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Moment equation models

I Let gi (β) be a known l × 1 function of the i-th observation
Wi (gi (β) = g (Wi, β)) and the parameter β ∈ Rk. A
moment equation model is

E [gi (β)] = 0.

We know that the true parameter β satisfies the system of
equations.

I For example, in the instrumental variables model
gi (β) = Zi

(
Yi −X>i β

)
(Wi = (Yi, Xi, Zi)).

I We say the parameter is identified if there is unique β solves
the equations. A necessary condition for identification is l ≥ k.

I l = k: just identified;
I l > k: over-identified.
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Method of moments

I We consider the just identified case: l = k

I The sample analogue of E [gi (β)]:

gn (β) =
1

n

n∑
i=1

gi (β) .

I The method of moments estimator (MME) β̂mm for β is the
solution to

1

n

n∑
i=1

gi

(
β̂mm

)
= 0.
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Overidentified moment equations

I Define

gn (b) =
1

n

n∑
i=1

gi (b) .

I We defined the MME β̂ for β to be the solution to
gn

(
β̂
)

= 0. However, if the model is over-identified, there are
more equations than parameters. The MME is not defined.

I We cannot find an estimator β̂ which sets gn
(
β̂
)

= 0 but we

can try to find an estimator β̂ which makes gn
(
β̂
)
as close to

zero as possible.
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I Let W be an l × l positive definite weight matrix. The GMM
criterion function is

J (b) = n · gn (b)>Wgn (b) .

I When W = Il (l-dimensional identity matrix),
J (b) = n · gn (b)> gn (b) = n · ‖gn (b)‖2.

I The Generalized method of moments (GMM) estimator is
β̂gmm = argminbJn (b) .
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Asymptotic distribution
I Asymptotic distribution of the GMM estimator

√
n
(
β̂gmm − β

)
→d N (0, VW ) .

where

VW =
(

Q>WQ
)−1 (

Q>WΩWQ
)(

Q>WQ
)−1

with

Ω = E
[
gi (β) gi (β)>

]
and Q = E

[
∂

∂b>
gi (b)

∣∣∣∣
b=β

]

I If the efficient weight matrix W = Ω−1 is used then

Vβ =
(

Q>Ω−1Q
)−1

.
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Efficient GMM

I The efficient GMM estimator can be constructed by using

Ω̂ =
1

n

n∑
i=1

gi

(
β̃
)
gi

(
β̃
)>
− gn

(
β̃
)
gn

(
β̃
)>

,

with a preliminary consistent estimator β̃.
I The asymptotic covariance matrix can be estimated by sample

counterparts of the population matrices.
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Continuously-updated GMM
I An alternative to the two-step GMM estimator can be

constructed by letting the weight matrix be an explicit
function of b:

J (b) = n · gn (b)>
(

1

n

n∑
i=1

gi (b) gi (b)>
)−1

gn (b)

or

J (b) = gn (b)>
(

1

n

n∑
i=1

gi (b) gi (b)>−gn (b) gn (b)>
)−1

gn (b) .

I The β̂ which minimizes this function is the CU-GMM
estimator. The minimization requires numerical methods.

I We have:
√
n
(
β̂cu−gmm − β

)
→d N (0, Vβ) .

8 / 26



Wald statistic

I The parameter of interest θ is a function of the coefficients,
θ = r (β) for some function r : Rk → Rq. The estimator of θ
is given by θ̂ = r

(
β̂
)
.

I If r (·) is continuous at the true value of β, then θ̂ →p θ.
Suppose that r : Rk → Rq is continuously differentiable at the
true value of β and R = ∂r (b)> /∂b

∣∣∣
b=β

has rank q. Then,
√
n
(
θ̂ − θ

)
→d N (0, Vθ) where Vθ = R>VβR.

I Consider the Wald statistic

W (θ) = n
(
θ̂ − θ

)>
V̂ −1
θ

(
θ̂ − θ

)
,

where V̂θ is a consistent estimator of Vθ. Then, W (θ)→d χ
2
q .
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Confidence set

I A confidence region Ĉ is a set estimator for θ ∈ Rq. A natural
confidence region is

Ĉ = {θ ∈ Rq : W (θ) ≤ c1−α} ,

with c1−α being the 1− α quantile of the χ2
q distribution:

Fχ2
q

(c1−α) = 1− α.
I Then,

Pr
[
θ ∈ Ĉ

]
→ Pr

[
χ2
q ≤ c1−α

]
= 1− α.

I Note that the shape of the confidence set Ĉ is predetermined
(i.e., ellipse).

10 / 26



OverIdentification test
I Consider the linear IV model:

Yi = X>i β + ei

E [eiZi] = 0,

where Xi ∈ Rk and Zi ∈ Rl. The model is over-identified:
l > k.

I The model specifies

E [eiZi] = 0⇐⇒ E [ZiYi] = E
[
ZiX

>
i

]
β.

I This is equivalent to saying that E [ZiYi] is in the column
space of E

[
ZiX

>
i

]
. The model imposes a restriction on the

distribution of the oberved variables (Yi, Xi, Zi).
I Since β is of dimension k < l, it is not certain if such a vector

exists. In such a case, we say that the model is misspecified.
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I Suppose that Xi ∈ R1 and Zi =
(
Z

(1)
i , Z

(2)
i

)>
∈ R2. Then

the model specifies

E
[
Z

(1)
i Yi

]
= E

[
Z

(1)
i Xi

]
β

E
[
Z

(2)
i Yi

]
= E

[
Z

(2)
i Xi

]
β,

which requires

E
[
Z

(1)
i Yi

]
E
[
Z

(1)
i Xi

] =
E
[
Z

(2)
i Yi

]
E
[
Z

(2)
i Xi

] .
I The true distribution of (Yi, Xi, Zi) may violate this condition.
I We can do a hypothesis test of the model specification. This is

known as the overidentification test:

H0 : There exists β ∈ Rk such that E
[
Zi

(
Yi −X>i β

)]
= 0.
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I For the more general model, the null hypothesis of correct
model specification is

H0 : There exists β ∈ Rk such that E [gi (β)] = 0.

I H0 is true if and only if

min
b
n · E [gi (b)]>Ω−1E [gi (b)] = 0.

I We estimate minbn · E [gi (b)]>Ω−1E [gi (b)] by

minbn · gn (b)> Ω̂−1gn (b) .

and if it is large, we reject H0.
I The test statistic is just J

(
β̂gmm

)
. This is known as the

J-statistic. The overidentification test is referred to as the
Sargan test.

I Under H0, J
(
β̂gmm

)
→d χ

2
l−k. We reject H0 if

J
(
β̂gmm

)
> c1−α with c1−α being the 1− α quantile of the

χ2
l−k distribution: Fχ2

l−k
(c1−α) = 1− α.
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Maximum likelihood
I Let (X1, ..., Xn) be a random (i.i.d.) sample on a continuous

with a density function f (·; θ), θ ∈ Θ ⊆ Rk. Let xi be the
observed value of Xi. Then we call

L (θ;x1, ..., xn) =

n∏
i=1

f (xi; θ)

the likelihood function of θ given (x1, x2, ..., xn), and we call
the value of θ that maximizes L (θ;X1, ..., Xn) the maximum
likelihood (ML) estimator.

I The log-likelihood function:

` (θ;x1, ..., xn) =

n∑
i=1

log f (xi; θ) .

I The ML estimator: θ̂ml = argmaxθ∈Θ` (θ;X1, ..., Xn).
I The model {f (·; θ) : θ ∈ Θ} is correctly specified if there

exists θ∗ ∈ Θ so that f (·; θ∗) = fX , where fX denotes the
true density of Xi.
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Kullback–Leibler divergence
I The Kullback–Leibler (KL) divergence from a density f to

another density g:

Dkl (f | g) =

∫
log

(
f (x)

g (x)

)
f (x) dx.

I Dkl (f | g) ≥ 0 and Dkl (f | g) = 0 if and only if f = g.
I Jensen’s inequality: Let X be a random variable and h be a

strictly concave function. That is,

h (λa+ (1− λ) b) > λh (a) + (1− λ)h (b)

for any a < b and 0 < λ < 1. Then E [h (X)] < h (E [X]).
I If f 6= g,∫

log

(
f (x)

g (x)

)
f (x) dx = −

∫
log

(
g (x)

f (x)

)
f (x) dx

> −log

(∫
g (x) dx

)
= 0.
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I Dkl (fX | f (·; θ)) ≥ 0 and Dkl (fX | f (·; θ∗)) = 0. This is
equivalent to

θ∗ = argmin
θ∈Θ

Dkl (fX | f (·; θ))

= argmax
θ∈Θ

−
∫

log

(
fX (x)

f (x; θ)

)
fX (x) dx

= argmax
θ∈Θ

E [log f (X; θ)] .

I A natural estimator from the perspective of KL divergence is
given by argmaxθ∈ΘQn (θ) with
Qn (θ) = n−1

∑n
i=1 logf (Xi; θ), which is just the ML

estimator.
I By LLN, we know that for each θ, Qn (θ)→p Q (θ) where
Q (θ) = E [logf (X; θ)]. The ML estimator is defined to be
the maximizer of Qn (θ). We expect the maximizer should
converge to the maximizer of its limit Q (θ) in probability.
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Nonparametric likelihood
I The moment equation model is nonparametric in the sense

that we do not fully specify the distribution of the observed
variables.

I Rather than specifying a parametric model for Xi, we assume
the variables follow a discrete distribution supported on the
observations X1, ..., Xn.

I The parameters corresponding to this “model” is p1, ..., pn with
(p1, ..., pn) ∈ ∆, where

∆ =

{
(p1, ..., pn) :

n∑
i=1

pi = 1, pi ≥ 0, i = 1, ..., n

}
.

I The nonparametric log-likelihood is

` (p1, ..., pn;X1, ..., Xn) =

n∑
i=1

log (n · pi) , (p1, ..., pn) ∈ ∆.

I The maximum of the above log-likelihood function is attained
at pi = 1/n, ∀i, which is the empirical distribution.
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I Maximizing the nonparametric log-likelihood is equivalent to
minimizing the KL divergence from the empirical distribution
(1/n, ..., 1/n) to (p1, ..., pn):

∑n
i=1 n

−1log
(
n−1/pi

)
.

I Consider the moment equation model:

E [gi (β)] =

∫
g (w, β) fW (w) dw = 0,

where fW denotes the true density of Wi.
I The model imposes a restriction on fW .
I The empirical likelihood method is a constrained

nonparametric likelihood with the constraint
∑n

i=1 pigi (b) = 0
imposed.
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Empirical likelihood (EL)

I The EL criterion function:

`el (b) := max
p1,...,pn

2

n∑
i=1

log (n · pi)

subject to
n∑
i=1

pigi (b) = 0, (p1, ..., pn) ∈ ∆.

I The EL estimator β̂el is the maximizer of `el (b).

I
√
n
(
β̂el − β

)
→d N (0, Vβ), where Vβ is the asymptotic

variance of the efficient GMM (Qin and Lawless, 1994).
I The EL estimator is efficient and avoids estimating the optimal

weighting matrix in the first step.
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EL ratio inference

I The EL ratio statistic:

LR (θ) = max
b
`el (b)− max

r(b)=θ
`el (b) .

Then, LR (θ)→d χ
2
q .

I Estimation of the asymptotic variance is not needed.
I The EL confidence set:

Ĉ = {θ ∈ Rq : LR (θ) ≤ c1−α} .

I The shape of the EL confidence set is data-driven.
I The EL method has many other favorable properties relative to

efficient GMM. See Kitamura (2006) for a review.
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Duality
I It seems that the high dimensionality of the parameter space

makes the maximization problem infeasible in practice.
I Instead of directly solving it, we fix b first and use the

Lagrange multiplier method to solve

`el (b) := max
p1,...,pn

2

n∑
i=1

log (n · pi)

subject to
n∑
i=1

pigi (b) = 0, (p1, ..., pn) ∈ ∆.

I The Lagrangian associated with the constrained optimization
problem is

L (p1, ..., pn, λ) =

n∑
i=1

log (pi)+γ

(
1−

n∑
i=1

pi

)
−n·λ>

n∑
i=1

pigi (b) ,

where γ ∈ R and λ ∈ Rl are Lagrange multipliers.
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I The first-order conditions:

0 =
1

pi
− γ − n

(
λ>gi (b)

)
0 = 1−

n∑
i=1

pi

0 = n

n∑
i=1

pigi (b) .

I The first-order conditions are solved by γ = n and
(p1, ..., pn, λ) are given by the solution to

pi =
1

n (1 + λ>gi (b))

0 =

n∑
i=1

gi (b)

1 + λ>gi (b)
.

I The l equations 0 =
∑n

i=1 gi (b) /
(
1 + λ>gi (b)

)
are the

first-order conditions of the convex minimization problem
minλ −

∑n
i=1 log

(
1 + λ>gi (b)

)
.
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I The EL estimator is therefore

β̂el = argmax
b

min
λ
−

n∑
i=1

log
(

1 + λ>gi (b)
)
.

I For fixed b, minλ −
∑n

i=1 log
(
1 + λ>gi (b)

)
is a convex

minimization problem, for which a simple Newton algorithm
works.

I The maximization of minλ −
∑n

i=1 log
(
1 + λ>gi (b)

)
with

respect to b is harder to solve. It is solved by a nonlinear
optimization algorithm.
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Implied probabilities
I Once β̂el is calculated, we get the implied probabilities

p̂i =
1

n
(

1 + λ̂>gi

(
β̂el

)) ,
where λ̂ is the solution of the equations

0 =
n∑
i=1

gi

(
β̂el

)
1 + λ̂>gi

(
β̂el

) .
I Suppose that we are interested in estimating E [h (Wi)], where
h (·) is a known function.

I
∑

i p̂ih (Wi) is an efficient estimator of E [h (Wi)] relative to
the sample mean n−1

∑
i h (Wi) (Brown and Newey, 1998).

I (p̂1, ..., p̂n) is also a more efficient estimator than the empirical
distribution, from which we do bootstrap resampling.
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I We have a small dataset on Wi = (Yi, Xi), i = 1, ..., n, but Xi

includes a rich set of variables so that the regression model is
not suffering from the omitted variable bias.

I Suppose that Mi is the vector collecting a small subset of
variables in Wi. We have another auxiliary dataset on Mi.
Such a dataset has a very large sample size N .

I We can calculate the implied probabilities

p̂i =
1

n
(

1 + λ̂>
(
Mi −M

))
where λ̂ is the solution of the equations

0 =

n∑
i=1

Mi −M
1 + λ̂>

(
Mi −M

) ,
where M is the sample mean of Mi computed by using the
auxiliary dataset.

I The reweighted estimator
(∑n

i=1 p̂iXiX
>
i

)−1
(
∑n

i=1 p̂iXiYi) is
more efficient than the OLS (Hellerstein and Imbens, 1999).
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Cressie-Read divergence
I EL can be thought of as minimizing the KL divergence

(distance) of the empirical distribution and the discrete
distribution supported on the sample with a constraint.

I We can consider other distance. E.g.,
∑n

i=1 pilog
(
n−1/pi

)
(reverse KL divergence, exponential tilting, Kitamura and
Stutzer, 1998) and

∑n
i=1 (n · pi − 1)2 (Euclidean distance,

continuously-updated GMM/Euclidean likelihood).
I Cressie-Read divergence:

1

γ (γ + 1)

n∑
i=1

[
(n · pi)−γ − 1

]
, γ ∈ R.

Special cases: γ = −2, continuously-updated GMM; γ = −1,
exponential tilting; γ = 0, EL among many others.

I In the literature, various papers show that some method has
certain advantages over other methods, from different
perspectives.
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