0‖∞

{
sup

u∈U ′n(v)

∣∣ρd′x,j (tnu+ v)− ρd′x,j (v)
∣∣}

= o (1) ,

uniformly in v ∈ [vx, vx]. By this result and (A22),

Ψdx (∆x + tnhn)− Ψdx∆x

tn
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=
m∑
j=1

ρd′x,j (v)

∫ ∆x,j(εx,j)−v
tn

∆x,j(εx,j−1)−v
tn

{
1

(
u ≤ −h0

(
∆−1x,j (v)

))
− 1 (u ≤ 0)

}
du+ o (1) ,

uniformly in v ∈ [vx, vx]. The conclusion follows from this result and (A6). �

Let

Rd′x (y) := Pr [Y ≤ φdx (y) , D = d | X = x] + Pr
[
Y ≤ y,D = d′ | X = x

]
Ldx (Wi, y) :=

1 (Yi ≤ φdx (y) , Di = d) + 1 (Yi ≤ y,Di = d′)−Rd′x (y)

ζdx (φdx (y))
· πx (Zi) .

It is easy to see that we have

Ldx
(
Wj , g

(
d′, x, εi

))
=
1 (εj ≤ εi)− Fε|X (εi | x)

ζdx (g (d, x, εi))
· πx (Zj) . (A23)

Let pφdx (y) denote the leave-in version of pφ
(−i)
dx (y) that minimizes the sample analogue of (5),

which is defined by the right hand side of (6) with all ranges of summation changed to
∑n

j=1. Under
the assumptions in the statement of Theorem 1, by Lemma 2 of MMY , we have the Bahadur-type
representation result

pφdx (y)− φdx (y) =
1

n

n∑
i=1

Ldx (Wi, y) + ξdx (y) , (A24)

where ξdx (y) = Op

(
(log (n) /n)3/4

)
, uniformly in y ∈

[
y
d′x
, yd′x

]
. Lemma 2 of MMY shows that

‖ξdx‖∞ ≤ rn wpa1 for some deterministic sequence {rn}∞n=1 which is proportional to (log (n) /n)3/4.
It is clear from the proof of Lemma 2 of MMY that the linearization result (A24) also holds for
pφ
(−i)
dx (y) and the remainder term denoted by ξ(−i)dx (y) has the same order of magnitude, uniformly

in i = 1, ..., n.

By using (A23) and (A24), we can write

p∆i −∆i = Di

(
φ0x (Yi)− pφ

(−i)
0x (Yi)

)
+ (1−Di)

(
pφ
(−i)
1x (Yi)− φ1x (Yi)

)
= −Di

 1

n

n∑
j=1

L0x (Wj , g (1, x, εi))

+ (1−Di)

 1

n

n∑
j=1

L1x (Wj , g (0, x, εi))

+ ξi,

=

{
Di

ς0x (εi)
+

(1−Di)

ς1x (εi)

}
Hx (εi) + ξi, (A25)

where ξi := −Diξ
(−i)
0x (Yi) + (1−Di) ξ

(−i)
1x (Yi).

Now by (A25), we can write

pF∆|X (v | x)− qF∆|X (v | x)
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=
1

n

n∑
i=1

∑
d∈{0,1}

(
1

(
∆i +

Hx (εi)

ςdx (εi)
+ ξi ≤ v

)
− 1

(
∆i +

Hx (εi)

ςdx (εi)
≤ v
))

1
(
Di = d′

)
. (A26)

Using these results and notations, we can show the following lemma.

Lemma 3. Under the assumptions in the statement of Theorem 1, (14) holds.

Proof of Lemma 3. Let ξ̄n := max {|ξ1| , ..., |ξn|}. It follows from (A24) that ξ̄n ≤ rn wpa1, where
rn = O

(
(log (n) /n)3/4

)
. By this result, (A6), (A26) and the triangle inequality, we have

∣∣∣√n · ( pF∆|X (v | x)− qF∆|X (v | x)
)∣∣∣

≤ 1√
n

n∑
i=1

∑
d∈{0,1}

1

(
v − ξ̄n < ∆i +

Hx (εi)

ςdx (εi)
≤ v + ξ̄n

)
1
(
Di = d′

)
≤
√
n
(

qF∆|X (v + rn | x)− qF∆|X (v | x)
)

+
√
n
(

qF∆|X (v | x)− qF∆|X (v − rn | x)
)
, (A27)

where the second inequality holds wpa1.

Write

qF∆|X (v + rn | x)− qF∆|X (v | x) ={
qF∆|X (v + rn | x)− F̃∆|X (v | x)

}
−
{

qF∆|X (v | x)− F̃∆|X (v | x)
}
. (A28)

By Lemma 1 and the functional delta method,

qF∆|X (v | x)− F̃∆|X (v | x) =
∑

d∈{0,1}

ψdx

(√
n ·Hx

ςdx

)
(v) + op (1) , (A29)

uniformly in v ∈ [vx, vx]. By Slutsky’s theorem (Kosorok, 2007, Theorem 7.15(ii)), Lemma 2 and
the functional delta method,

√
n
(

qF∆|X (v + rn | x)− F̃∆|X (v | x)
)

=
√
n
∑

d∈{0,1}

{
Ψdx

(
∆x +

Hx

ςdx
− rn

)
− Ψdx∆x

}
(v) + op (1) ,

=
∑

d∈{0,1}

ψdx

(√
n ·Hx

ςdx
−
√
n · rn

)
(v) + op (1) , (A30)

uniformly in v ∈ [vx, vx], where the first equality follows from the same arguments as those used to
prove Lemma 1 and the second equality follows from the functional delta method. It now follows
from the linearity of ψdx, (A28), (A29), (A30) and rn = O

(
(log (n) /n)3/4

)
that the first term on

the right hand side of the second inequality in (A27) is op (1), uniformly in v ∈ [vx, vx]. By using
similar arguments, we can show that the second term on the right hand side of the second inequality
in (A27) also is op (1), uniformly in v ∈ [vx, vx]. The conclusion of the lemma follows from these
results and (A27). �
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Now we show that the conclusion in Theorem 1 follows from Lemmas 1, 2 and 3.

Proof of Theorem 1. By Lemma 3 and (A29), we have

√
n
(

pF∆|X (v | x)− F̃∆|X (v | x)
)

=
√
n

m∑
j=1

ωx,j (v)Hx

(
∆−1x,j (v)

)
+ op (1)

=
1√
n

n∑
i=1

m∑
j=1

ωx,j (v)
{
1

(
εi ≤ ∆−1x,j (v)

)
− Fε|X

(
∆−1x,j (v) | x

)}
πx (Zi) + op (1) , (A31)

uniformly in v ∈ [vx, vx], and therefore

SF (v | x) =
1√
n

n∑
i=1

{(
1 (∆x (εi) ≤ v)− F∆|X (v | x)

)
+

m∑
j=1

ωx,j (v)
(
1

(
εi ≤ ∆−1x,j (v)

)
− Fε|X

(
∆−1x,j (v) | x

))
πx (Zi)

+ op (1) ,(A32)

uniformly in v ∈ [vx, vx]. Let

ιx (Ui | v) := 1 (∆x (εi) ≤ v) +
m∑
j=1

ωx,j (v)
(
1

(
εi ≤ ∆−1x,j (v)

)
− Fε|X

(
∆−1x,j (v) | x

))
πx (Zi)

and the leading terms on the right hand side of (A32) can be written as Gnιx (· | v). It clear that
since E [πx (Z) | X = x] = 0 and Z and ε are conditionally independent given X = x, the two leading
terms on the right hand side of (A32) are uncorrelated. By Kosorok (2007, Lemma 9.7, (iii), (iv)
and (vi)), e 7→

m∑
j=1

ωx,j (v)
(
1

(
e ≤ ∆−1x,j (v)

)
− Fε|X

(
∆−1x,j (v) | x

))
: v ∈ [vx, vx]


and {e 7→ 1 (∆x (e) ≤ v) : v ∈ [vx, vx]} are both VC classes of functions. By Kosorok (2007, Theo-
rem 8.19), they are also Donsker classes. By this result, (A32), Kosorok (2007, Theorem 9.30(i)),
Kosorok (2007, Corollary 9.32(i) and (v)), Kosorok (2007, Lemma 7.23(i)) and also the fact that
E [πx (Z) | X = x] = 0 and Z and ε are conditionally independent given X = x, SF (· | x) weakly
converges to a tight Gaussian random element in `∞ [vx, vx] with zero mean and the covariance
structure given by

(
F∆|X

(
v ∧ v′ | x

)
− F∆|X (v | x)F∆|X

(
v′ | x

))
+
(
p−11|x + p−10|x

)
×

m∑
j=1

m∑
k=1

ωx,j (v)ωx,k
(
v′
) (
Fε|X

(
∆−1x,j (v) ∧∆−1x,j

(
v′
)
| x
)
− Fε|X

(
∆−1x,j (v) | x

)
Fε|X

(
∆−1x,j

(
v′
)
| x
))

,
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where v, v′ ∈ [vx, vx], which has the same distribution as F (· | x) (Kosorok, 2007, Lemma 7.3). Then
the conclusion in Part (i) follows immediately. The conclusion in Part (ii) follows from Part (i) and
the CMT. �

Proof of Corollary 1. For any τ ∈ (0, 1) and sufficiently small ε > 0 such that Q∆|X (τ | x) + ε is
an interior point of S∆|X=x, we have

Pr
[

pQ∆|X (τ | x) ≤ Q∆|X (τ | x) + ε
]
≥

Pr
[∣∣∣ pF∆|X

(
Q∆|X (τ | x) + ε | x

)
− F∆|X

(
Q∆|X (τ | x) + ε | x

)∣∣∣ ≤ F∆|X (Q∆|X (τ | x) + ε | x
)
− τ
]
,

(A33)

where the inequality follows from Van der Vaart (2000, Lemma 21.2(i)) and by Theorem 1, the right
hand side of the inequality converges to one. By similar arguments, for all sufficiently small ε > 0

such that Q∆|X (τ | x)− ε is an interior point of S∆|X=x,

Pr
[

pQ∆|X (τ | x) ≥ Q∆|X (τ | x)− ε
]
→ 1,

as n ↑ ∞. It follows that pQ∆|X (τ | x)→p Q∆|X (τ | x) for all τ ∈ (0, 1).

Now fix some small ε > 0 such that [a, b] :=
[
Q∆|X (τ | x)− ε,Q∆|X (τ | x) + ε

]
is an inner closed

sub-interval of S∆|X=x. It follows from the consistency of pQ∆|X (τ | x) and pQ∆|X (τ | x) that wpa1,
pQ∆|X (τ | x) > a and pQ∆|X (τ | x) < b. By Van der Vaart (2000, Lemma 21.2(ii,iii)), on this event,

for all τ ∈ [τ , τ ], pQ∆|X (τ | x) can be written as the image of the restriction pF∆|X (· | x)
∣∣∣
[a,b]

under

the map φτ defined in the statement of Van der Vaart (2000, Lemma 21.3). Clearly, Q∆|X (τ | x)

is the image of the restriction F∆|X (· | x)
∣∣
[a,b]

under the same map. Let Ḟ∆|X (· | x) be a modifi-

cation of pF∆|X (· | x) defined in the following way. Let Ḟ∆|X (v | x) be pF∆|X (v | x) for all v ∈ R if
pQ∆|X (τ | x) > a and pQ∆|X (τ | x) < b and let Ḟ∆|X (v | x) be F∆|X (v | x) for all v ∈ R otherwise.

Then, pQ∆|X (τ | x)− φτ
(
Ḟ∆|X (· | x)

∣∣∣
[a,b]

)
= 0 for all τ ∈ [τ , τ ] wpa1 and therefore

pQ∆|X (τ | x)− φτ
(
Ḟ∆|X (· | x)

∣∣∣
[a,b]

)
= op (αn) , (A34)

uniformly in τ ∈ [τ , τ ], for any αn ↓ 0. Similarly, we also have

pF∆|X (v | x)− Ḟ∆|X (v | x) = op (αn) , (A35)

uniformly in v ∈ [a, b], for any αn ↓ 0. By the convergence in distribution of SF (· | x) in `∞ [a, b]

implied by Theorem 1(i) with [vx, vx] = [a, b] and (A35),
√
n

(
Ḟ∆|X (· | x)

∣∣∣
[a,b]
− F∆|X (· | x)

∣∣
[a,b]

)
converges in distribution in `∞ [a, b] to a tight Gaussian process. By this result, (A34), (A35),

11



Van der Vaart (2000, Lemma 21.4(i)), and the functional delta method,

SQ (τ | x) =
√
n

{
φτ

(
Ḟ∆|X (· | x)

∣∣∣
[a,b]

)
− φτ

(
F∆|X (· | x)

∣∣
[a,b]

)}
+ o†p (1)

= −
SF
(
Q∆|X (τ | x) | x

)
f∆|X

(
Q∆|X (τ | x) | x

) + op (1) , (A36)

uniformly in τ ∈ [τ , τ ]. The conclusion in Part (i) follows from this result and Theorem 1(i) and the
CMT. Part (ii) follows from Part (i) and the CMT. �

B Proofs of results in Section 4

We write ξ†n = o†p (1) if for all ε > 0, Pr†

[∣∣∣ξ†n∣∣∣ > ε
]

= op (1). It is easy to check that ξ†n = o†p (1) if

and only if for all ε > 0, Pr†

[∣∣∣ξ†n∣∣∣ > ε
]
≤ ε wpa1. It essentially follows from the Markov’s inequality

that if ξn = op (1), then we also have ξn = o†p (1): for all ε, δ > 0,

Pr [Pr† [|ξn| > ε] > δ] ≤ Pr [|ξn| > ε]

δ
↓ 0, (B1)

as n ↑ ∞. If ξn depends only on the original data, then Pr† [|ξn| > ε] = 1 (|ξn| > ε) and 1 (|ξn| > ε) =

0 wpa1. Moreover, it is also easy to see that properties of op carry over to o†p (e.g., o†p (αn)+o†p (βn) =

o†p (βn) if αn = O (βn)). Let g−1 (d, x, ·) denote the inverse of g (d, x, ·), ε†i := D†i g
−1
(

1, x, Y †i

)
+(

1−D†i
)
g−1

(
0, x, Y †i

)
, U †i :=

(
ε†i , D

†
i , Z

†
i

)
and ∆†i := ∆x

(
ε†i

)
. Denote P†n := n−1

∑n
i=1 f

(
U †i

)
and G†n :=

√
n
(
P†n − Pn

)
.

Let

pF †∆|X (v | x) :=
1

n

n∑
i=1

1

(
p∆†i ≤ v

)
F̃ †∆|X (v | x) :=

1

n

n∑
i=1

1

(
∆†i ≤ v

)

qF †∆|X (v | x) :=
1

n

n∑
i=1

∑
d∈{0,1}

1

∆x

(
ε†i

)
+
H†x
(
ε†i

)
ςdx

(
ε†i

) ≤ v
1

(
D†i = d′

)
,

where H†x is the bootstrap analogue of Hx:

H†x (e) :=
1

n

n∑
i=1

{
1

(
ε†i ≤ e

)
− Fε|X (e | x)

}
πx

(
Z†i

)
.

The following lemma is a bootstrap analogue of Lemma 1.
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Lemma 4. Under the assumptions in the statement of Theorem 2, we have

qF †∆|X (v | x)− F̃ †∆|X (v | x)−
∑

d∈{0,1}

{
Ψdx

(
∆x +

H†x
ςdx

)
− Ψdx∆x

}
(v) = o†p

(
n−1/2

)
,

uniformly in v ∈ [vx, vx]

Proof of Lemma 4. We can write

qF †∆|X (v | x)− F̃ †∆|X (v | x)−
∑

d∈{0,1}

{
Ψdx

(
∆x +

H†x
ςdx

)
− Ψdx∆x

}
(v)

=
1√
n
·
(
G†n + Gn

)
γx

(
· | v,

√
n ·H†x, 0

)
.

It suffices to show that for all ε > 0, the event

Pr†

[
sup

v∈[vx,vx]

∣∣∣(G†n + Gn

)
γdx

(
· | v,

√
n ·H†x, 0

)∣∣∣ > ε

]
≤ ε (B2)

occurs wpa1.

By Van der Vaart (2000, Theorem 23.7),
√
n
(
H†x −Hx

)
 † Hx in `∞ [εx, εx] as n ↑ ∞. Therefore

for all ε > 0, the event

sup
h∈BL1

∣∣∣E† [h(√n(H†x −Hx

))]
− E [h (Hx)]

∣∣∣ < ε (B3)

occurs wpa1. Now we show that for any open subset G of `∞ [εx, εx] and any ε > 0, we have

Pr†

[√
n
(
H†x −Hx

)
∈ G

]
≥ Pr [Hx ∈ G]− ε (B4)

holds wpa1. To show (B4), first we note that there exists a sequence {fm}∞m=1 in BL1 that converges
pointwise to `∞ [εx, εx] 3 f 7→ 1 (f ∈ G) from below (see, e.g., the proof of Kosorok, 2007, Lemma 7.1
for one construction). By the monotone convergence theorem, limm↑∞ E [fm (Hx)] = Pr [Hx ∈ G].
Then, by (B3), for any ε > 0,

Pr†

[√
n
(
H†x −Hx

)
∈ G

]
≥ E

[
fm

(√
n
(
H†x −Hx

))]
≥ E [fm (Hx)]− ε, ∀m ∈ N,

holds wpa1. (B4) follows from these results.

Now fix some ε > 0 and also the compact set K ⊆ C [εx, εx] such that Pr [Hx ∈ K] > 1 − ε/4.
As in the proof of Lemma 1, for all δ > 0, find h1, ..., hpδ ∈ K such that Kδ/2 ⊆

⋃pδ
k=1B (hk, δ). By
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(B4) with G = Kδ/2, for each δ > 0, the event

Pr†

[
√
n
(
H†x −Hx

)
∈

pδ⋃
k=1

B (hk, δ)

]
> 1− ε

2
(B5)

occurs wpa1.

By the triangle inequality and (A7),

sup
h∈

⋃pδ
k=1B(hk,δ)

sup
v∈[vx,vx]

∣∣∣(G†n + Gn

)
γdx
(
· | v, h+

√
n ·Hx, 0

)∣∣∣
≤ sup

v∈[vx,vx]
max

k=1,...,pδ
sup

h∈B(hk,δ)

∣∣∣(G†n + Gn

)
γdx
(
· | v, h+

√
n ·Hx, 0

)∣∣∣
≤ sup

v∈[vx,vx]
max

k=1,...,pδ
sup

h∈B(hk,δ)

∣∣∣(G†n + Gn

)
γdx
(
· | v, h+

√
n ·Hx, hk +

√
n ·Hx

)∣∣∣
+ sup
v∈[vx,vx]

max
k=1,...,pδ

∣∣∣(G†n + Gn

)
γdx
(
· | v, hk +

√
n ·Hx, 0

)∣∣∣
≤ T †n (δ) + Γn (δ) , (B6)

where

T †n (δ) := sup
v∈[vx,vx]

max
k=1,...,pδ

∣∣∣(G†n + Gn

)
γdx
(
· | v, hk +

√
n ·Hx, 0

)∣∣∣
+ sup
v∈[vx,vx]

max
k=1,...,pδ

∣∣∣(G†n + Gn

)
Γdx

(
· | v, δ, hk +

√
n ·Hx

)∣∣∣
Γn (δ) := sup

(v,h)∈[vx,vx]×K
2
√
n · PΓdx

(
· | v, δ, h+

√
n ·Hx

)
. (B7)

First we show that T †n (δ) = o†p (1) for all δ > 0. It follows from the same arguments as those
used to show (A2) that for all h ∈ K,

Gnγdx
(
· | v, h+

√
n ·Hx, 0

)
= op (1) , (B8)

uniformly in [vx, vx]. Let pσ2γ := supv∈[vx,vx] Pnγ
2
dx (· | v, h+

√
n ·Hx, 0). By using the same argu-

ments as those used to show (A9), we have

E†

[
sup

v∈[vx,vx]

∣∣∣G†nγdx (· | v, h, 0)
∣∣∣] > pσγ

√
log (n) +

log (n)√
n

= op (1) ,

where the equality follows from (A7), suph∈K ‖h‖ ≤ M and the fact that ‖
√
n ·Hx‖∞ = Op (1).

Now it follows from this result, (B8) and (B1) that for all δ > 0, the first term on the right hand
side of the definition of T †n (δ) in (B7) is o†p (1). By similar arguments, the second term on the right
hand side of the definition of T †n (δ) in (B7) is also o†p (1) for all δ > 0.

Next we show that for all κ > 0, we can choose δ to be sufficiently small such that Γn (δ) ≤ κ
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wpa1. We apply the same calculations (A13) and (A14) (with h replaced by h +
√
n · Hx) for

√
n ·PΓdx (· | v, δ, h+

√
n ·Hx). The convergence in distribution of

√
n ·Hx in `∞ [εx, εx] implies that

√
n ·Hx is stochastically equicontinuous, i.e., for all κ, η > 0, there exists some δ > 0 such that

Pr

[
sup

x,y∈[εx,εx]:|x−y|<δ

∣∣√n ·Hx (x)−
√
n ·Hx (y)

∣∣ > κ

]
< η,

for all large enough n. Then by this property, we have, for all κ, η > 0,

Pr

 sup
v∈[vx,vx]

 sup
u∈Un(v)

∣∣∣∣∣∣
√
n ·Hx

(
∆−1x,j

(
n−1/2u+ v

))
ςdx

(
∆−1x,j

(
n−1/2u+ v

)) −

√
n ·Hx

(
∆−1x,j (v)

)
ςdx

(
∆−1x,j (v)

)
∣∣∣∣∣∣
 > κ

 < η,

for all large enough n. It follows from this result and (A15) that

sup
(v,h)∈[vx,vx]×K

 sup
u∈Un(v)

∣∣∣∣∣∣
(h+

√
n ·Hx)

(
∆−1x,j

(
n−1/2u+ v

))
ςdx

(
∆−1x,j

(
n−1/2u+ v

)) −
(h+

√
n ·Hx)

(
∆−1x,j (v)

)
ςdx

(
∆−1x,j (v)

)
∣∣∣∣∣∣
 = op (1) ,

and therefore, for any κ > 0,

sup
(v,h)∈[vx,vx]×K

 sup
u∈Un(v)

∣∣∣∣∣∣
(h+

√
n ·Hx)

(
∆−1x,j

(
n−1/2u+ v

))
ςdx

(
∆−1x,j

(
n−1/2u+ v

)) −
(h+

√
n ·Hx)

(
∆−1x,j (v)

)
ςdx

(
∆−1x,j (v)

)
∣∣∣∣∣∣
 ≤ κ,

wpa1. The desired property follows from this result, (A13) and (A14) (with h replaced by h+
√
n·Hx),

and the fact that supu∈Un(v) ρd′x,j
(
n−1/2u+ v

)
is bounded uniformly in v ∈ [vx, vx], when n is

sufficiently large.

By the property shown in the preceding paragraph, we can find some δ0 > 0 such that Γn (δ0) ≤
ε/2 wpa1. Then, by this result, (B5) and (B6), we have

Pr†

[
sup

v∈[vx,vx]

∣∣∣(G†n + Gn

)
γdx

(
· | v,

√
n ·H†x, 0

)∣∣∣ > ε

]

≤ Pr†

 sup
h∈

⋃pδ0
k=1B(hk,δ0)

sup
v∈[vx,vx]

∣∣∣(G†n + Gn

)
γdx
(
· | v, h+

√
n ·Hx, 0

)∣∣∣ > ε


+Pr†

[
√
n
(
H†x −Hx

)
/∈
pδ0⋃
k=1

B (hk, δ0)

]
≤ Pr†

[
T †n (δ0) + Γn (δ0) > ε

]
+
ε

2

= Pr†

[
T †n (δ0) + Γn (δ0) > ε

]
1

(
Γn (δ0) >

ε

2

)
+ Pr†

[
T †n (δ0) + Γn (δ0) > ε

]
1

(
Γn (δ0) ≤

ε

2

)
+
ε

2

≤ Pr†

[
T †n (δ0) >

ε

2

]
+
ε

2
,
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where the second and the last inequality hold wpa1, since 1 (Γn (δ0) > ε/2) = 0 wpa1. (B2) follows
from this result and the fact that T †n (δ0) = o†p (1), which implies that Pr†

[
T †n (δ) > ε/2

]
≤ ε/2

occurs wpa1. �

Let pφ†dx (y) denote the leave-in version of pφ
(−i)
dx (y). Under the assumptions in the main text,

MMY show the following bootstrap analogue of the Bahadur-type representation result (A24) (see
the proof of Lemma S6 of MMY ):

pφ†dx (y)− φdx (y) =
1

n

n∑
i=1

Ldx

(
W †i , y

)
+ ξ†dx (y) ,

where the remainder term on the right hand side satisfies the condition that Pr†

[∥∥∥ξ†dx∥∥∥∞ > rn

]
≤

r′n wpa1 for some positive deterministic sequences {rn}∞n=1 and {r′n}
∞
n=1 that are proportional to

(log (n) /n)3/4 and n−1 respectively. Then we have the following bootstrap analogue of (A25):

p∆†i −∆
†
i =

 D†i

ς0x

(
ε†i

) +

(
1−D†i

)
ς1x

(
ε†i

)
Hx

(
ε†i

)
+ ξ†i ,

where ξ̄†n := max
{∣∣∣ξ†1∣∣∣ , ..., ∣∣∣ξ†n∣∣∣} satisfies the condition that Pr†

[
ξ̄†n > rn

]
= op (1) for some rn pro-

portional to (log (n) /n)3/4. Using these results and notations, we can show the following bootstrap
analogue of Lemma 3.

Lemma 5. Under the assumptions in the statement of Theorem 2, pF †∆|X (v | x) − qF †∆|X (v | x) =

o†p
(
n−1/2

)
, uniformly in v ∈ [vx, vx].

Proof of Lemma 5. By (A6) and the triangle inequality,∣∣∣√n( pF †∆|X (v | x)− qF †∆|X (v | x)
)∣∣∣

≤
√
n
(

qF †∆|X

(
v + ξ̄†n | x

)
− qF †∆|X (v | x)

)
+
√
n
(

qF †∆|X (v | x)− qF †∆|X

(
v − ξ̄†n | x

))
, (B9)

where ξ̄†n satisfies Pr†

[
ξ̄†n > rn

]
= op (1) for some rn = O

(
(log (n) /n)3/4

)
.

By Lemma 2, the bootstrap functional delta method (Kosorok, 2007, Theorem 12.1 and Equation
(12.1)) and (B1),

√
n

{
Ψdx

(
∆x +

H†x
ςdx

)
− Ψdx

(
∆x +

Hx

ςdx

)}
(v) = ψdx

√n
(
H†x −Hx

)
ςdx

 (v) + o†p (1) , (B10)

uniformly in v ∈ [vx, vx]. Then, by Lemma 4,

qF †∆|X (v + rn | x)− qF †∆|X (v | x)
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=
∑

d∈{0,1}

{
Ψdx

(
∆x +

H†x
ςdx
− rn

)
− Ψdx

(
∆x +

H†x
ςdx

)}
(v) + o†p

(
n−1/2

)

=
∑

d∈{0,1}

{
Ψdx

(
∆x +

H†x
ςdx
− rn

)
− Ψdx

(
∆x +

Hx

ςdx
− rn

)}
(v)

−
∑

d∈{0,1}

{
Ψdx

(
∆x +

H†x
ςdx

)
− Ψdx

(
∆x +

Hx

ςdx

)}
(v)

+
∑

d∈{0,1}

{
Ψdx

(
∆x +

Hx

ςdx
− rn

)
− Ψdx

(
∆x +

Hx

ςdx

)}
(v) + o†p

(
n−1/2

)
, (B11)

uniformly in v ∈ [vx, vx]. It was shown in the proof of Lemma 3 that the third term on the right hand
side of the second equality in (B11) is op

(
n−1/2

)
. It follows from Slutsky’s theorem, the bootstrap

functional delta method and (B1) that the first term on the right hand side of the second equality
in (B11) has the same linearization as the right hand side of (B10). It follows from these results
that qF †∆|X (v + rn | x)− qF †∆|X (v | x) = o†p

(
n−1/2

)
, uniformly in v ∈ [vx, vx]. By this result and the

union bound, for any ε > 0,

Pr†

[
sup

v∈[vx,vx]

√
n
(

qF †∆|X

(
v + ξ̄†n | x

)
− qF †∆|X (v | x)

)
> ε

]

≤ Pr†

[
sup

v∈[vx,vx]

√
n
(

qF †∆|X (v + rn | x)− qF †∆|X (v | x)
)
> ε

]
+ Pr†

[
ξ̄†n > rn

]
= op (1) .

By similar arguments, the second term on the right hand side of (B9) is also o†p (1). Thus, the
conclusion of the lemma follows immediately from these results. �

By using Lemmas 4 and 5, we now prove Theorem 2.

Proof of Theorem 2. First note that we have

S†F (v | x) =
√
n
(

pF †∆|X (v | x)− F̃ †∆|X (v | x)
)

+
√
n
(
F̃ †∆|X (v | x)− F̃∆|X (v | x)

)
−
√
n
(

pF∆|X (v | x)− F̃∆|X (v | x)
)

=
√
n
∑

d∈{0,1}

{
Ψdx

(
∆x +

H†x
ςdx

)
− Ψdx

(
∆x +

Hx

ςdx

)}
(v)

+
√
n
(
F̃ †∆|X (v | x)− F̃∆|X (v | x)

)
+ o†p (1)

= S̄†F (v | x) + o†p (1) , (B12)
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uniformly in v ∈ [vx, vx], where

S̄†F (v | x) :=
∑

d∈{0,1}

ψdx

√n
(
H†x −Hx

)
ςdx

 (v) +
√
n
(
F̃ †∆|X (v | x)− F̃∆|X (v | x)

)
,

the second equality follows from Lemmas 1, 3, 4, 5 and (B1), the third equality follows from (B10).
Note that we can write S̄†F (v | x) = G†nιx (· | v). By Van der Vaart (2000, Theorem 23.7), we have
S̄†F (· | x) † F (· | x) in `∞ [vx, vx].

Since (B12) implies that for all ε > 0,

β (ε) := Pr
[
Pr†

[∥∥∥S†F (· | x)− S̄†F (· | x)
∥∥∥
∞
> ε
]
> ε
]
↓ 0,

as n ↑ ∞. By Pollard (2002, Lemma 22), there exists a deterministic sequence {εn}∞n=1 that converges
to zero and also satisfies β (εn) ↓ 0 as n ↑ ∞. Therefore,

Pr†

[∥∥∥S†F (· | x)− S̄†F (· | x)
∥∥∥
∞
> εn

]
≤ εn, (B13)

occurs wpa1. Then we have

sup
h∈BL1

∣∣∣E† [h(S†F (· | x)
)]
− E†

[
h
(
S̄†F (· | x)

)]∣∣∣
≤ sup

h∈BL1

∣∣∣E† [(h(S†F (· | x)
)
− h

(
S̄†F (· | x)

))
1

(∥∥∥S†F (· | x)− S̄†F (· | x)
∥∥∥
∞
> εn

)]∣∣∣
+ sup
h∈BL1

∣∣∣E† [(h(S†F (· | x)
)
− h

(
S̄†F (· | x)

))
1

(∥∥∥S†F (· | x)− S̄†F (· | x)
∥∥∥
∞
≤ εn

)]∣∣∣
≤ 3 · εn, (B14)

where the first inequality follows from the triangle inequality and the second inequality holds wpa1
and follows from the the definition of BL1, which is the shorthand notation forBL1 (`∞ [vx, vx])

here, and (B13). By S̄†F (· | x)  † F (· | x) and using (B14), we have S†F (· | x)  † F (· | x) in
`∞ [vx, vx]. �

Proof of Corollary 2. By Theorem 1(ii) and Van der Vaart (2000, Lemma 2.11), we have

sup
u∈R
|Pr [SF (v | x) ≤ u]− Pr [F (v | x) ≤ u]| → 0, (B15)

as n ↑ ∞, and since the CDF of ‖F (· | x)‖∞ is continuous everywhere on R, by Theorem 1(i) and
CMT, we also have

sup
u∈R
|Pr [‖SF (· | x)‖∞ ≤ u]− Pr [‖F (· | x)‖∞ ≤ u]| → 0, (B16)

as n ↑ ∞.
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For p ∈ (0, 1), let

s̃F,p (v | x) := inf
{
u ∈ R : Pr†

[
S†F (v | x) ≤ u

]
≥ p
}

(B17)

be the p-th quantile of the resampling distribution of S†F (v | x). Since quantiles are equivariant to
monotone transformations, we have

sF,α/2 (v | x) = pF∆|X (v | x) +
s̃F,α/2 (v | x)
√
n

sF,1−α/2 (v | x) = pF∆|X (v | x) +
s̃F,1−α/2 (v | x)

√
n

.

Then,

Pr
[
F∆|X (v | x) ∈

[
sF,α/2 (v | x) , sF,1−α/2 (v | x)

]]
= Pr

[
−SF (v | x) ≤ s̃F,1−α/2 (v | x)

]
−
{

1− Pr
[
SF (v | x) ≤ −s̃F,α/2 (v | x)

]}
.

(B18)

Let q (p) denote the p-th quantile of F (v | x) for any p ∈ (0, 1). By (31) and Pollard (2002,
Lemma 22), there exists some εn ↓ 0 such that for all p ∈ (0, 1),

o (1) = Pr

[
sup
u∈R

∣∣∣Pr†

[
S†F (v | x) ≤ u

]
− Pr [F (v | x) ≤ u]

∣∣∣ > εn

]
≥ Pr

[∣∣∣Pr†

[
S†F (v | x) ≤ q (p+ εn)

]
− Pr [F (v | x) ≤ q (p+ εn)]

∣∣∣ > εn

]
≥ Pr

[
Pr†

[
S†F (v | x) ≤ q (p+ εn)

]
< p
]

≥ Pr [s̃F,p (v | x) > q (p+ εn)] , (B19)

where the second inequality follows from Van der Vaart (2000, Lemma 21.1(ii)), and the third
inequality follows from the definition (B17) of s̃F,p (v | x) and Van der Vaart (2000, Lemma 21.1(i)).
By similar arguments, there exists some ε′n ↓ 0 such that for all p ∈ (0, 1),

o (1) = Pr
[∣∣∣Pr†

[
S†F (v | x) ≤ q

(
p− ε′n

)]
− Pr

[
F (v | x) ≤ q

(
p− ε′n

)]∣∣∣ ≥ ε′n]
≥ Pr

[
Pr†

[
S†F (v | x) ≤ q

(
p− ε′n

)]
≥ p
]

≥ Pr
[
s̃F,p (v | x) ≤ q

(
p− ε′n

)]
. (B20)

It is clear that since F (v | x) has a normal distribution, q is continuous everywhere on (0, 1). By this
result, (B19) and (B20), s̃F,p (v | x)→p q (p) for all p ∈ (0, 1). By this result, Slutsky’s theorem and
the symmetry of the distribution of F (v | x), we have Pr

[
−SF (v | x) ≤ s̃F,1−α/2 (v | x)

]
→ 1− α/2

and Pr
[
SF (v | x) ≤ −s̃F,α/2 (v | x)

]
→ 1− α/2. The conclusion in Part (i) follows from these facts

and (B18).
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Now we prove Part (ii). It is easy to see that

Pr
[
F∆|X (v | x) ∈ CBF (v | x) , ∀v ∈ [vx, vx]

]
= Pr

[
‖SF (· | x)‖∞ ≤ s

unif
F,1−α

]
. (B21)

Let qunif (p) denote the p-th quantile of ‖F (· | x)‖∞ for any p ∈ (0, 1). By (32), the continuity of the
CDF of ‖F (· | x)‖∞ and the same arguments used to show (B19) and (B20), for any p ∈ (0, 1), there
exists some εn, ε′n ↓ 0 such that Pr

[
sunifF,p > qunif (p+ εn)

]
= o (1) and Pr

[
sunifF,p ≤ qunif (p− ε′n)

]
=

o (1). By these results, we have

Pr
[
‖SF (· | x)‖∞ > sunifF,1−α

]
= Pr

[
‖SF (· | x)‖∞ > sunifF,1−α, s

unif
F,1−α ≤ qunif

(
1− α− ε′n

)]
+ Pr

[
‖SF (· | x)‖∞ > sunifF,1−α, s

unif
F,1−α > qunif

(
1− α− ε′n

)]
≤ Pr

[
‖SF (· | x)‖∞ > qunif

(
1− α− ε′n

)]
+ o (1)

= Pr
[
‖F (· | x)‖∞ > qunif

(
1− α− ε′n

)]
+ o (1)

= α+ o (1) , (B22)

where the second equality follows from (B16) and the third equality follows from Van der Vaart (2000,
Lemma 21.1(ii)) and the continuity of the CDF of ‖F (· | x)‖∞. By using the same arguments, we
can show that

Pr
[
‖SF (· | x)‖∞ ≤ s

unif
F,1−α

]
= Pr

[
‖SF (· | x)‖∞ ≤ s

unif
F,1−α, s

unif
F,1−α > qunif (1− α+ εn)

]
+ Pr

[
‖SF (· | x)‖∞ ≤ s

unif
F,1−α, s

unif
F,1−α ≤ qunif (1− α+ εn)

]
≤ Pr

[
‖SF (· | x)‖∞ ≤ q

unif (1− α+ εn)
]

+ o (1)

= Pr
[
‖F (· | x)‖∞ ≤ q

unif (1− α+ εn)
]

+ o (1)

= 1− α+ o (1) .

It follows from this result and (B22) that Pr
[
‖SF (· | x)‖∞ ≤ sunifF,1−α

]
→ 1 − α as n ↑ ∞. The

conclusion in Part (ii) follows from this result and (B21). �

Proof of Corollary 3. By using Theorem 2(i) and the bootstrap analogue of the CMT, we have
S†F (v | x) † F (v | x). By this result and similar arguments, we can easily show that a result similar
to (B4) also holds for S†F (v | x). It follows from this result and the fact that F (v | x) is a normal ran-
dom variable that for all ε > 0, we can find someM > 0 such that Pr†

[∣∣∣S†F (v | x)
∣∣∣ ≥M] < ε wpa1.

It easily follows that pF †∆|X (v | x)− pF∆|X (v | x) = o†p (1) for all v in the interior of S∆|X=x. It follows

from this result, pF∆|X (v | x)−F∆|X (v | x) = op (1) and (B1) that pF †∆|X (v | x)−F∆|X (v | x) = o†p (1).

By this result and an inequality similar to (A33), we have Pr†

[
pQ†∆|X (τ | x) ≤ Q∆|X (τ | x) + ε

]
→p 1

as n ↑ ∞ for all sufficiently small ε > 0 such that Q∆|X (τ | x) + ε is an interior point of S∆|X=x.
By similar arguments, for all sufficiently small ε > 0 such that Q∆|X (τ | x)− ε is an interior point
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of S∆|X=x, Pr†

[
pQ†∆|X (τ | x) ≥ Q∆|X (τ | x)− ε

]
→p 1 as n ↑ ∞.

Let [a, b] be the interval defined in the proof of Corollary 1. Then, it follows that

Pr†

[
pQ†∆|X (τ | x) < b and pQ†∆|X (τ | x) > a

]
→p 1. (B23)

Similarly, if pQ†∆|X (τ | x) < b and pQ†∆|X (τ | x) > a, for all τ ∈ [τ , τ ], pQ†∆|X (τ | x) can be written

as φτ
(

pF †∆|X (· | x)
∣∣∣
[a,b]

)
. Let Ḟ †∆|X (v | x) be pF †∆|X (v | x) for all v ∈ R if pQ†∆|X (τ | x) > a and

pQ†∆|X (τ | x) < b and let Ḟ †∆|X (v | x) be F∆|X (v | x) for all v ∈ R otherwise. Then, since for any
ε > 0 and αn ↓ 0,

Pr†

[
sup
τ∈[τ ,τ ]

∣∣∣∣ pQ†∆|X (τ | x)− φτ
(
Ḟ †∆|X (· | x)

∣∣∣
[a,b]

)∣∣∣∣ ≤ εαn
]

≥ Pr†

[
pQ†∆|X (τ | x) < b and pQ†∆|X (τ | x) > a

]
,

by (B23), we have
pQ†∆|X (τ | x)− φτ

(
Ḟ †∆|X (· | x)

∣∣∣
[a,b]

)
= o†p (αn) , (B24)

uniformly in τ ∈ [τ , τ ], for any αn ↓ 0. And, similarly, pF †∆|X (v | x) − Ḟ †∆|X (v | x) = o†p (αn),
uniformly in v ∈ [a, b], for all αn ↓ 0. By this result, (A35) and (B1),

√
n
(
Ḟ †∆|X (v | x)− Ḟ∆|X (v | x)

)
= S†F (v | x) + o†p (1) , (B25)

uniformly in v ∈ [a, b]. By this result, Theorem 2 with [vx, vx] = [a, b] and also the the same

argument as that in the proof of Theorem 2,
√
n

(
Ḟ †∆|X (· | x)

∣∣∣
[a,b]
− Ḟ∆|X (· | x)

∣∣∣
[a,b]

)
converges in

distribution in `∞ [a, b] to the same limit as that of
√
n

(
Ḟ∆|X (· | x)

∣∣∣
[a,b]
− F∆|X (· | x)

∣∣
[a,b]

)
. A

bootstrap analogue of (A36), i.e.,

S†Q (τ | x) =
√
n

{
φτ

(
Ḟ †∆|X (· | x)

∣∣∣
[a,b]

)
− φτ

(
Ḟ∆|X (· | x)

∣∣∣
[a,b]

)}
+ o†p (1)

= −
S†F
(
Q∆|X (τ | x) | x

)
f∆|X

(
Q∆|X (τ | x) | x

) + o†p (1) ,

uniformly in τ ∈ [τ , τ ], follows from this result, (A34), (B24), Van der Vaart (2000, Lemma 21.4),
the bootstrap version of the functional delta method (Kosorok, 2007, Theorem 12.1 and Equation
(12.1)), (B25) and (B1). The conclusion in Part (i) follows easily from the CMT. Conclusions in
Parts (ii) and (iii) follow from the same arguments as those used in the proof of Corollary 2. �
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