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I This class: Chernozhukov, V., Hansen, C., 2004. The effects
of 401(k) participation on the wealth distribution: An
instrumental quantile regression analysis. Review of Economics
and Statistics (CH04)

I Matlab code for IVQR:
https://voices.uchicago.edu/christianhansen/code-and-data/
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CH04 Background

I In the early 1980s, the United States introduced several
tax-deferred savings options in an effort to increase individual
saving for retirement.

I The two options which have generated the most interest are
individual retirement accounts (IRAs) and 401(k) plans.

I Tax-deferred IRAs and 401(k) plans are similar in that both
allow the individual to deduct contributions from taxable
income and allow tax-free accrual of interest on assets held
within the plan.

I The key differences between the two savings options are that
employers provide 401(k) plans, and employers may also match
a certain percentage of an employee’s contribution.

I Because 401(k) plans are provided by employers, only workers
in firms offering plans are eligible for participation, whereas
participation in IRAs is open to everyone.
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CH04 Research Question

I Objective: estimate the causal effect of participation in 401(k)
on savings/financial assets/wealth.

I Main issue: “preference for savings” is unobserved.
I Individuals with the highest unobserved preference for saving

would be most likely to choose to participate in tax-advantaged
retirement savings plans and would also have higher savings in
other assets than individuals with lower preference.

I Conventional estimates that do not allow for saver
heterogeneity and selection of the participation state will be
biased-upward, tending to overstate the actual savings effects
of 401(k) and IRA participation.
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Addressing the Endogeneity Issue

I They argue that 401(k) eligibility can be taken as exogenous
given income. The argument is motivated by the fact that
eligibility is determined by the employer, and so may be taken
as exogenous conditional on covariates.

I CH04 present IV regression results. Note that the standard
linear IV model assumes homogeneous effects.

I The IVQR model (Chernozhukov and Hansen, 2005) allows for
heterogenous treatment effects.

I The quantile treatment effects (QTE) are identified in the
IVQR model.

I QTE provides insight into difference between distributions of
potential outcomes under different treatment status, other
than mean difference.
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Quantile Methods in Economics

I The oldest quantile method, median regression, was
introduced by Boscovitch in 1760. It is believed to have a even
longer history than the OLS (Gauss, 1795).

I The quantile regression, which generalized median regression,
was introduced to economics by the influential work Koenker
and Bassett (1978).

I Quantile methods gained popularity among applied
econometricians since 1990’s.
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Unconditional Quantiles
I A continuous random variable Y , its cumulative distribution

function (CDF): FY (y) = Pr [Y ≤ y].
I The quantile of Y (QY (τ), τ ∈ (0, 1)) is just the generalized

inverse of its CDF: QY (τ) = inf {y : FY (y) ≥ τ} (if FY is
strictly increasing, the right hand side can be simplified to the
usual inverse: QY (τ) = F−1

Y (τ)). τ = 1/2: the median.
I Define the “check function”:

ρτ (u) =

{
τ · u if u ≥ 0

− (1− τ) · u if u < 0.

Then, QY (τ) solves the minimization problem :

E [ρτ (Y − r)] ≥ E [ρτ (Y −QY (τ))] , ∀r.

I An estimator (sample quantile) of QY (τ) is the minimizer of∑n
i=1 ρτ (Yi − r) with respect to r.
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Conditional Quantiles

I We similarly define the conditional quantiles. Dependent
variable Y , possibly multi-dimensional independent variables
X ∈ Rk and their conditional CDF FY |X (y | x).

I The conditional quantile of Y (QY |X (τ | x), τ ∈ (0, 1)) is

QY |X (τ | x) = inf
{
y : FY |X (y|x) ≥ τ

}
.

I QY |X (τ | X) solves:

E [ρτ (Y − r (X))] ≥ E
[
ρτ
(
Y −QY |X (τ | X)

)]
, ∀r (·) .

I Suppose that QY |X (τ | X) is a linear function of X:
QY |X (τ | X) = X>βτ . Then it must hold that:

E
[
ρτ

(
Y −X>b

)]
≥ E

[
ρτ

(
Y −X>βτ

)]
, ∀b.
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Quantile Regression
I Under the linear model QY |X (τ | X) = X>βτ , the quantile

regression estimator β̂τ is defined to be the minimizer of∑n
i=1 ρτ

(
Yi −X>i b

)
with respect to b.

I Note that the objective function of this minimization problem
is not differentiable (and also multi-dimensional) and so
commonly used algorithms (e.g., Newton-Raphson) can not be
applied.

I We formulate it as a linear programming problem and solve it
by the simplex method:

min
(b,u,v)∈Rk×R2n

+

τ · ι>u+ (1− τ) · ι>v s.t. Xb+ u− v = Y,

where ι = (1, ..., 1)> ∈ Rn, X = (X1, ..., Xn)> ∈ Rn×k and
Y = (Y1, ..., Yn)> ∈ Rn.

I Simplex method works only when n is relatively small. Use
interior point method when n is very large.
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Motivation for QR
I Angrist and Pischke (Chapter 7)
I The motivation for the use of QR to look at the wage

distribution comes from labor economists’ interest in the
question of how inequality varies conditional on covariates like
education and experience.

I Table 7.1.1 reports schooling coefficients from QRs estimated
using the 1980, 1990, and 2000 censuses.

I The models used to construct these estimates control for race
and a quadratic function of potential labor market experience.

I In contrast to the simple pattern in 1980 and 1990 census
data, QR estimates from the 2000 census differ markedly
across quantiles.

I By 2000, inequality began to increase with education as well:
a pattern of increasing schooling coefficients across quantities
means the wage distribution spreads out as education
increases.
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Motivation for QR
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Asymptotic Properties of QR

I Consistency: β̂τ →p βτ .

I Asymptotic normality:
√
n
(
β̂τ − βτ

)
→d N

(
0,H−1VH−1

)
,

V = τ (1− τ) E
[
XX>

]
and

H = E
[
fY |X

(
X>βτ | X

)
XX>

]
.

I A consistent estimator of H (Powell, 1984):

Ĥ =
1

n

n∑
i=1

1

h
K

(
Yi −X>i β̂τ

h

)
XiX

>
i .

Notice that a user-specified bandwidth h is required.
I Alternatively, bootstrap percentile confidence intervals for βτ .
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IVQR Model
I The IVQR model is developed within the potential outcome

framework. Potential continuous outcomes, which vary among
units, are indexed against (possibly more than 2) potential
treatment states d ∈ D and denoted Yd.

I The potential outcomes {Yd}d∈D are latent. Given the
observed treatment D, the observed outcome is Y = YD.

I The objective is to learn about features of the distributions of
potential outcomes {Yd}d∈D. Of primary interest are the τ−th
quantiles of potential outcomes, conditional on X = x:
QYd|X (τ | x), τ ∈ (0, 1).

I Assume: Yd = q (Ud, d,X), where q (·, d, x) is strictly
increasing and Ud ∼ U (0, 1). Then, ∀τ ∈ (0, 1),

Pr [Yd ≤ q (τ, d, x) | X = x] = τ =⇒ QYd|X (τ | x) = q (τ, d, x) .

I Quantile treatment effect (QTE, impact of D on quantiles of
potential outcomes):

q (τ, d1, x)− q (τ, d0, x) = QY1|X (τ | x)−QY0|X (τ | x) .
13 / 35



I D is dependent on {Ud}d∈D, inducing endogeneity.
I QY |D,X (τ | d, x) is generally not equal to QYd|X (τ | x).
I The structural errors {Ud}d∈D are responsible for heterogeneity

of potential outcomes Yd = q (Ud, d,X) and individual
treatment effects Yd1 − Yd0 = q (Ud1 , d1, X)− q (Ud0 , d0, X)
among individuals with the same observed characteristics X.

I This error term determines the relative ranking of
observationally equivalent individuals in the distribution of
potential outcomes given the individuals’ observed
characteristics, and thus we refer to {Ud}d∈D as the rank
variables.

I One may think of {Ud}d∈D as representing some unobserved
characteristics.
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Assumptions and Implications
1. Yd = q (Ud, d,X), where q (·, d, x) is strictly increasing and

left continuous and Ud ∼ Uniform (0, 1)

2. Conditional on X and ∀d ∈ D, Ud is independent of the
instrumental variables Z.

3. D = δ (Z,X, V ) for some unknown function δ and random
error V .

4. Rank similarity: conditional on (X,Z, V ), {Ud}d∈D are
identically distributed.

Under these assumptions, the main implication is:

Pr [Y ≤ q (τ,D,X) | X,Z] = τ, ∀τ ∈ (0, 1) .

I We do not require that the instruments Z are independent of
the error V in the selection equation.

I V may depend on {Ud}d∈D and include other unobserved
variables that affect treatment status.
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Nonparametric Identification
I For fixed τ , the identification problem is whether or not
q (τ, ·, ·) is the only function that satisfies the restriction
Pr [Y ≤ q (τ,D,X) | X,Z] = τ .

I Assume no covariate, D ∈ {0, 1} and Z ∈ {0, 1}. q (τ, ·) can
be represented by a vector (q (0) , q (1)) and
q (τ,D) = D · q (1) + (1−D) · q (0).

I We know Pr [Y ≤ D · q (1) + (1−D) · q (0) | Z = z] = τ , for
z ∈ {0, 1}.

I Define

Π0 (y0, y1) = Pr [Y ≤ D · y1 + (1−D) · y0 | Z = 0]− τ .

Π1 (y0, y1) = Pr [Y ≤ D · y1 + (1−D) · y0 | Z = 1]− τ .

Π (y0, y1) =

[
Π0 (y0, y1)
Π1 (y0, y1)

]
.

I The identification problem is whether or not
Π (y0, y1) = (0, 0)> has a unique solution (at (q (0) , q (1))).

16 / 35



I The Jacobian matrix:

J (y0, y1) =

[
∂Π0(y0,y1)

∂y0

∂Π0(y0,y1)
∂y1

∂Π1(y0,y1)
∂y0

∂Π1(y0,y1)
∂y1

]

=

[
fY |D,Z (y0 | 0, 0) p00 fY |D,Z (y1 | 1, 0) p10

fY |D,Z (y0 | 0, 1) p01 fY |D,Z (y1 | 1, 1) p11

]
,

where pdz = Pr [D = d | Z = z].
I A necessary condition for identification is that J (q (0) , q (1))

has full rank (det (J (q (0) , q (1))) 6= 0).
I See Chernozhukov and Hansen (2005) for sufficient conditions

for nonparametric identification in the general IVQR model.
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Model Assumptions in CH04
I An empirical model of savings decisions may be embedded in

this framework.
I The wealth Yd in the participation status d ∈ {0, 1} is

generated by Yd = q (d,X,Ud), where Ud ∼ Uniform (0, 1) is
understood as the rank in the preference-for-savings
distribution.

I The individual selects the 401(k) participation status to
maximize the expected utility:

D = argmax
d∈{0,1}

E [Wd (Yd) | X,Z, V ]

= argmax
d∈{0,1}

E [Wd (q (d,X,Ud)) | X,Z, V ] ,

where Wd is the (random) utility function that may depend on
random variables that are unobserved to the individual, in
status d, V is an information component that is observed to
the individual but unobserved to the researcher.

I V may depend on {U0, U1} and include other unobserved
variables. 18 / 35



Discussion on Rank Similarity
I A stronger assumption is “rank invariance”: U0 = U1 = U . In

this case, individuals’ preference for savings does not change in
different states.

I This assumption is implausible in the current context.
Employers’ match rates vary in the participation status. U1

seems to be random conditionally on U0.
I The rank similarity condition relaxes the exact invariance of

ranks by allowing noisy, unsystematic variations of Ud across
d ∈ {0, 1}, conditionally on (V,X,Z).

I This relaxation allows for variation in the ranks across the
treatment states, requiring only a “rank invariance in
expectation”.

I It states that given the information in (V,X,Z) employed to
make the selection of treatment D, the expectations of any
function of the rank Ud does not vary across the treatment
states.
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I Though we feel that similarity may be a reasonable assumption
in many contexts, imposing similarity is not innocuous.

I In the context of 401(k) participation, matching practices of
employers could jeopardize the validity of the similarity
assumption.

I Individuals in firms with high match rates may be expected to
have a higher rank in the asset distribution than workers in
firms with less generous match rates.

I The distribution of Ud may be different across the treatment
state, since in the participation state, one more variable
(match rate) affects U1.

I Similarity may still hold in the presence of the employer match
if the rank U1 is insensitive to the match rate.

I CH04 uses another empirical model (Abadie, Angrist and
Imbens, 2002) that does not assume rank similarity for
robustness check.
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Estimation and Inference

I We focus on linear-in-parameters structural quantile models at
a single quantile of interest τ :

q (τ, d, x) = d>α0 (τ) + x>β0 (τ) .

I α0 (τ) captures the causal effect of the endogenous variables
D on the τ -th quantile of the conditional distribution of
potential outcomes Yd given X = x.
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Generalized Methods of Moments
I Unconditional moment conditions:

E
[(
τ − 1

(
Y −D>α0 −X>β0 ≤ 0

))
Ψ
]

= 0

where Ψ = Ψ (X,Z) is a vector of functions of the
instruments and endogenous variables (e.g., Ψ =

(
X>, Z>

)>).
I For θ = (α, β), V = (Y,D,X,Z) and
gτ (V, θ) =

(
τ − 1

(
Y −D>α−X>β ≤ 0

))
Ψ

I one may then form the sample analog of the right-hand-side of
the equation

ĝ (θ) =
1

n

n∑
i=1

gτ (Vi, θ)

and estimate θ0 = (α0, β0) by GMM:

θ̂ =
(
α̂, β̂

)
= argmin

θ
ĝ (θ)> Ω̂ĝ (θ) ,

where Ω̂ is the GMM weighting matrix:
Ω̂ =

(
τ (1− τ)n−1

∑n
i=1 ΨiΨ

>
i

)−1.
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Quasi-Bayesian Approach
I The chief difficulty in implementing standard GMM estimation

is that the objective function being minimized is non-smooth
and non-convex.

I One option is to take the quasi-Bayesian approach of
Chernozhukov and Hong (2003).

I The quasi-likelihood: LN (θ) = exp
(
−n · ĝ (θ)> Ω̂ĝ (θ) /2

)
,

when coupled with a prior density π (θ) over model parameters
θ, defines a “posterior” density:

πN (θ) =
LN (θ)π (θ)∫
LN (θ)π (θ) dθ

.

I The quasi posterior mean θ̂ =
∫
θπN (θ) dθ is consistent for

model parameters with the same asymptotic distribution as the
standard GMM estimator.

I Chernozhukov and Hong (2003) also demonstrate that
confidence intervals may be obtained by taking quasi-posterior
quantiles.
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Inverse Quantile Regression
I Chernozhukov and Hansen (2006, 2008).
I The method is based on:

Pr
[
Y ≤

(
D>α0 +X>β0

)
| X,Z

]
= τ

=⇒QY−D>α0
(τ | X,Z) = X>β0 + Z>γ0 with γ0 = 0.

I For any hypothesized value a for α0, estimate coefficients
β (a) and γ (a) from the model

QY−D>a (τ | X,Z) = X>β (a) + Z>γ (a)

by running ordinary linear QR of QY−D>a onto X and Z.
Note that this can be solved by linear programming.

I Let β̂ (a) and γ̂ (a) denote the resulting estimators. Let Ω̂ (a)
denote the estimated asymptotic covariance matrix of√
n (γ̂ (a)− γ (a)).
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I The IQR estimator of α0:

α̂ = argmin
a

γ̂ (a)> Ω̂−1γ̂ (a) .

Note that a is very often low-dimensional, in empirical
applications.
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Unconditional QTE

I Unconditional QTE can be obtained from the conditional
quantile functions in three steps.

I Step 1:

FYd (y | x) =

∫ 1

0
1
(
d>α0 (τ) + x>β0 (τ) ≤ y

)
dτ.

I Step 2:

FYd (y) =

∫
FYd (y | x) dFX (x) .

I Step 3:

Unconditional τ −QTE = F−1
Yd1

(τ)− F−1
Yd0

(τ) .
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Extreme Quantiles

I Suppose D is one-dimensional D ∈ R. Consider the case where
we are interested in α0 (τ) for very small τ . The coefficient of
interest is an extreme quantile (τ is close to zero or one).

I Estimation of extreme quantiles is of interest in many
empirical settings, e.g., in the study of the determinants of
birthweight, where much interest is given to very low quantiles
of birthweight.

I One may estimate α0 (τ) by the standard methods. The
resulting estimator usually suffers from low precision due to
sparsity near extreme quantiles.
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(Extreme) Quantile Extrapolation
I A very simple and easy-to-implement approach due to Firpo,

Galvao, Pinto, Poirier and Sanroman (2021).
I We can postulate a flexible parametric model:
α0 (τ) =

∑J
j=1 θjτ

j ((θ1, ..., θJ) ∈ RJ).
I θ can be estimated using a large number of quantiles further

from zero, resulting in increased precision compared to
standard IVQR.

I These benefits occur under correct specification of
α0 (τ) =

∑J
j=1 θjτ

j .
I Choose a grid: τ1 < τ2 < · · · < τL (L > J) where τ1, τL are

far away from 0 and 1. Take any IVQR estimator α̂0 (τ).
I Solve:(

θ̂1, ..., θ̂J

)
= argmin

θ1,...,θJ

L∑
l=1

α̂0 (τl)−
J∑
j=1

θjτ
j
l

2

.

For τ0 that is very close to 0 or 1, use
∑J

j=1 θ̂jτ
j
0 and

bootstrap the standard errors.
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CH04 Data
I 9915 households from from wave 4 of the 1990 Survey of

Income and Program Participation (SIPP).
I These data include a variable for whether a person works for a

firm that offers a 401(k) plan. Households in which a member
works for such a firm are classified as eligible for a 401(k).

I Households with a positive 401(k) balance are classified as
participants, and eligible households with a zero balance are
considered nonparticipants.

I CH04 focuses on total wealth, net financial assets, and net
non-401(k) financial assets.

I Total wealth is net financial assets plus housing equity and the
value of business, property, and motor vehicle.

I Covariates: age, income, family size, education, marital status,
two-earner status, defined benefit (DB) pension status, IRA
participation status, and homeownership status.
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OLS and 2SLS

I In the full sample, the 2SLS estimates are uniformly smaller
than the OLS estimates, confirming the intuition that the OLS
estimates should be upward biased.

I The magnitude of effects on wealth and financial assets are
similar, though slightly larger for net financial assets,
suggesting little substitution between 401(k) assets and other
forms of wealth. On the other hand, 401(k) participation has
relatively little effect on net non-401(k) financial assets.

I These results suggest that the majority of the increase in net
financial assets may be attributed to new saving due to 401
(k) plans and not to substitution from other forms of wealth.
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QR and IVQR

I Another interesting feature of the results is that the effect of
participation on net financial assets is highly nonconstant,
appearing to increase monotonically in the quantile index.

I This result suggests that, conditional on income and other
observables, people who rank higher in the conditional wealth
distribution are affected far more than those ranking lower in
the conditional distribution. In addition, the effect is strongly
positive across the entire distribution.

I In particular, if people were simply substituting financial assets
held in 401(k)s for other forms of financial assets, the effect of
401(k) participation on net financial assets would be zero. 31 / 35



I These findings suggest that the increase in net financial assets
observed in the lower tail of the conditional assets distribution
can be interpreted as an increase in wealth, while the increase
in the upper tail of the distribution is being mitigated by
substitution with some other (nonfinancial) component of
wealth.
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Tests on IVQR Process

I The tests strongly reject the hypothesis that the effect of
401(k) participation on net financial assets is constant and
confirm that it is significantly different from 0.

I The hypothesis of exogeneity of treatment is rejected for net
financial assets.

I The tests fail to reject both the hypothesis of a constant
treatment effect and the hypothesis of exogeneity for total
wealth and net non-401(k) financial asset. 33 / 35



CH04 Conclusion

I The results suggest that there is substitution between assets
held in 401(k)s and other components of wealth in the upper
tail of the wealth distribution, but that most financial assets
held in 401(k)s in the lower tail of the distribution represent
new savings.

I This has important policy implications, as people in the low
tail of the net financial asset distribution are also likely to be
the people with the lowest retirement savings.
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Abadie, Angrist and Imbens (2002) Model

I Binary D and binary Z.
I Model assumptions: Y = q (D,X,U) (unrestricted, U can be

of any dimension) but D = 1 (V ≤ δ (Z,X)) (unobserved error
in the selection equation is scalar). Assume δ (1, x) > δ (0, x).

I Dxz = 1 (V ≤ δ (z, x)). The “complier group” (with X = x):
Dx1 = 1, Dx0 = 0 (Dx1 > Dx0).

I QYd|X,Dx1>Dx0
(τ | x,Dx1 > Dx0) =

F−1
Yd|X,Dx1>Dx0

(τ | x,Dx1 > Dx0) is identified.

I QTE for the complier group is identified and can be estimated
by reweighted QR.

I Drop the rank similarity assumption, but the cost is that only
QTE corresponding to a sub-population is identifiable.

I The AAI model and the CH model are complementary and
non-nested.
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