Topics in Econometrics Generalized Method of Moments: Extensions

Instructor: Ma, Jun

Renmin University of China

May 12, 2022

Moment equation models

▶ Let $g_i(\beta)$ be a known $l \times 1$ function of the i-th observation $W_i\left(g_i(\beta) = g\left(W_i, \beta\right)\right)$ and the parameter $\beta \in \mathbb{R}^k$. A moment equation model is

$$\mathrm{E}\left[g_{i}\left(\beta\right)\right]=0.$$

We know that the true parameter β satisfies the system of equations.

- For example, in the instrumental variables model $g_i(\beta) = Z_i (Y_i X_i^{\top} \beta) (W_i = (Y_i, X_i, Z_i)).$
- ▶ We say the parameter is identified if there is unique β solves the equations. A necessary condition for identification is $l \ge k$.
- ▶ l = k: just identified;
- ightharpoonup l > k: over-identified.

Method of moments

- \blacktriangleright We consider the just identified case: l=k
- ▶ The sample analogue of $E[g_i(\beta)]$:

$$\overline{g}_n(\beta) = \frac{1}{n} \sum_{i=1}^n g_i(\beta).$$

▶ The method of moments estimator (MME) $\widehat{\beta}_{mm}$ for β is the solution to

$$\frac{1}{n}\sum_{i=1}^{n}g_{i}\left(\widehat{\beta}_{\mathrm{mm}}\right)=0.$$

Overidentified moment equations

▶ Define

$$\overline{g}_n(b) = \frac{1}{n} \sum_{i=1}^n g_i(b).$$

- ▶ We defined the MME $\widehat{\beta}$ for β to be the solution to $\overline{g}_n\left(\widehat{\beta}\right)=0$. However, if the model is over-identified, there are more equations than parameters. The MME is not defined.
- $\hbox{$\blacktriangleright$ We cannot find an estimator $\widehat{\beta}$ which sets $\overline{g}_n\left(\widehat{\beta}\right)=0$ but we can try to find an estimator $\widehat{\beta}$ which makes $\overline{g}_n\left(\widehat{\beta}\right)$ as close to zero as possible. }$

▶ Let W be an $l \times l$ positive definite weight matrix. The GMM criterion function is

$$J(b) = n \cdot \overline{g}_n(b)^{\top} W \overline{g}_n(b).$$

- ▶ When $W = I_l$ (l-dimensional identity matrix), $J(b) = n \cdot \overline{g}_n(b)^{\top} \overline{g}_n(b) = n \cdot \|\overline{g}_n(b)\|^2$.
- ▶ The Generalized method of moments (GMM) estimator is $\widehat{\beta}_{\mathrm{gmm}} = \mathrm{argmin}_b J_n\left(b\right)$.

Asymptotic distribution

Asymptotic distribution of the GMM estimator

$$\sqrt{n}\left(\widehat{\beta}_{\text{gmm}} - \beta\right) \to_d N\left(0, V_W\right).$$

where

$$V_W = \left(\mathbf{Q}^\top W \mathbf{Q}\right)^{-1} \left(\mathbf{Q}^\top W \Omega W \mathbf{Q}\right) \left(\mathbf{Q}^\top W \mathbf{Q}\right)^{-1}$$

with

$$\Omega = \mathrm{E}\left[g_i\left(\beta\right)g_i\left(\beta\right)^{\top}\right] \text{ and } \mathrm{Q} = \mathrm{E}\left[\left.\frac{\partial}{\partial b^{\top}}g_i\left(b\right)\right|_{b=\beta}\right]$$

▶ If the efficient weight matrix $W = \Omega^{-1}$ is used then

$$V_{\beta} = \left(\mathbf{Q}^{\top} \mathbf{\Omega}^{-1} \mathbf{Q} \right)^{-1}.$$

Efficient GMM

► The efficient GMM estimator can be constructed by using

$$\widehat{\Omega} = \frac{1}{n} \sum_{i=1}^{n} g_i \left(\widetilde{\beta} \right) g_i \left(\widetilde{\beta} \right)^{\top} - \overline{g}_n \left(\widetilde{\beta} \right) \overline{g}_n \left(\widetilde{\beta} \right)^{\top},$$

with a preliminary consistent estimator $\widetilde{\beta}$.

► The asymptotic covariance matrix can be estimated by sample counterparts of the population matrices.

Continuously-updated GMM

► An alternative to the two-step GMM estimator can be constructed by letting the weight matrix be an explicit function of *b*:

$$J(b) = n \cdot \overline{g}_n(b)^{\top} \left(\frac{1}{n} \sum_{i=1}^n g_i(b) g_i(b)^{\top} \right)^{-1} \overline{g}_n(b)$$

or

$$J\left(b\right) = \overline{g}_n\left(b\right)^{\top} \left(\frac{1}{n} \sum_{i=1}^n g_i\left(b\right) g_i\left(b\right)^{\top} - \overline{g}_n\left(b\right) \overline{g}_n\left(b\right)^{\top}\right)^{-1} \overline{g}_n\left(b\right).$$

- ► The $\widehat{\beta}$ which minimizes this function is the CU-GMM estimator. The minimization requires numerical methods.
- ► We have:

$$\sqrt{n}\left(\widehat{\beta}_{\mathrm{cu-gmm}} - \beta\right) \to_d \mathrm{N}\left(0, V_{\beta}\right).$$

Wald statistic

- ▶ The parameter of interest θ is a function of the coefficients, $\theta = r\left(\beta\right)$ for some function $r: \mathbb{R}^k \to \mathbb{R}^q$. The estimator of θ is given by $\widehat{\theta} = r\left(\widehat{\beta}\right)$.
- If $r\left(\cdot\right)$ is continuous at the true value of β , then $\widehat{\theta} \to_{p} \theta$. Suppose that $r: \mathbb{R}^{k} \to \mathbb{R}^{q}$ is continuously differentiable at the true value of β and $R = \partial r\left(b\right)^{\top}/\partial b\Big|_{b=\beta}$ has rank q. Then, $\sqrt{n}\left(\widehat{\theta}-\theta\right) \to_{d} \mathrm{N}\left(0,V_{\theta}\right)$ where $V_{\theta}=R^{\top}V_{\beta}R$.
- ► Consider the Wald statistic

$$W(\theta) = n \left(\widehat{\theta} - \theta\right)^{\top} \widehat{V}_{\theta}^{-1} \left(\widehat{\theta} - \theta\right),$$

where \widehat{V}_{θ} is a consistent estimator of V_{θ} . Then, $W\left(\theta\right) \rightarrow_{d} \chi_{q}^{2}$.

Confidence set

▶ A confidence region \widehat{C} is a set estimator for $\theta \in \mathbb{R}^q$. A natural confidence region is

$$\widehat{C} = \left\{ \theta \in \mathbb{R}^q : W\left(\theta\right) \le c_{1-\alpha} \right\},\,$$

with $c_{1-\alpha}$ being the $1-\alpha$ quantile of the χ_q^2 distribution: $F_{\chi_q^2}(c_{1-\alpha}) = 1-\alpha$.

► Then,

$$\Pr\left[\theta \in \widehat{C}\right] \to \Pr\left[\chi_q^2 \le c_{1-\alpha}\right] = 1 - \alpha.$$

Note that the shape of the confidence set \widehat{C} is predetermined (i.e., ellipse).

OverIdentification test

► Consider the linear IV model:

$$Y_i = X_i^{\top} \beta + e_i$$

$$E[e_i Z_i] = 0,$$

where $X_i \in \mathbb{R}^k$ and $Z_i \in \mathbb{R}^l$. The model is over-identified: l > k.

► The model specifies

$$\mathrm{E}\left[e_{i}Z_{i}\right] = 0 \Longleftrightarrow \mathrm{E}\left[Z_{i}Y_{i}\right] = \mathrm{E}\left[Z_{i}X_{i}^{\top}\right]\beta.$$

- ▶ This is equivalent to saying that $E[Z_iY_i]$ is in the column space of $E[Z_iX_i^\top]$. The model imposes a restriction on the distribution of the oberved variables (Y_i, X_i, Z_i) .
- ▶ Since β is of dimension k < l, it is not certain if such a vector exists. In such a case, we say that the model is misspecified.

▶ Suppose that $X_i \in \mathbb{R}^1$ and $Z_i = \left(Z_i^{(1)}, Z_i^{(2)}\right)^\top \in \mathbb{R}^2$. Then the model specifies

$$E\left[Z_i^{(1)}Y_i\right] = E\left[Z_i^{(1)}X_i\right]\beta$$

$$E\left[Z_i^{(2)}Y_i\right] = E\left[Z_i^{(2)}X_i\right]\beta,$$

which requires

$$\frac{\mathrm{E}\left[Z_i^{(1)}Y_i\right]}{\mathrm{E}\left[Z_i^{(1)}X_i\right]} = \frac{\mathrm{E}\left[Z_i^{(2)}Y_i\right]}{\mathrm{E}\left[Z_i^{(2)}X_i\right]}.$$

- ▶ The true distribution of (Y_i, X_i, Z_i) may violate this condition.
- ► We can do a hypothesis test of the model specification. This is known as the overidentification test:

$$H_0$$
: There exists $\beta \in \mathbb{R}^k$ such that $E\left|Z_i\left(Y_i - X_i^{\top}\beta\right)\right| = 0$.

► For the more general model, the null hypothesis of correct model specification is

$$H_0$$
: There exists $\beta \in \mathbb{R}^k$ such that $E[g_i(\beta)] = 0$.

ightharpoonup H₀ is true if and only if

$$\min_{b} n \cdot \mathbf{E} \left[g_i \left(b \right) \right]^{\top} \Omega^{-1} \mathbf{E} \left[g_i \left(b \right) \right] = 0.$$

► We estimate $\min_{b} n \cdot \mathrm{E}\left[g_{i}\left(b\right)\right]^{\top} \Omega^{-1} \mathrm{E}\left[g_{i}\left(b\right)\right]$ by

$$\min_{b} n \cdot \overline{g}_{n}\left(b\right)^{\top} \widehat{\Omega}^{-1} \overline{g}_{n}\left(b\right).$$

and if it is large, we reject H_0 .

- ▶ The test statistic is just $J\left(\widehat{\beta}_{\mathrm{gmm}}\right)$. This is known as the J-statistic. The overidentification test is referred to as the Sargan test.
- ▶ Under H_0 , $J\left(\widehat{\beta}_{\mathrm{gmm}}\right) \to_d \chi^2_{l-k}$. We reject H_0 if $J\left(\widehat{\beta}_{\mathrm{gmm}}\right) > c_{1-\alpha}$ with $c_{1-\alpha}$ being the $1-\alpha$ quantile of the χ^2_{l-k} distribution: $F_{\chi^2_{l-k}}\left(c_{1-\alpha}\right) = 1-\alpha$.

Maximum likelihood

▶ Let $(X_1,...,X_n)$ be a random (i.i.d.) sample on a continuous with a density function $f(\cdot;\theta)$, $\theta \in \Theta \subseteq \mathbb{R}^k$. Let x_i be the observed value of X_i . Then we call

$$L(\theta; x_1, ..., x_n) = \prod_{i=1}^{n} f(x_i; \theta)$$

the likelihood function of θ given $(x_1,x_2,...,x_n)$, and we call the value of θ that maximizes $L\left(\theta;X_1,...,X_n\right)$ the maximum likelihood (ML) estimator.

► The log-likelihood function:

$$\ell\left(\theta; x_1, ..., x_n\right) = \sum_{i=1}^n \log f\left(x_i; \theta\right).$$

- ▶ The ML estimator: $\widehat{\theta}_{ml} = \operatorname{argmax}_{\theta \in \Theta} \ell(\theta; X_1, ..., X_n)$.
- ▶ The model $\{f(\cdot;\theta):\theta\in\Theta\}$ is correctly specified if there exists $\theta_*\in\Theta$ so that $f(\cdot;\theta_*)=f_X$, where f_X denotes the true density of X_i .

Kullback-Leibler divergence

► The Kullback–Leibler (KL) divergence from a density f to another density g:

$$\mathbb{D}_{\mathrm{kl}}\left(f\mid g\right) = \int \log\left(\frac{f\left(x\right)}{g\left(x\right)}\right) f\left(x\right) \mathrm{d}x.$$

- ▶ $\mathbb{D}_{kl}(f \mid g) \ge 0$ and $\mathbb{D}_{kl}(f \mid g) = 0$ if and only if f = g.
- ▶ Jensen's inequality: Let X be a random variable and h be a strictly concave function. That is,

$$h(\lambda a + (1 - \lambda) b) > \lambda h(a) + (1 - \lambda) h(b)$$

for any a < b and $0 < \lambda < 1$. Then $\mathrm{E}\left[h\left(X\right)\right] < h\left(\mathrm{E}\left[X\right]\right)$.

▶ If $f \neq g$,

$$\int \log \left(\frac{f(x)}{g(x)}\right) f(x) dx = -\int \log \left(\frac{g(x)}{f(x)}\right) f(x) dx$$
$$> -\log \left(\int g(x) dx\right) = 0.$$

▶ $\mathbb{D}_{\mathrm{kl}}\left(f_X\mid f\left(\cdot;\theta\right)\right)\geq 0$ and $\mathbb{D}_{\mathrm{kl}}\left(f_X\mid f\left(\cdot;\theta_*\right)\right)=0$. This is equivalent to

$$\begin{array}{ll} \theta_{*} & = & \operatorname*{argmin}_{\theta \in \Theta} \mathbb{D}_{\mathrm{kl}} \left(f_{X} \mid f\left(\cdot;\theta\right) \right) \\ & = & \operatorname*{argmax}_{\theta \in \Theta} - \int \log \left(\frac{f_{X}\left(x\right)}{f\left(x;\theta\right)} \right) f_{X}\left(x\right) \mathrm{d}x \\ & = & \operatorname*{argmax}_{\theta \in \Theta} \mathrm{E} \left[\log f\left(X;\theta\right) \right]. \end{array}$$

- ▶ A natural estimator from the perspective of KL divergence is given by $\underset{\theta \in \Theta}{\operatorname{argmax}}_{\theta \in \Theta} Q_n\left(\theta\right)$ with $Q_n\left(\theta\right) = n^{-1} \sum_{i=1}^n \log f\left(X_i;\theta\right)$, which is just the ML estimator.
- ▶ By LLN, we know that for each θ , $Q_n\left(\theta\right) \to_p Q\left(\theta\right)$ where $Q\left(\theta\right) = \mathrm{E}\left[\log f\left(X;\theta\right)\right]$. The ML estimator is defined to be the maximizer of $Q_n\left(\theta\right)$. We expect the maximizer should converge to the maximizer of its limit $Q\left(\theta\right)$ in probability.

Nonparametric likelihood

- ► The moment equation model is nonparametric in the sense that we do not fully specify the distribution of the observed variables.
- ▶ Rather than specifying a parametric model for X_i , we assume the variables follow a discrete distribution supported on the observations $X_1, ..., X_n$.
- ▶ The parameters corresponding to this "model" is $p_1,...,p_n$ with $(p_1,...,p_n)\in\Delta$, where

$$\Delta = \left\{ (p_1, ..., p_n) : \sum_{i=1}^n p_i = 1, \ p_i \ge 0, \ i = 1, ..., n \right\}.$$

► The nonparametric log-likelihood is

$$\ell(p_1, ..., p_n; X_1, ..., X_n) = \sum_{i=1}^n \log(n \cdot p_i), (p_1, ..., p_n) \in \Delta.$$

▶ The maximum of the above log-likelihood function is attained at $p_i = 1/n$, $\forall i$, which is the empirical distribution.

- ▶ Maximizing the nonparametric log-likelihood is equivalent to minimizing the KL divergence from the empirical distribution (1/n,...,1/n) to $(p_1,...,p_n)$: $\sum_{i=1}^n n^{-1} \log \left(n^{-1}/p_i\right)$.
- ► Consider the moment equation model:

$$E[g_i(\beta)] = \int g(w, \beta) f_W(w) dw = 0,$$

where f_W denotes the true density of W_i .

- ▶ The model imposes a restriction on f_W .
- ▶ The empirical likelihood method is a constrained nonparametric likelihood with the constraint $\sum_{i=1}^{n} p_i g_i(b) = 0$ imposed.

Empirical likelihood (EL)

► The EL criterion function:

$$\ell_{\text{el}}(b) \coloneqq \max_{p_1,...,p_n} 2 \sum_{i=1}^n \log (n \cdot p_i)$$
subject to
$$\sum_{i=1}^n p_i g_i(b) = 0, (p_1,...,p_n) \in \Delta.$$

- ▶ The EL estimator $\widehat{\beta}_{el}$ is the maximizer of $\ell_{el}(b)$.
- ▶ $\sqrt{n}\left(\widehat{\beta}_{\rm el} \beta\right) \rightarrow_d N\left(0, V_\beta\right)$, where V_β is the asymptotic variance of the efficient GMM (Qin and Lawless, 1994).
- ► The EL estimator is efficient and avoids estimating the optimal weighting matrix in the first step.

EL ratio inference

► The EL ratio statistic:

$$LR(\theta) = \max_{b} \ell_{el}(b) - \max_{r(b)=\theta} \ell_{el}(b).$$

Then, $LR\left(\theta\right) \rightarrow_{d} \chi_{q}^{2}$.

- Estimation of the asymptotic variance is not needed.
- ► The EL confidence set:

$$\widehat{C} = \left\{ \theta \in \mathbb{R}^q : LR\left(\theta\right) \le c_{1-\alpha} \right\}.$$

- ► The shape of the EL confidence set is data-driven.
- ► The EL method has many other favorable properties relative to efficient GMM. See Kitamura (2006) for a review.

Duality

- ► It seems that the high dimensionality of the parameter space makes the maximization problem infeasible in practice.
- ► Instead of directly solving it, we fix *b* first and use the Lagrange multiplier method to solve

$$\ell_{\mathrm{el}}(b) := \max_{p_1,...,p_n} 2 \sum_{i=1}^n \log (n \cdot p_i)$$
subject to
$$\sum_{i=1}^n p_i g_i(b) = 0, (p_1,...,p_n) \in \Delta.$$

► The Lagrangian associated with the constrained optimization problem is

$$\mathcal{L}(p_1, ..., p_n, \lambda) = \sum_{i=1}^{n} \log(p_i) + \gamma \left(1 - \sum_{i=1}^{n} p_i\right) - n \cdot \lambda^{\top} \sum_{i=1}^{n} p_i g_i(b),$$

where $\gamma \in \mathbb{R}$ and $\lambda \in \mathbb{R}^l$ are Lagrange multipliers.

► The first-order conditions:

$$0 = \frac{1}{p_i} - \gamma - n \left(\lambda^{\top} g_i(b) \right)$$
$$0 = 1 - \sum_{i=1}^{n} p_i$$
$$0 = n \sum_{i=1}^{n} p_i g_i(b).$$

▶ The first-order conditions are solved by $\gamma = n$ and $(p_1, ..., p_n, \lambda)$ are given by the solution to

$$p_{i} = \frac{1}{n(1 + \lambda^{\top} g_{i}(b))}$$
$$0 = \sum_{i=1}^{n} \frac{g_{i}(b)}{1 + \lambda^{\top} g_{i}(b)}.$$

► The l equations $0 = \sum_{i=1}^{n} g_i(b) / (1 + \lambda^{\top} g_i(b))$ are the first-order conditions of the convex minimization problem $\min_{\lambda} - \sum_{i=1}^{n} \log (1 + \lambda^{\top} g_i(b))$.

▶ The EL estimator is therefore

$$\widehat{\beta}_{\text{el}} = \underset{b}{\operatorname{argmax}} \min_{\lambda} - \sum_{i=1}^{n} \log \left(1 + \lambda^{\top} g_{i} \left(b \right) \right).$$

- ► For fixed b, $\min_{\lambda} \sum_{i=1}^{n} \log \left(1 + \lambda^{\top} g_{i}\left(b\right)\right)$ is a convex minimization problem, for which a simple Newton algorithm works.
- ▶ The maximization of $\min_{\lambda} \sum_{i=1}^{n} \log \left(1 + \lambda^{\top} g_i\left(b\right)\right)$ with respect to b is harder to solve. It is solved by a nonlinear optimization algorithm.

Implied probabilities

lacktriangle Once \widehat{eta}_{el} is calculated, we get the implied probabilities

$$\widehat{p}_i = \frac{1}{n\left(1 + \widehat{\lambda}^{\top} g_i\left(\widehat{\beta}_{el}\right)\right)},$$

where $\widehat{\lambda}$ is the solution of the equations

$$0 = \sum_{i=1}^{n} \frac{g_i\left(\widehat{\beta}_{el}\right)}{1 + \widehat{\lambda}^{\top} g_i\left(\widehat{\beta}_{el}\right)}.$$

- ▶ Suppose that we are interested in estimating $E[h(W_i)]$, where $h(\cdot)$ is a known function.
- ▶ $\sum_{i} \widehat{p}_{i} h\left(W_{i}\right)$ is an efficient estimator of $\operatorname{E}\left[h\left(W_{i}\right)\right]$ relative to the sample mean $n^{-1} \sum_{i} h\left(W_{i}\right)$ (Brown and Newey, 1998).
- $(\hat{p}_1,...,\hat{p}_n)$ is also a more efficient estimator than the empirical distribution, from which we do bootstrap resampling.

- lacktriangle We have a small dataset on $W_i=(Y_i,X_i),\ i=1,...,n,$ but X_i includes a rich set of variables so that the regression model is not suffering from the omitted variable bias.
- ▶ Suppose that M_i is the vector collecting a small subset of variables in W_i . We have another auxiliary dataset on M_i . Such a dataset has a very large sample size N.
- ▶ We can calculate the implied probabilities

$$\widehat{p}_i = \frac{1}{n\left(1 + \widehat{\lambda}^\top \left(M_i - \overline{M}\right)\right)}$$

where $\widehat{\lambda}$ is the solution of the equations

$$0 = \sum_{i=1}^{n} \frac{M_i - \overline{M}}{1 + \widehat{\lambda}^{\top} (M_i - \overline{M})},$$

where \overline{M} is the sample mean of M_i computed by using the auxiliary dataset.

► The reweighted estimator $\left(\sum_{i=1}^n \widehat{p}_i X_i X_i^\top\right)^{-1} \left(\sum_{i=1}^n \widehat{p}_i X_i Y_i\right)$ is more efficient than the OLS (Hellerstein and Imbens, 1999).

Cressie-Read divergence

- ► EL can be thought of as minimizing the KL divergence (distance) of the empirical distribution and the discrete distribution supported on the sample with a constraint.
- ▶ We can consider other distance. E.g., $\sum_{i=1}^n p_i \log\left(n^{-1}/p_i\right)$ (reverse KL divergence, exponential tilting, Kitamura and Stutzer, 1998) and $\sum_{i=1}^n \left(n \cdot p_i 1\right)^2$ (Euclidean distance, continuously-updated GMM/Euclidean likelihood).
- ► Cressie-Read divergence:

$$\frac{1}{\gamma(\gamma+1)} \sum_{i=1}^{n} \left[(n \cdot p_i)^{-\gamma} - 1 \right], \ \gamma \in \mathbb{R}.$$

Special cases: $\gamma=-2$, continuously-updated GMM; $\gamma=-1$, exponential tilting; $\gamma=0$, EL among many others.

► In the literature, various papers show that some method has certain advantages over other methods, from different perspectives.