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Instrumental Variables

Endogeneity

Consider a partitioned regression model:

Yi = X ′iβ + ei

= X ′1iβ1 +X
′
2iβ2 + ei, (1)

where X1i is a k1-vector and X2i is a k2-vector of random regressors, β1 is k1 × 1 and β2 is k2 × 1

vectors of unknown parameters, k1 + k2 = k. We assume that X1i is endogenous:

E (X1iei) 6= 0,

as opposed to (weakly) exogenous X2i’s:

E (X2iei) = 0.

(The assumption E (ei|X2i) = 0 is called strong exogeneity.) Sources of endogeneity:

• Omitted variables. Consider the wage equation:

logWagei = α+ βEducationi + γGenderi + δAbilityi + Vi

= α+ βEducationi + γGenderi + Ui.

Since ability is unobservable, it "goes" to the residuals Ui = δAbilityi + Vi. We can assume that
the gender variable is exogenous, however, education is correlated with the ability, and, therefore,
education is endogenous.

• Errors in variables. Suppose that the true model is

Yi = X̃
′
1iβ1 +X

′
2iβ2 + vi,

however, X̃1i is unobservable. Instead, the econometrician observes X1i = X̃1i + εi, where εi is
some noise vector independent of X̃1i and X2i. Substituting X̃1i into the above equation,

Yi =X
′
1iβ1 +X

′
2iβ2 − ε′iβ + vi.

Set ui = −ε′iβ1 + vi. While X2i is exogenous, X1i is endogenous, because it is correlated with
ui through εi.
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• Simultaneity. Consider the following equation

Hoursi = β1Childreni +X
′
2iβ2 + Ui,

where Hoursi is the hours of work per week, and Childreni is the number of children in the
family, and X2i is a vector of exogenous variables. While the number of children affects labor
supply, it is reasonable to assume that career decisions affect family size, i.e. there is another
equation determining the number of children in the family:

Childreni = γ1Hoursi +Z
′
1iγ2 + Vi,

where Z1i is another vector of exogenous variables. Substituting the expression for the hours
into the equation for the number of children, we obtain (assuming that 1− β1γ1 6= 0)

Childreni =X
′
2i

(
β2γ1

1− β1γ1

)
+Z ′1i

γ2

1− β1γ1
+

γ1
1− β1γ1

Ui +
1

1− β1γ1
Vi.

Assuming that X2i, Z1i and Vi are uncorrelated with Ui, we have that

E (UiChildreni) =
γ1

1− β1γ1
EU2

i

6= 0.

Properties of the OLS under endogeneity

Consider first the OLS estimator of β1:

β̂1n =
(
X ′1M2X1

)−1
X ′1M2Y

= β1 +
(
X ′1M2X1

)−1
X ′1M2e,

where M2 = In −X2 (X
′
2X2)

−1
X ′2. We have

n−1X ′1M2X1 = n−1
n∑

i=1

X1iX
′
1i − n−1

n∑
i=1

X1iX
′
2i

(
n−1

n∑
i=1

X2iX
′
2i

)−1
n−1

n∑
i=1

X2iX
′
1i,

n−1X ′1M2e = n−1
n∑

i=1

X1iei − n−1
n∑

i=1

X1iX
′
2i

(
n−1

n∑
i=1

X2iX
′
2i

)−1
n−1

n∑
i=1

X2iei.

Assume that:

• {(Yi,Xi) : i ≥ 1} are iid.

• EX2
i,j <∞ for all j = 1, . . . k.

• EXiX
′
i positive definite.

• Ee2i <∞.
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By the WLLN we have

n−1
n∑

i=1

X1iX
′
1i →p EX1iX

′
1i,

n−1
n∑

i=1

X1iX
′
2i →p EX1iX

′
2i,

n−1
n∑

i=1

X2iX
′
2i →p EX2iX

′
2i,

n−1
n∑

i=1

X2iei →p 0,

n−1
n∑

i=1

X1iei →p EX1iei.

Thus,

n−1X ′1M2X1 →p EX1iX
′
1i − EX1iX

′
2i

(
EX2iX

′
2i

)−1 EX2iX
′
1i,

n−1X ′1M2e →p EX1iei − EX1iX
′
2i

(
EX2iX

′
2i

)−1 EX2iei

= EX1iei

6= 0,

and we conclude that β̂1n is inconsistent:

β̂1n →p β1 +
(
EX1iX

′
1i − EX1iX

′
2i

(
EX2iX

′
2i

)−1 EX2iX
′
1i

)−1
EX1iei

6= β1.

Inconsistency of the OLS estimator of β2 can be shown similarly. We have

β̂2n = β2 +
(
X ′2M1X2

)−1
X ′2M1e,

where M1 = In −X1 (X
′
1X1)

−1
X ′1. We have

β̂2n →p β2 −
(
EX2iX

′
2i − EX2iX

′
1i

(
EX1iX

′
1i

)−1 EX1iX
′
2i

)−1
EX2iX

′
1i

(
EX1iX

′
1i

)−1 EX1iei

6= β2.

Instrumental Variables estimation

Let Z1i be a k1-vector of exogenous variables:

EZ1iei = 0.

3



It is important that Z1i is excluded from the model (1), i.e. Z1i does not contain any of the elements
of X2i. Define

Xi =

(
X1i

X2i

)
,

Zi =

(
Z1i

X2i

)
.

Here, Xi is the k-vector of regressors, and Zi is the k-vector of Instrumental Variables (IVs). Note
that the exogenous regressors appear again in the vector of IVs, and for each endogenous regressor we
bring an exogenous variable (IV) that must be excluded from the model Yi = X ′iβ + ei. When all
regressors are endogenous, k1 = k and we do not have any overlapping elements between Xi and Zi.

We assume that the IVs are informative about the regressors. This is expressed as the following
rank condition:

rank
(
EZiX

′
i

)
= k. (2)

The rank condition in (2) will fail if, for example, EZ1iX
′
i = 0 (Z1i is exogenous but random noise).

The rank condition will also fail if some of the elements of Z1i are linear combinations of the elements
of the included exogenous regressors X2i.

Example. Consider the Hours/Children example. Angrist and Evans (1998) suggested to use the sex
composition of the first two children as an instrument to the number of children in the family (the
sample was restricted to women with at least two children). This is motivated by the observation that
if the first two children are of the same sex (boy-boy or girl-girl), the family is more likely to have
a third child than in the case (boy-girl or girl-boy). Consequently, the dummy variable for the first
two children are of the same sex has to be positively correlated with the total number of children. On
the other hand, the instrument is uncorrelated with the errors, because sex composition is determined
randomly.

We have that
EZiei = 0.

The method of moments principle suggests an estimator that solves the following system of k equations:

n−1
n∑

i=1

Zi

(
Yi −X ′iβ̂

IV

n

)
= 0, or

β̂
IV

n =

(
n∑

i=1

ZiX
′
i

)−1 n∑
i=1

ZiYi

=
(
Z ′X

)−1
Z ′Y .

The estimator β̂
IV

n is called the IV estimator of β.
Next, we show consistency and asymptotic normality of the IV estimator. We assume:

• {(Yi,Xi,Zi) : i ≥ 1} are iid.

• EZiei = 0.
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• EX2
i,j <∞ for all j = 1, . . . k.

• EZ2
i,j <∞ for all j = 1, . . . k1.

• EZiX
′
i is of rank k.

• Ee2iZiZ
′
i is positive definite.

Write

β̂
IV

n = β +

(
n−1

n∑
i=1

ZiX
′
i

)−1
n−1

n∑
i=1

Ziei. (3)

Note that, under the above assumptions, by the Cauchy-Shwartz inequality

E |Zi,rXi,s| ≤
√

EZ2
i,rEX2

i,s

< ∞ for all r, s = 1, . . . k.

Therefore, by the Continuous Mapping Theorem,

β̂
IV

n →p β +
(
EZiX

′
i

)−1 EZiei

= β.

In order to show the asymptotic normality, we assume in addition that

• EZ4
i,j <∞ for all j = 1, . . . k.

• Ee4i <∞.

Write (3) as

n1/2
(
β̂
IV

n − β
)
=

(
n−1

n∑
i=1

ZiX
′
i

)−1
n−1/2

n∑
i=1

Ziei.

For all r, s = 1, . . . , k,

E
∣∣e2iZi,rZi,s

∣∣ ≤ (
Ee4i
)1/2 (EZ4

i,rEZ4
i,s

)1/4
< ∞.

Therefore, by the CLT and Slutsky’s Theorem,

n1/2
(
β̂
IV

n − β
)
→d

(
EZiX

′
i

)−1
N
(
0,
(
Ee2iZiZ

′
i

))
= N

(
0,
(
EZiX

′
i

)−1 (Ee2iZiZ
′
i

) (
EZiX

′
i

)−1)
.

The asymptotic covariance matrix takes the sandwich form and can be estimated consistently by(
n−1

n∑
i=1

ZiX
′
i

)−1
n−1

n∑
i=1

ê2iZiZ
′
i

(
n−1

n∑
i=1

XiZ
′
i

)−1
,

where êi = Yi −X ′iβ̂
IV

n .
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Two-stage Least Squares (2SLS)

Define

X̃ = Z
(
Z ′Z

)−1
Z ′X

= PZX,

the orthogonal projection of the matrix of regressors X onto the space spanned by the instruments Z.
Since PZ is idempotent, we can write

β̂
2SLS

n =
(
X̃
′
X̃
)−1

X̃
′
Y .

Thus, β̂n can be obtained using the two-step procedure. First, regress X against instruments, and
obtain the fitted values X̃. The first step removes from Xi the correlation with the error ei. In the
second step, one should run the regression of Y against the fitted values X̃. Easy to check:

β̂
2SLS

n =

 n∑
i=1

XiZ
′
i

(
n∑

i=1

ZiZ
′
i

)−1 n∑
i=1

ZiX
′
i

−1 n∑
i=1

XiZ
′
i

(
n∑

i=1

ZiZ
′
i

)−1 n∑
i=1

ZiYi

=
(
X ′Z

(
Z ′Z

)−1
Z ′X

)−1
X ′Z

(
Z ′Z

)−1
Z ′Y .

We have that
n1/2

(
β̂
2SLS

n − β
)
→d N

(
0, σ2

(
EXiZ

′
i

(
EZiZ

′
i

)−1 EZiX
′
i

)−1)
,

under homoskedasticity E
(
e2i |Zi

)
= σ2.
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