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Generalized Method of Moments

Definition

Suppose that an econometrician observes the data {W i : i = 1, . . . , n} whereW i is a random p-vector.
Let g = (g1, ..., gl)

′ be a l dimensional function depending on W i and the k-vector of parameters b:

g (W i, b) =


g1 (W i, b)

...
gl (W i, b)

 ,

and gj : Rp × Rk → R for j = 1, . . . , l. The model is defined by the following moment condition.

Eg (W i,β) = 0 for some β ∈ Rk. (1)

Examples:

• Linear regression. LetW i = (Yi,X
′
i)
′ and Yi = X ′iβ+ei, where β ∈ Rk, and E (Xiei) = 0. In

this case, g (W i, b) = Xi (Yi −X ′ib) , l = k, and the moment condition is E (Xi (Yi −X ′iβ)) = 0.

• IV regression. Let W i = (Yi,X
′
i,Z

′
i)
′
, Yi = X ′iβ + ei, where β ∈ Rk, and E (Ziei) = 0,

where Zi is a l-vector. In this case, g (W i, b) = Zi (Yi −X ′ib) with the moment condition
E (Zi (Yi −X ′iβ)) = 0.

• Lucas’ Model. Suppose that in period t investors receive utility from the consumption Ct

be consumption in period t. Let Rj,t be the rate of return on the risky asset j. Suppose that
there are m assets. Assume that the utility function is of the form

∑∞
t=1 δ

tC1−α
t / (1− α) . In the

equilibrium, the returns on risky assets are determined by the following Euler equations:

E

(
δ

(
Ct+1

Ct

)−α
(1 +Rj,t+1)

)
= 1 for j = 1, . . . ,m.

In this case we haveW t = (Ct, R1,t . . . , Rm,t) , b = (a, d) , gj (W t, b) = d
(
Ct+1

Ct

)−a
(1 +Rj,t+1)−

1 for j = 1, . . . ,m, and the moment conditions given by the above equations. Note that in this
case g is nonlinear in the parameters.

We say that the model is identified if Eg (W i,β) = 0 and Eg
(
W i, β̃

)
= 0 imply that β = β̃, i.e. the

solution of (1) is unique. The moment condition gives us l restrictions for k parameters. A necessary
condition for the model to be identified is that l ≥ k, i.e. we must have at least k restrictions.
The necessary condition is called the order condition. We say that the model is not identified or
underidentified if the order condition fails.
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When k = l, applying the method of moments (MM) principle, we can estimate β by the value of
b that solves the sample analogue of (1):

n−1
n∑
i=1

g
(
W i, β̂

MM

n

)
= 0.

However, when l > k, in general, there is no b ∈ Rk that solves all l equations exactly. In this case,
we can choose the value of b that makes the sample moments as close to zero as possible. Let An be a
(possibly random ) l× l weight matrix such that An →p A, where A is non-random and has full rank
(l). The Generalized Method of Moments (GMM) estimator of β is defined to be the value of b that
minimizes the weighted distance of n−1

∑n
i=1 g (W i, b) from zero:

β̂
GMM

n = argmin
b∈Θ

∥∥∥∥∥Ann
−1

n∑
i=1

g (W i, b)

∥∥∥∥∥
2

= argmin
b∈Θ

(
n−1

n∑
i=1

g (W i, b)

)′
A′nAn

(
n−1

n∑
i=1

g (W i, b)

)
. (2)

The set Θ ⊂ Rk is usually assumed to be compact. Note that A′A is positive definite.

Linear case

In this section, we discuss in details the IV regression example. Note that in this case, the function g
is linear in parameters. We assume that some or all of the k regressors in Xi are endogenous:

E (Xiei) 6= 0,

and that the l instruments Zi are weakly exogenous:

E (Ziei) = 0.

The model is identified, if the following rank condition is satisfied:

rank
(
E
(
ZiX

′
i

))
= k.

If the rank condition is satisfied and l = k we say that the model is exactly or just identified. We say
that the model is overidentified if the rank condition is satisfied and l > k (there are more instruments
than the parameters that want to estimate). We allow here the model to be overidentified.

In the linear IV regression case, β̂
GMM

n is the minimizer of(
n−1

n∑
i=1

Zi

(
Yi −X ′ib

))′
A′nAn

(
n−1

n∑
i=1

Zi

(
Yi −X ′ib

))

as a function of b and given by the following expression:

β̂
GMM

n =

(
n∑
i=1

XiZ
′
i

(
A′nAn

) n∑
i=1

ZiX
′
i

)−1 n∑
i=1

XiZ
′
i

(
A′nAn

) n∑
i=1

ZiYi.
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We will show next that the GMM estimator is consistent. We need the following assumptions.

• {(Yi,Xi,Zi) : i = 1, . . . , n} are iid. Xi = (Xi,1, ..., Xi,k)
′. Zi = (Zi,1, ..., Zi,l)

′.

• Yi = X ′iβ + ei, where β ∈ Rk.

• E (Ziei) = 0.

• E (ZiX
′
i) has rank k.

• An →p A, where A has rank l ≥ k.

• EX2
i,j <∞ for all j = 1, . . . , k.

• EZ2
i,j <∞ for all j = 1, . . . , l.

Write

β̂
GMM

n = β +

(
n−1

n∑
i=1

XiZ
′
i

(
A′nAn

)
n−1

n∑
i=1

ZiX
′
i

)−1

n−1
n∑
i=1

XiZ
′
i

(
A′nAn

)
n−1

n∑
i=1

Ziei.

The last two of the above assumptions imply that

E |Xi,rZi,s| <∞ for all r = 1, . . . , k and s = 1, . . . , l.

By the WLLN,

n−1
n∑
i=1

XiZ
′
i →p E

(
XiZ

′
i

)
.

Since An →p A, we also have that

n−1
n∑
i=1

XiZ
′
i

(
A′nAn

)
n−1

n∑
i=1

ZiX
′
i →p E

(
XiZ

′
i

) (
A′A

)
E
(
ZiX

′
i

)
.

Further, since E (ZiX
′
i) has rank k, A has rank l ≥ k, it follows that the k×k matrix E (XiZ

′
i) (A′A)E (ZiX

′
i)

has full rank k and, therefore, invertible. Consequently, by the Slutsky’s Theorem,(
n−1

n∑
i=1

XiZ
′
i

(
A′nAn

)
n−1

n∑
i=1

ZiX
′
i

)−1

→p

(
E
(
XiZ

′
i

) (
A′A

)
E
(
ZiX

′
i

))−1
.

Next, by the WLLN,

n−1
n∑
i=1

Ziei →p 0,

and thus β̂
GMM

n →p β.

In order to show asymptotic normality, we will need the following two assumptions in addition to
the above.

• EZ4
i,j <∞ for all j = 1, . . . , l.

• Ee4
i <∞.
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• E
(
e2
iZiZ

′
i

)
is positive definite.

Write

n1/2
(
β̂
GMM

n − β
)

=

(
n−1

n∑
i=1

XiZ
′
i

(
A′nAn

)
n−1

n∑
i=1

ZiX
′
i

)−1

n−1
n∑
i=1

XiZ
′
i

(
A′nAn

)
n−1

n∑
i=1

Ziei.

The last two assumptions imply that the variance of Ziei, E
(
e2
iZiZ

′
i

)
is finite, and, by the CLT, we

have that

n−1/2
n∑
i=1

Ziei →d N
(
0,E

(
e2
iZiZ

′
i

))
.

Let’s define

QZX = E
(
ZiX

′
i

)
,

Ω = E
(
e2
iZiZ

′
i

)
.

Combining the above results, we have

n1/2
(
β̂
GMM

n − β
)
→d N (0,V β) ,

where V β takes the sandwich form:

V β =
(
Q′ZXA

′AQZX
)−1

Q′ZXA
′AΩA′AQZX

(
Q′ZXA

′AQZX
)−1

.

The variance-covariance matrix V β can be estimated by replacingA,QZX and Ω with their consistent
estimators An, Q̂n and Ω̂n respectively, where

Q̂n = n−1
n∑
i=1

ZiX
′
i,

Ω̂n = n−1
n∑
i=1

ê2
iZiZ

′
i,

where êi = Yi −X ′iβ̂
GMM

n .

General case

In the general case, the GMM estimator minimizes the nonlinear function in (2). Usually, we do not
have a closed-form expression for β̂

GMM

n , and the minimization must be done using numerical proce-
dures. Nevertheless, under general regularity conditions, it is possible to show that β̂

GMM

n is consistent
and asymptotically normal. We will only provide heuristic proofs of consistency and asymptotic nor-
mality.

Since the criterion function in (2) involves averages, we should expect that∥∥∥∥∥Ann
−1

n∑
i=1

g (W i, b)

∥∥∥∥∥
2

→p ‖AEg (W i, b)‖2 . (3)
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Assuming that the model is uniquely identified, Eg (W i, b) = 0 if and only if b = β. Since ‖AEg (W i, b)‖2 >
0 for all b 6= β, the true value β is the unique minimizer of ‖AEg (W i, b)‖2 . Intuitively, β̂

GMM

n is
consistent because

β̂
GMM

n = argmin
b∈Θ

∥∥∥∥∥Ann
−1

n∑
i=1

g (W i, b)

∥∥∥∥∥
2

→p argmin
b∈Θ

‖AEg (W i, b)‖2

= β.

The formal proof of consistency requires a number of regularity conditions, such as uniform in b
convergence in (3), compactness of Θ, β being the interior point of Θ.

For asymptotic normality, note that β̂
GMM

n solves the first-order conditions:

n−1
n∑
i=1

∂g
(
W i, β̂

GMM

n

)
∂b′

′A′nAnn
−1

n∑
i=1

g
(
W i, β̂

GMM

n

)
= 0. (4)

(In fact, it is sufficient if β̂
GMM

n solves the first-order conditions approximately, i.e. on the right-hand
side of the above equation, instead of zero, we can have a term that goes to zero in probability at the
rate n1/2.) Next, using the expansion of g

(
W i, β̂

GMM

n

)
around g (W i,β) (the element-by-element

mean value theorem), we obtain

g
(
W i, β̂

GMM

n

)
= g (W i,β) +

∂g
(
W i, β̂

∗
n

)
∂b′

(
β̂
GMM

n − β
)
, (5)

where β̂
∗
n is between β̂

GMM

n and β. Substitution of (5) into (4) gives

0 =

n−1
n∑
i=1

∂g
(
W i, β̂

GMM

n

)
∂b′

′A′nAnn
−1

n∑
i=1

g (W i,β)

+

n−1
n∑
i=1

∂g
(
W i, β̂

GMM

n

)
∂b′

′A′nAn

n−1
n∑
i=1

∂g
(
W i, β̂

∗
n

)
∂b′

(β̂GMM

n − β
)
,

We can write

n1/2
(
β̂
GMM

n − β
)

= −


n−1

n∑
i=1

∂g
(
W i, β̂

GMM

n

)
∂b′

′A′nAn

n−1
n∑
i=1

∂g
(
W i, β̂

∗
n

)
∂b′



−1

×

n−1
n∑
i=1

∂g
(
W i, β̂

GMM

n

)
∂b′

′A′nAnn
−1/2

n∑
i=1

g (W i,β) .
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Since Eg (W i,β) = 0, we should expect that, under some regularity conditions,

n−1/2
n∑
i=1

g (W i,β)→d N
(
0,Eg (W i,β)Eg (W i,β)′

)
.

(Note that the asymptotic variance depends on the unknown β). Since β̂
GMM

n is consistent, and, as a
result β̂

∗
n →p β as well, we should expect, that under some proper regularity conditions,

n−1
n∑
i=1

∂g
(
W i, β̂

GMM

n

)
∂b′

→p E
(
∂g (W i,β)

∂b′

)
,

n−1
n∑
i=1

∂g
(
W i, β̂

∗
n

)
∂b′

→p E
(
∂g (W i,β)

∂b′

)
,

and that the matrix (
E
(
∂g (W i,β)

∂b′

))′
A′A

(
E
(
∂g (W i,β)

∂b′

))
is invertible. Then,

n1/2
(
β̂
GMM

n − β
)
→d N (0,V β) ,

where

V β =
(
Q′A′AQ

)−1
Q′A′AΩA′AQ

(
Q′A′AQ

)−1
,

Q = E
(
∂g (W i,β)

∂b′

)
,

Ω = Eg (W i,β) g (W i,β)′ .

The variance-covariance matrix V β can be estimated by replacing A, Q and Ω with their consistent
estimators An and

Q̂n = n−1
n∑
i=1

∂g
(
W i, β̂

GMM

n

)
∂b′

,

Ω̂n = n−1
n∑
i=1

g
(
W i, β̂

GMM

n

)
g
(
W i, β̂

GMM

n

)′
.

Efficient GMM

The GMM estimator depends on the choice of the weight matrix An. The efficient GMM estimator
is the one that has the smallest asymptotic variance among all GMM estimators (defined by different
choices of An). Next, we will show that the efficient GMM corresponds to An such that

A′nAn →p Ω−1.

Theorem 1. (a) A lower bound for the asymptotic variance of the class of GMM estimators indexed
by An is given by

(
Q′Ω−1Q

)−1
.

(b) The lower bound is achieved if A′nAn →p Ω−1.
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Proof. In order to prove part (a), we need to show that

(
Q′Ω−1Q

)−1 −
(
Q′A′AQ

)−1
Q′A′AΩA′AQ

(
Q′A′AQ

)−1

is negative semi-definite for any A that has rank l. Equivalently, we can show that

Q′Ω−1Q−Q′A′AQ
(
Q′A′AΩA′AQ

)−1
Q′A′AQ (6)

is positive semi-definite.
Since the inverse of Ω exists (Ω is positive definite), we can write

Ω−1 = C ′C,

where C is invertible as well. Write (6) as

Q′C ′CQ−Q′A′AQ
(
Q′A′AC−1

(
C ′
)−1

A′AQ
)−1

Q′A′AQ

= Q′C ′
(
I l −

(
C ′
)−1

A′AQ
(
Q′A′AC−1

(
C ′
)−1

A′AQ
)−1

Q′A′AC−1

)
CQ. (7)

Define
H =

(
C ′
)−1

A′AQ,

and note that, using this definition, (7) becomes

Q′C ′
(
I l −H

(
H ′H

)−1
H ′
)
CQ.

The above matrix is positive semi-definite if I l −H (H ′H)
−1
H ′ is positive semi-definite. Next,(

I l −H
(
H ′H

)−1
H ′
)(
I l −H

(
H ′H

)−1
H ′
)

= I l − 2H
(
H ′H

)−1
H ′ +H

(
H ′H

)−1
H ′H

(
H ′H

)−1
H ′

= I l −H
(
H ′H

)−1
H ′.

Therefore, I l−H (H ′H)
−1
H ′ is idempotent and, consequently, positive semi-definite. This completes

the proof of part (a).
For part (b), if A′nAn →p A

′A = Ω−1, then the asymptotic variance becomes

(
Q′Ω−1Q

)−1
Q′Ω−1ΩΩ−1Q

(
Q′Ω−1Q

)−1

=
(
Q′Ω−1Q

)−1
.

A natural choice for such A′nAn is Ω̂
−1

n . This suggests the following two-step procedure:

1. Set A′nAn = I l. Obtain the corresponding (inefficient) estimates of β, say β̃n. Using the ineffi-
cient (but consistent) estimator of β, obtain Ω̂n. For example, in the linear case,

Ω̂n = n−1
n∑
i=1

ê2
iZiZ

′
i, where
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êi = Yi −X ′iβ̃n,

and, in the general case,

Ω̂n = n−1
n∑
i=1

g
(
W i, β̃n

)
g
(
W i, β̃n

)′
.

2. Obtain the efficient GMM estimates of β by minimizing(
n−1

n∑
i=1

g (W i, b)

)′
Ω̂
−1

n

(
n−1

n∑
i=1

g (W i, b)

)
,

where Ω̂n comes from the first step.

An alternative to Ω̂n in the first step is

n−1
n∑
i=1

g (W i, β̃n

)
− n−1

n∑
j=1

g
(
W j , β̃n

)g (W i, β̃n

)
− n−1

n∑
j=1

g
(
W j , β̃n

)′ ,
the centered version of Ω̂n. The two versions are asymptotically equivalent, since Eg (W i,β) = 0.

However, the centered version often performs better.

In the linear case, a better choice for the first stage weight matrix is

A′nAn =

(
n∑
i=1

ZiZ
′
i

)−1

(8)

=
(
Z ′Z

)−1
.

The reason for this become clear in the next section.

The variance-covariane matrix of the efficient GMM estimator can be estimated consistently by(
Q̂
′
nΩ̂
−1

n Q̂n

)−1
.

Two-stage Least Squares (2SLS)

Consider the linear IV regression model, and assume that

E
(
e2
i |Zi

)
= σ2. (9)

In this case,

Ω = E
(
e2
iZiZ

′
i

)
= E

(
E
(
e2
i |Zi

)
ZiZ

′
i

)
= σ2E

(
ZiZ

′
i

)
.
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A natural estimator of E (ZiZ
′
i) is

n−1
n∑
i=1

ZiZ
′
i,

which gives the optimal weight matrix as in (8). Note that, in this case, the efficient GMM estimator
can be obtained without the first step, since the weight matrix in (8) does not depend on êi’s. The
efficient GMM is given by

β̂
2SLS

n =

 n∑
i=1

XiZ
′
i

(
n∑
i=1

ZiZ
′
i

)−1 n∑
i=1

ZiX
′
i

−1
n∑
i=1

XiZ
′
i

(
n∑
i=1

ZiZ
′
i

)−1 n∑
i=1

ZiYi

=
(
X ′Z

(
Z ′Z

)−1
Z ′X

)−1
X ′Z

(
Z ′Z

)−1
Z ′Y .

We have that

n1/2
(
β̂

2SLS

n − β
)
→d N

(
0, σ2

(
EXiZ

′
i

(
EZiZ

′
i

)−1 EZiX
′
i

)−1
)
.

The 2SLS estimator is not efficient when the conditional homoskedasticity assumption (9) fails. In
this case, the efficient GMM estimator is

β̂
GMM

n =

 n∑
i=1

XiZ
′
i

(
n∑
i=1

ê2
iZiZ

′
i

)−1 n∑
i=1

ZiX
′
i

−1
n∑
i=1

XiZ
′
i

(
n∑
i=1

ê2
iZiZ

′
i

)−1 n∑
i=1

ZiYi

Exactly identified case

When the number of instruments is equal to the number of regressors (l = k), and the k × k matrix
Z ′X is of full rank, the 2SLS estimator reduces to the IV estimator

β̂
2SLS

n =
(
X ′Z

(
Z ′Z

)−1
Z ′X

)−1
X ′Z

(
Z ′Z

)−1
Z ′Y

=
(
Z ′X

)−1 (
Z ′Z

) (
X ′Z

)−1
X ′Z

(
Z ′Z

)−1
Z ′Y

=
(
Z ′X

)−1
Z ′Y

= β̂
IV

n .

The IV estimator is an example (linear) of the exactly identified case. In this case, the weight
matrix An plays no role. If the model is exactly identified, the we have k equations in k unknowns.
Therefore, it is possible to solve n−1

∑n
i=1 g (W i, b) = 0 exactly. As a result, the solution to the GMM

minimization problem

min
b

∥∥∥∥∥Ann
−1

n∑
i=1

g (W i, b)

∥∥∥∥∥
2

does not depend on An.
Since, in the exactly identified case, Q is k × k and invertible, the asymptotic variance-covariance

matrix takes the following form

(
Q′A′AQ

)−1
Q′A′AΩA′AQ

(
Q′A′AQ

)−1
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= Q−1
(
A′A

)−1 (
Q′
)−1

Q′A′AΩA′AQQ−1
(
A′A

)−1 (
Q′
)−1

= Q−1Ω
(
Q−1

)′
=

(
Q′Ω−1Q

)−1

independent of A and, naturally, efficient.

Confidence intervals and hypothesis testing in the GMM framework

In this section, we discuss constructing of confidence intervals and hypothesis testing. Let β̂
GMM

n be
the efficient GMM estimator with the asymptotic variance-covariance matrix V β =

(
Q′Ω−1Q

)−1
. Let

V̂ β denote a consistent estimator of V β.

Since β̂
GMM

n is approximately normal in large samples, a confidence interval with the coverage
probability 1− α for element j of β is given by[

β̂GMM
n,j − z1−α/2

√[
V̂ β

]
jj
/n, β̂GMM

n,j + z1−α/2

√[
V̂ β

]
jj
/n

]
,

for j = 1, . . . , k.

For example, in the linear and homoskedastic case, the asymptotic variance of β̂
2SLS

n is

V β = σ2
(
EXiZ

′
i

(
EZiZ

′
i

)−1 EZiX
′
i

)−1
,

and its consistent estimator is

V̂ β = σ̂2
n

n−1
n∑
i=1

XiZ
′
i

(
n−1

n∑
i=1

ZiZ
′
i

)−1

n−1
n∑
i=1

ZiX
′
i

−1

= nσ̂2
n

(
X ′Z

(
Z ′Z

)−1
Z ′X

)−1
,

where σ̂2
n = n−1

∑n
i=1

(
Yi −X ′iβ̂

2SLS

n

)2
. Therefore, the 1− α asymptotic confidence interval for βj is

given by

β̂2SLS
n,j ± z1−α/2

√
σ̂2
n

[(
X ′Z (Z ′Z)

−1
Z ′X

)−1
]
jj

.

One can construct a test of the null hypothesis H0 : βj = β0,j against H1 : βj 6= β0,j by using the
following test statistic:

Tn,j =
β̂GMM
n,j − β0,j√[
V̂ β

]
jj
/n

.

Since under the null hypothesis Tn,j →d N (0, 1) , the asymptotic α-size test is given by

Reject H0 if |Tn,j | > z1−α/2.

One can use a Wald statistic in order to test H0 : β = β0 against H1 : β 6= β0:

Wn = n
(
β̂
GMM

n − β0

)′
V̂
−1

β

(
β̂
GMM

n − β0

)
.
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More generally, suppose that the null and alternative are given by H0 : h (β) = 0 and H1 : h (β) 6= 0

where h : Rk → Rq. By the delta method, under H0,

n1/2h
(
β̂
GMM

n

)
→d N

(
0,
∂h (b)

∂b′

∣∣∣
b=β

V β
∂h (b)′

∂b

∣∣∣
b=β

)
.

Therefore, the Wald statistic is given by

Wn = n · h
(
β̂
GMM

n

)′∂h
(
β̂
GMM

n

)
∂b′

V̂ β

∂h
(
β̂
GMM

n

)′
∂b


−1

h
(
β̂
GMM

n

)
.

The asymptotic α-size test is given by

Reject H0 if Wn > χ2
q .
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