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Asymptotic normality
I In previous lectures, we have so many estimators with the

property √
n
(
θ̂n − θ

)
→d N

(
0, σ2

)
and equivalently we can write θ̂n

a∼ N
(
θ, σ2/n

)
.

I Once we have a consistent estimator σ̂n of σ, the standard
error is defined to be SE = σ̂/

√
n. A confidence interval with

approximate 95% coverage probability is
[
θ̂n ± 1.96× SE

]
.

I We use N
(
θ, σ2/n

)
as approximation to the unknown true

(often called finite-sample) distribution of θ̂n.
I To estimate σ2 based on the analogue principle (i.e., replace

population moments/unknown quantities by their sample
moments/estimates), we need knowledge of the
expression(formula) of σ2. Very often the expression is very
complicated.

I There are two computation-intensive approaches that do the
estimation without requiring knowledge of the expression of σ2.
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Jackknife standard errors
I Suppose our data is (Yi, Xi1, ..., Xik) for i = 1, ..., n. Denote
Zi = (Yi, Xi1, ..., Xik).

I Suppose the estimator θ̂ can be written as
θ̂n = ϕn (Z1, ..., Zn), e.g., ϕn (z1, ..., zn) = n−1

∑n
i=1 zi.

I Now denote θ̂−j = ϕn−1 (Z1, ...Zj−1, Zj+1, ..., Zn), i.e., θ̂−j is
an estimator obtained by removing the j-th observation from
the entire sample. The variation in

{
θ̂−j : j = 1, ..., n

}
should

be informative about the population variance of θ̂n.
I Denote θ̂ = n−1

∑n
j=1 θ̂−j . The Jackknife standard error is

ŝejk =

√√√√n− 1

n

n∑
j=1

(
θ̂−j − θ̂

)2
.

I A 95% confidence interval is[
θ̂n − 1.96 · ŝejk, θ̂n + 1.96 · ŝejk

]
.
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I Indeed one can show

(n− 1)

n∑
j=1

(
θ̂−j − θ̂

)2
→p σ

2.

I Consider the following simple example: for i.i.d. random
variables X1, ..., Xn, we use the sample average X as an
estimator of µ = E [X1]. It is known that√
n
(
X − µ

)
→d N

(
0, σ2

)
, where σ2 = Var (X1) in this case.

I For this case,

θ̂−j =
1

n− 1

(
nX −Xj

)
,

1

n

n∑
j=1

θ̂−j =
1

n (n− 1)

n∑
j=1

(
nX −Xj

)
=X.
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I For this simple case,

θ̂−j − θ̂ =
1

n− 1

(
nX −Xj

)
−X =

1

n− 1

(
X −Xj

)
.

I We have

(n− 1)

n∑
j=1

(
θ̂−j − θ̂

)2
=

1

n− 1

n∑
j=1

(
Xj −X

)2
,

which is the sample variance that is a consistent and unbiased
estimator for σ2.
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Bootstrap

I The bootstrap takes the sample (the values of the realized
explanatory and explained variables) as the population.

I The bootstrap is an alternative way to produce approximations
for the true distribution of θ̂n.

I Note that both asymptotic theory and the bootstrap only
provide approximations for finite-sample properties.

I A bootstrap sample is obtained by independently drawing n
observations from the observed sample {Zi}ni=1 with
replacement.

I The bootstrap sample has the same number of observations as
the original sample, however some observations appear several
times and others never.

6 / 12



Bootstrap Standard Errors

I Step 1: Draw B independent bootstrap samples. B can be as
large as possible. We can take B = 1000.

I Step 2: Estimate θ with each of the bootstrap samples, θ̂∗b for
b = 1, ..., B.

I Step 3: Estimate the standard deviation of θ̂ by

ŝebs =

√√√√ 1

B

B∑
b=1

(
θ̂∗b − θ̂∗

)2
where θ̂∗ = B−1

∑B
b=1 θ̂

∗
b .

I Step 4: The bootstrap standard errors can be used to
construct approximate confidence intervals and to perform
asymptotic tests based on the normal distribution, e.g. if the
coverage probability is 95%, a 95% confidence interval is[
θ̂n − 1.96 · ŝebs, θ̂n + 1.96 · ŝebs

]
.
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Bootstrap percentile confidence intervals
I Step 1: Draw B independent bootstrap samples. B can be as

large as possible. We can take B = 1000.
I Step 2: Estimate θ with each of the bootstrap samples, θ̂∗b for
b = 1, ..., B.

I Step 3: Order the bootstrap replications such that

θ̂∗(1) ≤ θ̂
∗
(2) ≤ · · · ≤ θ̂

∗
(B).

I Step 4: The lower and upper confidence bounds are
B × (α/2)-th and B × (1− α/2)-th ordered elements. For
B = 1000 and α = 5%, these are the 25th and 975th ordered
elements. The estimated 1− α confidence interval is[
θ̂∗(B×(α/2)), θ̂

∗
(B×(1−α/2))

]
.

I Bootstrap percentile confidence intervals often have more
accurate coverage probabilities (i.e. closer to the nominal
coverage probability 1− α) than the usual confidence intervals
based on standard normal quantiles and estimated variance.
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Bootstrap-t test

I We consider testing H0 : θ = θ0.
I We can conduct a bootstrap-based hypothesis testing based

on the bootstrap percentile confidence interval: we simply
reject H0 if θ0 fails to be an element of the bootstrap
percentile confidence interval.

I We can show that T =
√
n
(
θ̂ − θ0

)
/σ̂ →d N(0, 1) under H0.

We use the standard normal distribution as approximation to
the true distribution of T and define critical values based on
standard normal quantile.

I For each bootstrap sample b = 1, ..., B, we can calculate σ̂∗

using the bootstrap sample.
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I Step 1: Draw B independent bootstrap samples. B can be as
large as possible. We can take B = 1000.

I Step 2: Estimate θ and σ with each of the bootstrap samples,
θ̂∗b , σ̂

∗
b for b = 1, ..., B and the t-value for each bootstrap

sample:

t∗b =

√
n
(
θ̂∗b − θ̂

)
σ̂∗b

.

I Step 3: Order the bootstrap replications of t such that
t∗(1) ≤ t

∗
(2) ≤ · · · ≤ t

∗
(B). The lower critical value and the upper

critical value are then the B × (α/2)-th and B × (1− α/2)-th
ordered elements. For B = 1000 and α = 5%, these are the
25th and 975th ordered elements. The bootstrap lower and
upper critical values generally differ in absolute values.
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I A common mistake is that in Step 2, one mistakenly computes

√
n
(
θ̂
∗(b)
n − θ0

)
σ̂
∗(b)
n

.

The test will have no power if we made this mistake.

I The distribution of the t-statistic T =
√
n(θ̂n−θ0)
σ̂n

under
H1 : θ 6= θ0 is different from that under H0. Under H1, T is
not centered:

T =

√
n
(
θ̂n − θ0

)
σ̂n

=

√
n
(
θ̂n − θ

)
σ̂n

+

√
n (θ − θ0)
σ̂n

.

I An important guideline is that we should always approximate
the distribution of T under H0, i.e., the distribution of√
n
(
θ̂n − θ

)
/σ̂n.

11 / 12



I In finite samples (fixed n), for neither the bootstrap-t test nor
the usual t-test that uses ±1.96 as critical values , the true
probability of making type-I error is exactly equal to α (e.g.,
0.05).

I In almost all cases, the true probability of making type-I error
is greater than α, i.e., we always “over-reject” the null
hypothesis.

I One can show that for bootstrap-t test, in finite samples, the
true probability of making type-I error is closer to the nominal
significance level α than the standard t-test that uses ±1.96 as
critical values.
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