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Moment equation models

» Let g; () be a known [ x 1 function of the i-th observation
W; (9: (B) = g (W;, B)) and the parameter 3 € R¥. A
moment equation model is

Elgi (8)] = 0.

We know that the true parameter 3 satisfies the system of
equations.
» For example, in the instrumental variables model
9i (B) = Z; (Vs — X B) (Wi = (Yi, X4, Zs)).
» We say the parameter is identified if there is unique 3 solves
the equations. A necessary condition for identification is [ > k.
» [ = k: just identified;
» [ > k: over-identified.
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Method of moments

» We consider the just identified case: [ = k

» The sample analogue of E [g; (8)]:
_ RS
90 (8) =~ _ai (B).
i=1
» The method of moments estimator (MME) Bum for B is the

solution to
1 & o~
- Zgz (Bmm) =0.
n “
=1
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Overidentified moment equations

» Define

9.0 = > g (b).
=1

» We defined the MME B for B to be the solution to
T (B) = 0. However, if the model is over-identified, there are

more equations than parameters. The MME is not defined.

» We cannot find an estimator B\ which sets g, (B) =0 but we

can try to find an estimator B\ which makes g, (3) as close to

zero as possible.

4/26



» Let W be an [ x [ positive definite weight matrix. The GMM
criterion function is

J(b) =n-g,(b) Wg, ().

» When W =1I; (I-dimensional identity matrix),
J(b) =n-, (0)" gy (b) = n- g, (b)]I*.

» The Generalized method of moments (GMM) estimator is
Bgmm = argmingJ,, (b) .
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Asymptotic distribution
» Asymptotic distribution of the GMM estimator
\/EZ(Z%nnn _'5) —d DJ(O,Lﬁv).

where

-1

b = (@wa)” (@ wowa) (a'wa)

.

with

Q=E|g:(8)g(8)] amdQ=E b)

W!]i (

» If the efficient weight matrix W = Q~! is used then

Vs = (QTQ‘1Q>71 .
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Efficient GMM

» The efficient GMM estimator can be constructed by using

2= 20 (a(0) -5 (0)n ()

with a preliminary consistent estimator 5

» The asymptotic covariance matrix can be estimated by sample
counterparts of the population matrices.
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Continuously-updated GMM

» An alternative to the two-step GMM estimator can be
constructed by letting the weight matrix be an explicit
function of b:

-1

or

—1
J(b) = ( Zgz gi gn(b)gn(b)T> In ().

» The Ewhich minimizes this function is the CU-GMM
estimator. The minimization requires numerical methods.
» We have:

Vi (Beu-gmm = B) —a N (0, V).
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Wald statistic

» The parameter of interest # is a function of the coefficients,
6 = r (B) for some function 7 : R¥ — R?. The estimator of #

is given by f=r (B)

» If r(-) is continuous at the true value of 3, then §—>p 6.
Suppose that r : R¥ — R? is continuously differentiable at the

true value of 3 and R = dr (b)" /8[)’5—5 has rank g. Then,

NG (5— 9) —4 N (0, Vp) where Vg = RTV,R.
» Consider the Wald statistic

~ T ~ -~
W(e):n(9—9> v (9—9),
where 179 is a consistent estimator of Vy. Then, W (0) —4 Xg-
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Confidence set

» A confidence region C is a set estimator for § € R?. A natural
confidence region is

C={0cR:W(H)<cial,

with ¢;_, being the 1 — o quantile of the x§ distribution:
1% (c1—a) =1—q.
» Then,
Pr [960] —>Pr[x2 §cl,a} =1-oa.

» Note that the shape of the confidence set Cis predetermined
(i.e., ellipse).
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Overldentification test

» Consider the linear IV model:

Y; = X/B+e
Ele;Z] = 0,
where X; € R* and Z; € R!. The model is over-identified:
> k.

» The model specifies
EleiZ] =0+ E[ZY] =E [ZiXiT ] 3.

» This is equivalent to saying that E [Z;Y}] is in the column
space of E [ZZXZT] The model imposes a restriction on the
distribution of the oberved variables (Y;, X;, Z;).

» Since (3 is of dimension k < [, it is not certain if such a vector
exists. In such a case, we say that the model is misspecified.
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T
Suppose that X; € R! and Z; = (Z-(l), Z~(2)) € R2. Then

2 (2
the model specifies

Bz = B|ZVx]8
E [ZZ(Q)YJ E [ZZ.(Q)XJ 3,
which requires
Bz Bz
B[zVx| EB[ZPx)]

The true distribution of (Y;, X;, Z;) may violate this condition.

We can do a hypothesis test of the model specification. This is
known as the overidentification test:

Hy : There exists 8 € R¥ such that E [Zi (Y ~x/ 5)] —0.
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For the more general model, the null hypothesis of correct
model specification is

Hy : There exists § € R” such that E [g; (8)] = 0.
Hp is true if and only if
minn - Eg; (®)]" Q' E g (b)] = 0.

We estimate minn - E [g; (b)] T Q~'E [g; (b)] by
mingn - g, (b)T ﬁ_lgn ().
and if it is large, we reject Hy.
The test statistic is just J (Bgmm>. This is known as the

J-statistic. The overidentification test is referred to as the
Sargan test.

Under Hy, J (Bgmm) —d X%_k. We reject Hy if
J (Bgmm) > ¢1_q With ¢1_, being the 1 — a quantile of the
x?_,, distribution: Feo (a-a)=1-a
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Maximum likelihood

» Let (X1,...,X,,) be a random (i.i.d.) sample on a continuous
with a density function f (-;6), § € © C R¥. Let x; be the
observed value of X;. Then we call

L (0521, ....xn) =[] f (2::6)
i=1
the likelihood function of @ given (z1,x9, ..., 2, ), and we call
the value of 6 that maximizes L (0; X1, ..., X,;) the maximum
likelihood (ML) estimator.
» The log-likelihood function:

{(B521, ) = Y log f (2:36).
=1

» The ML estimator: gml = argmaxyegl (0; X1, ..., Xp).

» The model {f (-;0) : 0 € ©} is correctly specified if there
exists 0, € O so that f (-;60.) = fx, where fx denotes the
true density of Xj.
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Kullback-Leibler divergence

» The Kullback-Leibler (KL) divergence from a density f to
another density g:

Du (s 1o = 1o (52) )

» Dy (f|g) >0and Dy (f | g) =0if and only if f =g.
» Jensen's inequality: Let X be a random variable and h be a
strictly concave function. That is,

h(Aa+ (1 =X\ b) > A (a)+ (1= A\ h(b)

foranya <band 0 <A< 1. Then E[h(X)] < h(E[X]).
> Iff#g,

o 2200 i ()
> _log </g(x) dx) 0.
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» D (fx | f(56)) >0and Dy (fx | f(50+)) = 0. This is
equivalent to

0. = argminDi(fx | f(+0))
0eo

= angmax — / log ( f(if?)) fx (z)dz

= argmax E[log f (X;6)].
SIS,

» A natural estimator from the perspective of KL divergence is
given by argmaxgcg @y (0) with
Qn (0) =n=t3"" logf (X;;6), which is just the ML
estimator.

» By LLN, we know that for each 8, Q,, (6) —, Q (6) where
Q (0) = E[logf (X;60)]. The ML estimator is defined to be
the maximizer of @, (). We expect the maximizer should
converge to the maximizer of its limit @ () in probability.
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Nonparametric likelihood

>

The moment equation model is nonparametric in the sense
that we do not fully specify the distribution of the observed
variables.

Rather than specifying a parametric model for X;, we assume
the variables follow a discrete distribution supported on the
observations X7, ..., X,,.

The parameters corresponding to this “model” is p1, ..., p, with
(p1, -y Pn) € A, where

n
A= {(pl,...,pn) : Zpi =1,p;>0,i= 1,...,n}.

i=1
The nonparametric log-likelihood is

g(plv "‘7pn;X17 7Xn) = Zlog (TL p2)7 (plv"wpn) € A
=1

The maximum of the above log-likelihood function is attained
at p; = 1/n, Vi, which is the empirical distribution.
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Maximizing the nonparametric log-likelihood is equivalent to
minimizing the KL divergence from the empirical distribution

(1/n,...;1/n) to (1, Pn): Yoiq n~tlog (n_l/pi).
Consider the moment equation model:

E g (8)) = / g (w,8) fuw (w) dw =0,

where fy denotes the true density of W.
The model imposes a restriction on fy .

The empirical likelihood method is a constrained
nonparametric likelihood with the constraint > | p;g; (b) =0
imposed.
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Empirical likelihood (EL)

The EL criterion function:

v

Le1 (b) = max 2210g (n-pi)
e

subject to Zpigi (b) =0, (p1,...,pn) € A.
=1

The EL estimator Bel is the maximizer of £ ().
vn (Bel — 5) —4q N (0,V3), where V3 is the asymptotic
variance of the efficient GMM (Qin and Lawless, 1994).

The EL estimator is efficient and avoids estimating the optimal
weighting matrix in the first step.

v

v

v
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EL ratio inference

» The EL ratio statistic;

LR (0) = maxte (b) — Tr(%gefel (b).

Then, LR () —4 Xg-
» Estimation of the asymptotic variance is not needed.
» The EL confidence set:

C={0eR?: LR(A) < c1_a}.

» The shape of the EL confidence set is data-driven.

» The EL method has many other favorable properties relative to
efficient GMM. See Kitamura (2006) for a review.
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Duality

» |t seems that the high dimensionality of the parameter space
makes the maximization problem infeasible in practice.

» Instead of directly solving it, we fix b first and use the
Lagrange multiplier method to solve

e (b) :zpfr}fu;ﬁ Z log (n - p;)

=1

subject to Y pigi (b) =0, (p1, ..., pn) € A.
=1

» The Lagrangian associated with the constrained optimization
problem is

L(p1y-s P, A) = Zlog (pi)+ (1 - ZPz) —n-AT sz'gi
i1 i1 i1

where v € R and A € R are Lagrange multipliers.

(b) Y
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» The first-order conditions:

0 = pli—v—n(/\Tgi(b))

n
0 = 1-) p
=1

0 = n> pigi(b).
=1

» The first-order conditions are solved by v = n and
(p1,---sDn, A) are given by the solution to

1
n (14 ATg; (b))
o~ 9
0 = ; TF AT ()
» The [ equations 0 =37 | g; (b) / (1L + ATg; (b)) are the

first-order conditions of the convex minimization problem
miny, — Y1 log (1+ ATg; (b)).

pi =
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» The EL estimator is therefore

B\el = argmax min — Z log (1 + Mg (b)) .
b A

> For fixed b, miny, — Y7 ; log (1 + ATg; (b)) is a convex
minimization problem, for which a simple Newton algorithm
works.

» The maximization of miny — Y ; log (1 + ATg; (b)) with
respect to b is harder to solve. It is solved by a nonlinear
optimization algorithm.
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Implied probabilities
» Once Bel is calculated, we get the implied probabilities

_ 1
N (e ()

where X is the solution of the equations

B " 9i (//B\el)
' zz; 1+ ATy, (Bel) '

» Suppose that we are interested in estimating E [h (W;)], where
h(-) is a known function.

> > . Dih (W;) is an efficient estimator of E [k (W;)] relative to
the sample mean n=1 > h (W;) (Brown and Newey, 1998).

» (D1,...,Pn) is also a more efficient estimator than the empirical
distribution, from which we do bootstrap resampling.
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» We have a small dataset on W; = (V;, X;), i = 1,...,n, but X;
includes a rich set of variables so that the regression model is
not suffering from the omitted variable bias.

» Suppose that M; is the vector collecting a small subset of
variables in W;. We have another auxiliary dataset on M;.
Such a dataset has a very large sample size N.

» We can calculate the implied probabilities

- 1
M (LA (- )

where X is the solution of the equations

_ZMM

14+ AT (M; — M)’

where M is the sample mean of M; computed by using the
auxiliary dataset.

» The reweighted estimator (Z?:lﬁiXiXiT)fl O piXiYi) is
more efficient than the OLS (Hellerstein and Imbens, 1999).
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Cressie-Read divergence

» EL can be thought of as minimizing the KL divergence
(distance) of the empirical distribution and the discrete
distribution supported on the sample with a constraint.

» We can consider other distance. E.g., > ;" p;log (n_l/pi)
(reverse KL divergence, exponential tilting, Kitamura and
Stutzer, 1998) and > | (n - p; — 1)? (Euclidean distance,
continuously-updated GMM/Euclidean likelihood).

» Cressie-Read divergence:

n

Z[(nmi)*'y—l],'ye]l%.

=1

b
(v +1)

Special cases: v = —2, continuously-updated GMM; v = —1,
exponential tilting; v = 0, EL among many others.

» In the literature, various papers show that some method has
certain advantages over other methods, from different
perspectives.
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