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Algebra of Least Squares

Geometry of least squares

Recall that out data is like a table [Y X] where Y collects n observations on the dependent variable
and X collects n observations on the k-dimensional independent variable:

X =


X

′
1

X ′2
...
X ′n

 =


X1,1 X1,2 · · · X1,k

X2,1 X2,2 · · · X2,k

...
...

. . .
...

Xn,1 Xn,k · · · Xn,k


n×k

and Y =


Y1

Y2
...
Yn


n×1

.

We can think of Y and the columns of X as members of the n-dimensional Euclidean space Rn.
One can define a subspace of Rn called the column space of a n × k matrix X, that is a collection of
all vectors in Rn that can be written as linear combinations of the columns of X:

S(X) =
{
z ∈ Rn : z =Xb, b = (b1, b2, . . . , bk)

′ ∈ Rk
}
.

For two vectors a, b in Rn, the distance between a and b is given by the Euclidean norm1 of their
difference ‖a− b‖ =

√
(a− b)′ (a− b). Thus, the least squares problem, minimization of the sum-

of-squared errors (Y −Xb)′ (Y −Xb) , is to find, out of all elements of S(X), the one closest to
Y :

min
y∈S(X)

‖Y − y‖2 .

The closest point is found by "dropping a perpendicular". That is, a solution to the least squares
problem, Ŷ =Xβ̂ must be chosen so that the residual vector ê = Y −Ŷ is orthogonal (perpendicular)
to each column of X:

ê′X = 0.

As a result, ê is orthogonal to every element of S(X). Indeed, if z ∈ S(X), then there exists b ∈ Rk

such that z =Xb, and

ê′z = ê′Xb

= 0.

The collection of the elements of Rn orthogonal to S(X) is called the orthogonal complement of
S(X):

S⊥(X) =
{
z ∈ Rn : z′X = 0

}
.

Every element of S⊥(X) is orthogonal to every element in S(X).

1For a vector x = (x1, x2, . . . , xn)
′ , its Euclidean norm is defined as ‖x‖ =

√
x′x =

√∑n
i=1 x

2
i .

1



The solution to the least squares problem is given by

Ŷ =Xβ̂

=X
(
X ′X

)−1
X ′Y

= PXY ,

where
PX =X

(
X ′X

)−1
X ′

is called the orthogonal projection matrix. For any vector z ∈ Rn,

PXz ∈ S(X).

Furthermore, the residual vector will be in S⊥(X):

z − PXz ∈ S⊥(X). (1)

To show (1), first note, that, since the columns of X are in S(X),

PXX =X
(
X ′X

)−1
X ′X

=X,

and, since PX is a symmetric matrix,
X ′PX =X ′.

Now,

X ′ (z − PXz) =X
′z −X ′PXz

=X ′z −X ′z

= 0.

Thus, by the definition, the residuals z−PXz belongs to S⊥(X). The residuals can be written as

ê = Y − PXY

= (In − PX)Y

=MXY ,

where

MX = In − PX

= In −X
(
X ′X

)−1
X ′,

is a projection matrix onto S⊥(X).

The projection matrices PX and MX have the following properties:
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• PX +MX = In. This implies, that for any z ∈ Rn,

z = PXz +MXz.

• Symmetric:

P ′X = PX ,

M ′
X =MX .

• Idempotent: PXPX = PX , and MXMX =MX .

PXPX =X
(
X ′X

)−1
X ′X

(
X ′X

)−1
X ′

=X
(
X ′X

)−1
X ′

= PX

MXMX = (In − PX) (In − PX)

= In − 2PX + PXPX

= In − PX

=MX .

• Orthogonal:

PXMX = PX (In − PX)

= PX − PXPX

= PX − PX

= 0.

This property implies that MXX = 0:

MXX = (In − PX)X

=X − PXX

=X −X

= 0.

Note that, in the above discussion, none of “statistical assumptions” (such as E (ei|Xi) = 0) have been
used. Given data, Y and X, one can always perform least squares, regardless of what data generating
process stands behind the data. However, one needs a model to discuss the statistical properties of an
estimator (such as unbiasedness and etc).
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Partitioned regression

We can partition the matrix of regressors X as follows:

X = [X1 X2] ,

and write the model as
Y =X1β1 +X2β2 + e,

where X1 is a n× k1 matrix, X2 is n× k2, k1 + k2 = k, and

β =

(
β1

β2

)
,

where β1 and β2 are k1 and k2-vectors respectively. Such a decomposition allows one to focus on a
group of variables and their corresponding parameters, say X1 and β1. If

β̂ =

(
β̂1

β̂2

)
,

then one can write the following version of the normal equations (first-order conditions of the least
square): (

X ′X
)
β̂ =X ′Y

as (
X ′1X1 X ′1X2

X ′2X1 X ′2X2

)(
β̂1

β̂2

)
=

(
X ′1Y

X ′2Y

)
.

One can obtain the expressions for β̂1 and β̂2 by inverting the partitioned matrix on the left-hand side
of the equation above.

Alternatively, let’s define M2 to be the projection matrix on the space orthogonal to the space
S (X2):

M2 = In −X2

(
X ′2X2

)−1
X ′2.

Then,
β̂1 =

(
X ′1M2X1

)−1
X ′1M2Y . (2)

In order to show that, first write
Y =X1β̂1 +X2β̂2 + ê. (3)

Note that by the construction,

M2ê = ê (ê is orthogonal to X2),

M2X2 = 0,

X ′1ê = 0,

X ′2ê = 0.
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Substitute equation (3) into the right-hand side of equation (2):

(
X ′1M2X1

)−1
X ′1M2Y

=
(
X ′1M2X1

)−1
X ′1M2

(
X1β̂1 +X2β̂2 + ê

)
=
(
X ′1M2X1

)−1
X ′1M2X1β̂1

+
(
X ′1M2X1

)−1
X ′1ê (M2X2 = 0 and M2ê = ê)

= β̂1.

Since M2 is symmetric and idempotent, one can write

β̂1 =
(
(M2X1)

′ (M2X1)
)−1

(M2X1)
′ (M2Y )

=
(
X̃
′
1X̃1

)−1
X̃
′
1Ỹ ,

where

X̃1 =M2X1

=X1 −X2

(
X ′2X2

)−1
X ′2X1 residuals from the regression of columns of X1 on X2,

Ỹ =M2Y

= Y −X2

(
X ′2X2

)−1
X ′2Y residuals from the regression of Y on X2.

Thus, to obtain coefficients for the first k1 regressors, instead of running the full regression with
k1 + k2 regressors, one can regress Y on X2 to obtain the residuals Ỹ , regress X1 on X2 to obtain
the residuals X̃1, and then regress Ỹ on X̃1 to obtain β̂1. In other words, β̂1 shows the effect of X1

after controlling for X2.

Similarly to β̂1, one can write:

β̂2 =
(
X ′2M1X2

)−1
X ′2M1Y , where

M1 = In −X1

(
X ′1X1

)−1
X ′1.

For example, consider a simple regression

Yi = β1 + β2Xi + ei,

for i = 1, . . . , n.

Let’s define a n-vector of ones:

1 =


1

1
...
1


n×1

.
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In this case, the matrix of regressors is given by
1 X1

1 X2

...
...

1 Xn

 =
(

1 X
)
.

Consider
M1 = In − 1

(
1′1
)−1

1′,

and
β̂2 =

X ′M1Y

X ′M1X
.

Now, 1′1 = n. Therefore,

M1 = In −
1

n
11′, and

M1X =X − 1
1′X

n

=X −X1

=


X1 −X
X2 −X

...
Xn −X

 ,

where X is the sample average:

X =
1′X

n

= n−1
n∑

i=1

Xi.

Thus, the matrixM1 transforms the vector X into the vector of deviations from the average. We can
write

β̂2 =

∑n
i=1

(
Xi −X

)
Yi∑n

i=1

(
Xi −X

)2
=

∑n
i=1

(
Xi −X

) (
Yi − Y

)∑n
i=1

(
Xi −X

)2 .

Goodness of fit

Write

Y = PXY +MXY

= Ŷ + ê,
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where, by the construction,

Ŷ
′
ê = (PXY )′ (MXY )

= Y ′PXMXY

= 0.

Suppose that the model contains an intercept, i.e. the first column of X is the vector of ones 1. The
total variation in Y is

n∑
i=1

(
Yi − Y

)2
= Y ′M1Y

=
(
Ŷ + ê

)′
M1

(
Ŷ + ê

)
= Ŷ

′
M1Ŷ + Ŷ

′
M1ê+ 2Ŷ

′
M1ê.

Since the model contains an intercept,

1′ê = 0, and

M1ê = ê.

However, Ŷ
′
ê = 0, and, therefore,

Y ′M1Y = Ŷ
′
M1Ŷ + ê′ê, or

n∑
i=1

(
Yi − Y

)2
=

n∑
i=1

(
Ŷi − Ŷ

)2
+

n∑
i=1

ê2i .

Note that

Y =
1′Y

n

=
1′Ŷ

n
+

1′ê

n

=
1′Ŷ

n

= Ŷ .

Hence, the averages of Y and its predicted values Ŷ are equal, and we can write:

n∑
i=1

(
Yi − Y

)2
=

n∑
i=1

(
Ŷi − Y

)2
+

n∑
i=1

ê2i , or (4)

TSS = ESS +RSS,

where

TSS =
n∑

i=1

(
Yi − Y

)2 total sum-of-squares,
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ESS =
n∑

i=1

(
Ŷi − Y

)2
explained sum-of-squares,

RSS =
n∑

i=1

ê2i residual sum-of-squares.

The ratio of the ESS to the TSS is called the coefficient of determination or R2:

R2 =

∑n
i=1

(
Ŷi − Y

)2
∑n

i=1

(
Yi − Y

)2
= 1−

∑n
i=1 ê

2
i∑n

i=1

(
Yi − Y

)2
= 1− ê′ê

Y ′M1Y
.

Properties of R2:

• Bounded between 0 and 1 as implied by decomposition (4). This property does not hold if the
model does not have an intercept, and one should not use the above definition of R2 in this
case. If R2 = 1 then ê′ê = 0, which can happen only if Y ∈ S(X), i.e. Y is exactly a linear
combination of the columns of X.

• R2 increases by adding more regressors. Suppose we have n observations on regressors (Z1, ..., Zk)

and (W1, ...,Wm) and dependent variable Y . Consider two regressions: the “long” regression with
all regressors and the “short” regression with only (Z1, ..., Zk). It can be shown that the R2 of
the long regression must be smaller or equal to the R2 of the short regression.

• R2 shows how much of the sample variation in Y was explained by X. However, our objective
is to estimate population relationships and not to explain the sample variation. High R2 is not
necessary an indicator of the good regression model, and a low R2 is not an evidence against it.

• Since R2 increases with inclusion of additional regressors, instead researchers often report the
adjusted coefficient of determination R

2:

R
2
= 1− n− 1

n− k
(
1−R2

)
= 1− ê′ê/ (n− k)

Y ′M1Y / (n− 1)
.

The adjusted coefficient of determination discounts the fit when the number of the regressors k
is large relative to the number of observations n. R2 may decrease with k. However, there is no
strong argument for using such an adjustment.
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