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Notation
I A scalar a is a single number.
I A vector a is k × 1 list of numbers, typically arranged in a column. We

write this as

a =

©«
a1
a2
...

ak

ª®®®®¬
.

I Equivalently, a vector a is an element of Rk .
I A matrix A is a k × r rectangular array of numbers, written as

A =


a11 a12 · · · a1r
a21 a22 · · · a2r
...

...
. . .

...
ak1 ak2 · · · akr


.

By convention, ai j refers to the element in the ith row and j th column of
A. Sometimes a matrix A is denoted by the symbol

(
ai j

)
.
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I A matrix can be written as a set of column vectors or as a set of row
vectors. That is,

A =
[
a1 a2 · · · ar

]
=


α′1
α′2
...
α′
k


where

ai =


a1i
a2i
...

aki


are column vectors and

α′j =
[

aj1 aj2 · · · ajr

]
are row vectors.
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I The transpose of a matrix A, denoted as A′, is obtained by flipping the
matrix on its diagonal:

A′ =


a11 a21 · · · ak1
a12 a22 · · · ak2
...

...
. . .

...
a1r a2r · · · akr


.

I If A is k × r , then A′ is r × k. If a is a k × 1 vector, then a′ is an 1 × k
row vector.

I A matrix is square if k = r . A matrix is symmetric if A = A′. A
square matrix is diagonal if the off-diagonal elements are all zero, so
that ai j = aji . A square matrix is upper (lower) diagonal if all
elements below (above) the diagonal equal zero.
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I An important diagonal matrix is the identity matrix, which has ones on
the diagonal. The k × k identity matrix is denoted as

Ik =


1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1


.

I A partitioned matrix takes the form

A =


A11 A12 · · · A1r
A21 A22 · · · A2r
...

...
...

Ak1 Ak2 · · · Akr


.
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Matrix addition

I If the matrices A =
(
ai j

)
and B =

(
bi j

)
are of the same order, we define

the sum
A + B =

(
ai j + bi j

)
.

I Matrix addition follows the commutative and associative laws:
A + B = B + A; A + (B + C) = (A + B) + C .
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Matrix multiplication

I If A is k × r and c is scalar, we define the product as

Ac = cA =
(
ai jc

)
.

I If a and b are both k × 1, then their inner product is

a′b = a1b1 + a2b2 + · · · akbk =
k∑
j=1

ajbj .

I We say that the vectors a and b are orthogonal if a′b = 0.
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I If A is k × r and B is r × s so that the number of columns of A equals
the number of rows of B we say that A and B are conformable. In this
event, the matrix product AB is defined.

I Writing A as a set of row vectors and B as a set of column vectors (each
of length r), then the matrix product is defined as

AB =


a′1
a′2
...
a′
k


[
b1 b2 · · · bs

]

=


a′1b1 a′1b2 · · · a′1bs
a′2b1 a′2b2 · · · a′2bs
...

...
. . .

...
a′
k
b1 a′

k
b2 · · · a′

k
bs


.
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I Matrix multiplication is not commutative: in general AB , BA.
However, it is associative and distributive:

A(BC) = (AB)C; A(B + C) = AB + AC .

I An alternative way to write the matrix product is to use matrix
partitions:

AB =
[
A1 A2 · · · Ar

] 
B1
B2
...
Br


= A1B1 + A2B2 + · · · + ArBr

=

r∑
j=1

A jB j .
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I An important property of the identity matrix is that if A is k × r , then
AIr = A and IkA = A.

I We say two matrices A and B are orthogonal if A′B = 0. This means
that all columns of A are orthogonal with all columns of B.

I The k × r matrix H , r ≤ k , is called orthonormal if H ′H = Ir . This
means that the columns of H are mutually orthogonal, and each column
is normalized to have unit length.
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Trace

I The trace of a k × k square matrix A is the sum of its diagonal elements

tr(A) =
k∑
i=1

aii .

I Some straightforward properties for square matricesA and B and scalar
c are

tr(cA) = ctr(A); tr(A′) = tr(A); tr(A + B) = tr(A) + tr(B); tr(Ik) = k .
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I For k × r A and r × k B we have

tr(AB) = tr(BA)

since

tr(AB) = tr


a′1b1 a′1b2 · · · a′1bk
a′2b1 a′2b2 · · · a′2bk
...

...
. . .

...
a′
k
b1 a′

k
b2 · · · a′

k
bk


=

k∑
i=1

a′i bi

=

k∑
i=1

r∑
j=1

ai jbji

=

r∑
j=1

k∑
i=1

bjiai j

= tr(BA).
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Rank and inverse
I The rank of the k × r matrix (r ≤ k)

A =
[
a1 a2 · · · ar

]
is the number of linearly independent columns, written as rank (A). We
say that A has full rank if rank (A) = r .

I A k × k square matrix A is said to be nonsingular if it is has full rank,
e.g. rank (A) = k. This means that there is no k × 1 c , 0 such that
Ac = 0.

I If k × k square matrix A is nonsingular then there exists a unique k × k
matrix A−1 called the inverse of A which satisfies

AA−1 = A−1A = Ik .

I For non-singular A and C, some important properties include

AA−1 = A−1A = Ik

(A−1)′ = (A′)−1

(AC)−1 = C−1A−1

(A + C)−1 = A−1(A−1 + C−1)−1C−1

A−1 − (A + C)−1 = A−1(A−1 + C−1)−1A−1. 13 / 35



I If a k × k matrix H is orthonormal (so that H ′H = Ik), then H is
non-singular and H−1 = H ′. Furthermore, HH ′ = Ik and H ′−1 = H .

I The following fact about inverting partitioned matrices is quite useful.[
A11 A12
A21 A22

]−1
=

[
A11 A12

A21 A22

]
=

[
A−1

11·2 −A−1
11·2A12A

−1
22

−A−1
22·1A21A

−1
11 A−1

22·1

]
,

where A11·2 = A11 − A12A
−1
22 A21 and A22·1 = A22 − A21A

−1
11 A12.

I For any k × r matrix A, the linear sub-space {x ∈ Rr : Ax = 0} is
called the null space. The linear sub-space {Ax : x ∈ Rr } is called the
column space, i.e., the set of vectors spanned by the columns of A.
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I Suppose we have a n × k matrix X with n ≥ k. We have the following
result

rank (XX ′) = rank (X ′X) = rank (X) ≤ k .

I rank (X) is equal to the difference between k and the dimension of its
null space. The null spaces of X and X ′X are the same: if Xα = 0,
then X ′Xα = 0; if X ′Xα = 0, then α′X ′Xα = ‖Xα‖2 = 0 and
therefore Xα = 0. Therefore, rank (X ′X) = rank (X). Similarly,
rank (XX ′) = rank (X ′). Transposing a matrix does not change its rank:
rank (X) = rank (X ′).

I Similarly, we can show the following result: let Q, P be non-singular
matrices and A be a k × r matrix with rank rank (A), then

rank (PA) = rank (AQ) = rank (PAQ) = rank (A) .
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Determinant

I Let A =
(
ai j

)
be a k × k matrix. Let π = ( j1, ..., jk) denote a permutation

of (1, ..., k). There are k! such permutations. There is a unique count of
the number of inversions of the indices of such permutations (relative to
the natural order (1, ..., k)) and let επ = +1 if this count is even and
επ = −1 if the count is odd. Then the determinant of A is defined as

detA =
∑
π

επa1j1 a2j2 · · · akjk .

I For example, if A is 2 × 2 then the two permutations of (1,2) are (1,2)
and (2,1) for which ε(1,2) = 1 and ε(2,1) = −1. Thus

detA = ε(1,2)a11a22 + ε(2,1)a21a12

= a11a22 − a12a21.
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Theorem (A.7.1, Hansen)
Let A =

(
ai j

)
be a k × k matrix. Properties of the determinant

1. detA = det(A′)
2. det(cA) = ckdetA
3. det(AB) = det(BA) = (detA)(detB)
4. det(A−1) = (detA)−1

5. det
[
A B
0 D

]
= det(A)(detD) and det

[
A 0
C D

]
= det(A)(detD)

6. detA , 0 if and only if A is nonsingular
7. If A is triangular (upper or lower), then detA =

∏k
i=1 aii

8. If A is orthonormal, then detA = ±1.

17 / 35



Eigenvalues

I The characteristic equation of a k × k square matrix A is

det(λIk − A) = 0.

The left side is a polynomial of degree k in λ so it has exactly k roots,
which are not necessarily distinct and may be real or complex. They are
called the characteristic roots or eigenvalues of A.

I If is an eigenvalue of A then λIk − A is singular so there exists a
non-zero vector h such that (λIk − A) h = 0 or Ah = hλ. The vector h
is called a characteristic vector or eigenvector of A corresponding to
λ. They are typically normalized so that h′h = 1 and thus λ = h′Ah.

I Set H = [h1 · · · hk] and Λ = diag {λ1, . . . , λk}. A matrix expression is
AH = HΛ.
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Theorem (A.8.1, Hansen)
Properties of eigenvalues. Let λiand hi, i = 1, . . . , k, denote the k
eigenvalues and eigenvectors of a square matrix A.
1. det(A) =

∏k
i=1 λi

2. tr(A)=
∑k

i=1 λi

3. A is non-singular if and only if all its eigenvalues are non-zero.
4. If A has distinct eigenvalues, there exists a nonsingular matrix P,

such that A = P−1ΛP and PAP−1 = Λ.

5. The non-zero eigenvalues of AB and BA are identical.
6. If B is non-singular then A and B−1AB have the same eigenvalues.
7. If Ah = hλ then (I − A) = h(1 − λ). So I − A has the eigenvalue 1 −

λ and associated eigenvector h.
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I Most eigenvalue applications in econometrics concern the case where
the matrix A is real and symmetric. In this case all eigenvalues of A are
real and its eigenvectors are mutually orthogonal. Thus H is
orthonormal so H ′H = Ik and HH ′ = Ik . When the eigenvalues are
all real it is conventional to write them in descending order
λ1 ≥ λ2 ≥ ... ≥ λk .

I Spectral Decomposition. If Ais a k × k real symmetric matrix, then
A = HΛH ′ where H contains the eigenvectors and Λ is a diagonal
matrix with the eigenvalues on the diagonal. The eigenvalues are all
real and the eigenvector matrix satisfies H ′H = Ik . The decomposition
can be alternatively written as H ′AH = Λ.

I If A is real, symmetric, and invertible, then by the spectral
decomposition and the properties of orthonormal matrices,
A−1 = H ′−1Λ−1H−1 = HΛ−1H ′. Thus the columns of H are also the
eigenvectors of A−1, and its eigenvalues are λ−1

1 , . . . , λ−1
k
.
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Positive definite matrices

I We say that a k × k real symmetric square matrix A is positive
semi-definite if for all c , 0, c ′Ac ≥ 0. This is written as A ≥ 0.

I We say that A is positive definite if for all c , 0, c ′Ac > 0. This is
written as A > 0.
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Theorem (A.9.1, Hansen)
Properties of positive semi-definite matrices
1. If A = G′BG with B ≥ 0 and some matrix G, then A is positive semi-definite.
2. If Ais positive definite, then A is non-singular. Furthermore, A−1 > 0.
3. A > 0 if and only if it is symmetric and all its eigenvalues are positive.
4. By the spectral decomposition, A = HΛH ′ where H ′H = Ik and Λ is

diagonal with non-negative diagonal elements. All diagonal elements of Λ are
strictly positive if and only if A > 0.

5. The rank of A equals the number of strictly positive eigenvalues.
6. If A > 0 then A−1 = HΛ−1H

′
.

7. If A ≥ 0 we can find a matrix B such that A = BB′.We call B a matrix square
root of A and is typically written as B = A

1/2. The matrix B need not be
unique. One matrix square root is obtained using the spectral decomposition
A = HΛH ′. Then B = HΛ

1/2H ′ is itself symmetric and positive definite and
satisfies A = BB.
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Idempotent matrices
I A k × k square matrix A is idempotent if AA = A. For example, the

following matrix is idempotent

A =

[
1/2 −1/2
−1/2 1/2

]
.

I If A is idempotent and symmetric with rank r , then it has r eigenvalues
which equal 1 and k − r eigenvalues which equal 0. To see this, by the
spectral decomposition we can write A = HΛH ′ where H is
orthonormal and Λ contains the eigenvalues. Then

A = AA = HΛH ′HΛH ′ = HΛ2H ′.

I We deduce that Λ2 = Λ and λ2
i = λi for i = 1, ..., k. Hence λi must

equal either 0 or 1. Since the rank of A is r , and the rank equals the
number of positive eigenvalues, it follows that

Λ =

[
Ir 0
0 0k−r

]
.

I tr (A) = rank (A) and A is positive semi-definite.
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I If A is idempotent and symmetric with rank r < k then it does not
possess an inverse, but its Moore-Penrose generalized inverse takes the
simple form A− = A.

I If A is idempotent then I − A is also idempotent.
I One useful fact is that if A is idempotent then

c ′Ac ≤ c ′c and c ′(I − A)c ≤ c ′c.

To see this, note that both c ′Ac and c ′(I − A)c are non-negative and
c ′c = c ′Ac + c ′(I − A)c.
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Matrix calculus
I Let x = (x1, ..., xk)′ be k × 1 and g : Rk → R. We adopt the following

notational convention: the vector derivative is

∂

∂x
g(x) =

©«
∂

∂x1
g(x)

...
∂

∂xk
g(x)

ª®®®®®¬
and
I

∂

∂x ′
g(x) =

(
∂

∂x1
g(x) · · ·

∂

∂xk
g(x)

)
.

I Let A =
(
ai j

)
m×n be a m × n matrix and g : Rm×n → R. The derivative

of g (A) with respect to A is (by convention)

∂

∂A
g (A) =

©«
∂g(A)
∂a11

· · ·
∂g(A)
∂a1n

...
. . .

...
∂g(A)
∂am1

· · ·
∂g(A)
∂amn

ª®®®¬ .
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Theorem (A.15.1 Hansen)
Properties of matrix derivatives

1.
∂

∂x
(a′x) =

∂

∂x
(x ′a) = a

2.
∂

∂x ′
(Ax) = A and ∂

∂x (x
′A′) = A′

3.
∂

∂x
(x ′Ax) = (A + A′)x

4.
∂2

∂x∂x ′
(x ′Ax) = A + A′

5.
∂

∂A
tr(BA) = B′

6.
∂

∂A
log det(A) = (A−1)′
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Let a ∈ Rn, x ∈ Rn. Then

∂ (a′x)

∂x
=

©«
∂(a′x)
∂x1
...

∂(a′x)
∂xn

ª®®®¬
=

©«
∂(a1x1+...+anxn)

∂x1
...

∂(a1x1+...+anxn)
∂xn

ª®®®¬
=

©«
a1
...

an

ª®®¬
=a.

∂ (a′x)

∂x ′
=

(
∂(a′x)
∂x1

· · ·
∂(a′x)
∂xn

)
= (a1, ...,an)

=a′.
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I Let A be an m × n matrix,

A =
©«

a′1
...
a′m

ª®®¬ ,
where a j ∈ R

n for j = 1, ...,m.

∂ (Ax)

∂x ′
=

©«
∂(a′1x)
∂x′

...
∂(a′mx)
∂x′

ª®®®¬
=

©«
a′1
...
a′m

ª®®¬
=A.

I Similarly, ∂
∂x (x

′A′) = A′.
I Using “multiplication rule”,

∂

∂x
(x ′Ax) =

∂x ′

∂x
Ax +

∂x ′A′

∂x
x = (A + A′) x.
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Vector Norms

Given any vector space V (such as Euclidean space Rm) a norm on V is a
function ρ : V −→ R with the properties
1. ρ(ca) = |c |ρ(a) for any real number c and a ∈ V
2. ρ (a + b) ≤ ρ (a) + ρ (b)

3. If ρ (a) = 0 then a = 0
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I The typical norm used for Rm is the Euclidean norm

‖ a ‖ = (a′a)
1/2

= (

m∑
i=1

a2
i )

1/2.

I The p−norm (p ≥ 1)

‖ a ‖p= (
m∑
i=1
|ai |p)

1/p .

I Special cases are the Euclidean norm and the 1-norm:

‖ a ‖1=
m∑
i=1
|ai |.

I The “max-norm”

‖ a ‖∞= max(|a1 |, . . . , |am |).
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I Jensen’s Inequality. If g (· ) : R −→ R is convex, then for any
non-negative weights aj such that

∑m
j=1 aj = 1, and any real numbers x j

g(

m∑
j=1

aj xj) ≤
m∑
j=1

ajg(xj)

I In particular, setting aj = 1/m, then

g(
1
m

m∑
j=1

xj) ≤
1
m

m∑
j=1

g(xj)

I If g(· ) : R −→ R is concave then the inequalities are reversed.
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I Hölder’s Inequality. If p > 1,q > 1, and 1/p + 1/q = 1 , then for any
m × 1 vectors a and b,

m∑
j=1
| ajbj |≤‖ a ‖ p ‖ b ‖ q .

I Minkowski’s Inequality. For any m × 1 vectors a and b, if p ≥ 1, then
‖ a + b ‖p≤‖ a ‖p + ‖ b ‖p .

I Schwarz Inequality. For any m × 1 vectors a and b,
| a′b |≤‖ a ‖‖ b ‖ .
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Matrix Norms
I The Frobenius norm of an m × k matrix A is the Euclidean norm

applied to its elements:

‖ A ‖F = (tr(A′A))
1/2

=
©«

m∑
i=1

k∑
j=1

a2
i j
ª®¬

1/2

.

I When m × m A is real symmetric, then

‖ A ‖F=

(
m∑
l=1

λ2
l

)1/2

,

where λl , l = 1, ...,m are the eigenvalues of A. To see this,

‖ A ‖F= (tr (HΛH ′HΛH ′))
1/2
= (tr (ΛΛ))1/2 =

(
m∑
l=1

λ2
l

)1/2

.

I For any m × 1 vectors a and b,

‖ ab′ ‖F= tr (ba′ab′)1/2 = (b′ba′a)1/2 =‖ a ‖‖ b ‖

and ‖ aa′ ‖F=‖ a ‖2. 33 / 35



I The spectral norm of an m × k matrix is

‖ A ‖2= (λmax (A
′A))

1/2 ,

where λmax (B) denotes the largest eigenvalue of the symmetric matrix
B.

I If A is m × m and symmetric with eigenvalues λj then

‖ A ‖2= max
j≤m
| λj | .

I Suppose A is m × k with rank r ,

‖ A ‖2≤‖ A ‖F and ‖ A ‖F≤
√

r ‖ A ‖2 .
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I Given any vector norm ‖·‖, the induced matrix norm is
I

‖ A ‖= sup
x′x=1

‖ Ax ‖= sup
x,0

‖ Ax ‖

‖ x ‖
.

I The triangle inequality is satisfied:

‖ A+B ‖= sup
x′x=1

‖ Ax+Bx ‖≤ sup
x′x=1

‖ Ax ‖ + sup
x′x=1

‖ Bx ‖=‖ A ‖ + ‖ B ‖ .

I For any vector x, ‖ Ax ‖≤‖ A ‖‖ x ‖. The induced matrix norm
satisfies this property which is a matrix form of the Schwarz inequality:

‖ AB ‖= sup
x′x=1

‖ ABx ‖≤ sup
x′x=1

‖ A ‖‖ Bx ‖=‖ A ‖‖ B ‖ .

I The matrix norm induced by the Euclidean vector norm is the spectral
norm

sup
x′x=1

‖ Ax ‖2= sup
x′x=1

x ′A′Ax = λmax (A
′A) =‖ A ‖22
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