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Randomness, sample space and probability

I Probability is concerned with random experiments.
I The outcome cannot be predicted with certainty, even if the experiment

is repeated under the same conditions.
I The set of all possible outcomes is called a sample space, denoted by Ω.

A simple example is tossing a coin. There are two outcomes, heads and
tails, so we can write Ω = {�,)} . Another simple example is rolling a
dice: Ω = {1, 2, 3, 4, 5, 6} . A sample space may contain finite or infinite
number of outcomes.

I The random experiment under the ground of statistics and econometrics
should be viewed as an abstract one: nature draws a state of the world.

I A collection of elements of Ω is called an event. In the rolling a dice
example, the event � = {2, 4, 6} occurs if the outcome of the
experiment is an even number.
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I Probability function assigns probabilities (numbers between 0 and 1) to
the events.

I A probability function has to satisfy the following axioms of
probability:
1. Pr (Ω) = 1.
2. For any event �, Pr(�) ≥ 0.
3. If �1, �2, . . . is a countable sequence of mutually exclusive events, then

Pr (�1 ∪ �2 ∪ . . .) = Pr (�1) + Pr (�2) + . . . .
Some important properties of probability include:
I If � ⊂ � then Pr (�) ≤ Pr(�).
I Pr(�) ≤ 1.
I Pr(�) = 1 − Pr (�2) .
I Pr (∅) = 0.
I Pr (� ∪ �) = Pr(�) + Pr(�) − Pr (� ∩ �) .

A sample space, its collection of events and a probability function
together define a probability space.
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Conditional probability and independence
I If Pr(�) > 0, the conditional probability of an event �, conditional on
� is defined as follows:

Pr (� | �) = Pr (� ∩ �)
Pr(�) .

I Conditional probability gives the probability of � knowing that � has
occurred. For a given �, the conditional probability function Pr (· | �)
is a proper probability function.

I Conditioning can be seen as updating of the sample space based on new
information.

I Probability of events � and � occurring jointly is given by the
probability of their intersection Pr (� ∩ �) . The events � and � are
called independent if the probability of their occurring together is equal
to the product of their individual probabilities:
Pr (� ∩ �) = Pr(�)Pr(�).

I If � and � are independent, then the fact that � has occurred provides
us with no information regarding occurrence of � : Pr (� | �) = Pr(�).

I If � and � are independent, then so are �2 and �, � and �2 , �2 and
�2: if � cannot provide information about occurrence of �, then it also
cannot tell us whether � did not occur (�2).
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Random variables
I A random variable is a function from a sample space to the real line.

For every l ∈ Ω, a random variable - (l) assigns a number G ∈ R.
I For example, in the tossing a coin experiment, we can define a random

variable that takes on the value 0 if the outcome of the experiment is
heads, and 1 if the outcome is tails: - (�) = 0, - ()) = 1.

I One can define many different random variables on the same sample
space.

I A common convention is to denote random variables by capital letters,
and to denote realized values by small letters.

I One can speak about the probability of a random variable taking on a
particular value Pr (- = G), where G ∈ R, or more generally, a
probability of - taking a value in some subset of the real line
Pr (- ∈ (), where ( ⊂ R, for example ( = (−∞, 2). The probability of
such an event is defined by the probability of the corresponding subset
of the original sample space Ω : Pr (- ∈ () = Pr {l ∈ Ω : - (l) ∈ (} .

I For example, suppose that in the flipping a coin example - is defined as
above. Then Pr (- < 2) is given by the probability of the event {�,)} ,
Pr (- ∈ (0.3, 5)) = Pr ({)}) , and Pr (- > 1.2) = Pr (∅) = 0.
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Cumulative distribution function

I For a random variable - , its cumulative distribution function (CDF) is
defined as

�- (G) = Pr (- ≤ G) .
I A CDF must be defined for all D ∈ R, and satisfy the following

conditions:
1. limD→−∞ � (D) = 0, limD→∞ � (D) = 1.
2. � (G) ≤ � (H) if G ≤ H (nondecreasing).
3. limD↓G � (D) = � (G) (right-continuous).
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Discrete and continuous random variables
I A random variable is called discrete if its CDF is a step function. In this

case, there exists a countable set of real number - ∈ {G1, G2, . . .} such
that Pr (- = G8) = ?- (G8) > 0 and

∑
8 ?- (G8) = 1. This set is called the

support of a distribution, it contains all the values that - can take with
probability different from zero.

I The values ?- (G8) give a probability mass function (PMF).
I A random variable is continuous if its CDF is a continuous function. In

this case, Pr (- = G) = 0 for all G ∈ R, so it is impossible to describe the
distribution of - by specifying probabilities at various points on the real
line.

I Instead, the distribution of a continuous random variable can be
described by a probability density function (PDF), which is defined as

5- (G) =
3�- (D)
3D

�����
D=G

.

Thus, �- (G) =
∫ G

−∞ 5- (D)3D, and Pr (- ∈ (0, 1)) =
∫ 1

0
5- (D)3D. Since

the CDF is nondecreasing, 5 (G) ≥ 0 for all G ∈ R. Further,∫ ∞
−∞ 5- (D)3D = 1.
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Random vectors, multivariate and conditional distributions

I In economics we are usually concerned with relationships between a
number of variables. Thus, we need to consider joint behavior of
several random variables defined on the same probability space.

I A random vector is a function from the sample space Ω to R=.
I The random vector - is given by

^ =

©­­­­«
-1
-2
...

-=

ª®®®®¬
.

By convention, a random vector is usually a column vector.
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I Let x ∈ R=, i.e. x = (G1, G2, . . . , G=) ′ . The CDF of a vector or a joint
CDF of its elements is defined as follows:

� (G1, G2, . . . , G=) = Pr(-1 ≤ G1, -2 ≤ G2, . . . -= ≤ G=) for all x ∈ R=.

If the joint CDF is a continuous function, then the corresponding joint
PDF is given by

5 (G1, G2, . . . , G=) =
m=� (D1, D2, . . . , D=)
mD1mD2 . . . mD=

�����
D1=G1 ,D2=G2 ,...,D==G=

,

and thus,

� (G1, G2, . . . , G=) =
∫ G1

−∞

∫ G2

−∞
. . .

∫ G=

−∞
5 (D1, D2, . . . , D=) 3D= . . . 3D23D1.

I It is possible from the joint distribution to obtain the individual
distribution of a single element of the random vector (marginal
distribution), or the joint distribution of a number of its elements.
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I Consider, a bivariate case. Let - and . be two random variables with
the CDF and PDF given by �-,. and 5-,. respectively. The marginal
CDF of - is

�- (G) = Pr (- ≤ G)
= Pr (- ≤ G,−∞ < . < ∞) (. can take any value)

=

∫ G

−∞

∫ ∞

−∞
5-,. (D, E) 3E3D.

I Now, the marginal PDF of - is
3�- (G)
3G

=
3

3G

∫ G

−∞

∫ ∞

−∞
5-,. (D, E) 3E3D

=

∫ ∞

−∞
5-,. (G, E) 3E.

I In a discrete case, one can obtain a marginal PMF from the joint in a
similar way, by using sums instead of integrals:

?. (H 9 ) =
=∑
8=1

?-,.

(
G8 , H 9

)
.

I In general, it is impossible to obtain a joint distribution from the
marginal distributions.
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I Conditional distribution describes the distribution of one random
variable (vector) conditional on another random variable (vector). In the
continuous case, conditional PDF and CDF of - given . is defined as

5- |. (G | H) =
5-,. (G, H)
5. (H)

,

�- |. (G | H) =
∫ G

−∞
5- |. (D | H) 3D,

respectively, for 5. (H) > 0.
I In the discrete case, suppose that with a probability greater than zero -

takes values in {G1, G2, . . . , G=} , and . takes values in {H1, H2, . . . , H: } .
Let ?-,. (G8 , H 9 ) be the joint PMF. Then the conditional PMF of -
conditional on . is given by

?- |.
(
G | H 9

)
=
?-,.

(
G, H 9

)
?.

(
H 9

) for 9 = 1, 2, . . . , : .
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I It is important to distinguish between 5- |. (G | H) and 5- |. (G | . ) .
The first means that . is fixed at some realized value H, and 5- |. (G | H)
is not a random function. On the other hand, notation 5- |. (G | . )
means that uncertainty about . remains, and, consequently, 5- |. (G | . )
is a random function.

I The concept of independent random variables is related to that of the
events. Suppose that for all pairs of subsets of the real line, (1 and (2,
we have that the events - ∈ (1 and . ∈ (2 are independent, i.e.

Pr (- ∈ (1, . ∈ (2) = Pr (- ∈ (1) Pr (. ∈ (2) . (0.1)

I In the continuous case, random variables are independent if and only if
there joint PDF can be expressed as a product of their marginal PDFs:

5-,. (G, H) = 5- (G) 5. (H) for all G ∈ R, H ∈ R.

I Consequently, independence implies that for all G ∈ R, H ∈ R such that
5. (H) > 0, we have that

5- |. (G | H) = 5- (G).

I For any functions 6 and ℎ, if - and . are independent, then so are 6(-)
and ℎ(. ).
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Expectation and moments

I Given a random variable - its mean, or expectation, or expected value
defined as

E (-) =
∑
8

G8 ?- (G8) in the discrete case,

E (-) =
∫ ∞

−∞
G 5- (G)3G in the continuous case.

I Note that
∫ 0
−∞ G 5- (G)3G or

∫ ∞
0 G 5- (G)3G can be infinite. In such cases,

we say that expectation does not exist, and assign E (-) = −∞ if∫ 0
−∞ G 5- (G)3G = −∞ and

∫ ∞
0 G 5- (G)3G < ∞, and E (-) = ∞ if∫ 0

−∞ G 5- (G)3G > −∞ and
∫ ∞
0 G 5- (G)3G = ∞. When∫ 0

−∞ G 5- (G)3G = −∞ and
∫ ∞
0 G 5- (G)3G = ∞, the expectation is not

defined.
I The necessary and sufficient condition for E (-) to be defined and finite

is that E |- | < ∞.
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I Let 6 be a function. The expected value of 6 (-) is defined as

E [6 (-)] =
∫ ∞

−∞
6(G) 5- (G)3G.

I The :-th moment of a random variable - is defined as E
(
- :

)
. The first

moment if simply the mean. The :-th central moment - is
E(- − E-): . The second central moment is called the variance:

Var(-) = E(- − E-)2

=

∫ ∞

−∞
(G − E-)2 5- (G)3G.

While the mean measures the center of the distribution, the variance is a
measure of the spread of the distribution.

14 / 23



Existence of moments

I If E |- |= = ∞, we say that the =-th moment does not exist.
I Let - be a random variable, and let = > 0 be an integer. If E |- |= < ∞

and < is an integer such that < ≤ =, then E |- |< < ∞.
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Covariance
I For a function of two random variables, ℎ (-,. ) , its expectation is

defined as

E [ℎ(-,. )] =
∫ ∞

−∞

∫ ∞

−∞
ℎ(G, H) 5-,. (G, H)3G3H.

I Covariance of two random variable - and . is defined as

Cov(-,. ) = E (- − E-) (. − E. )

=

∫ ∞

−∞

∫ ∞

−∞
(G − E-) (H − E. ) 5-,. (G, H)3G3H.

I The correlation coefficient of - and . is defined as

d-,. =
E(-,. )√

Var(-)Var(. )
.

I The correlation coefficient is bounded between -1 and 1. It is equal to -1
or 1 if and only if, one random variable is a linear function of another:
. = 0 + 1-.

16 / 23



Let 0, 1 and 2 be some constants. Some useful properties include:
I Linearity of expectation: E (0- + 1. + 2) = 0E- + 1E. + 2.
I Var(0- + 1. + 2) = 02Var(-) + 12Var(. ) + 201Cov(-,. ).
I Cov(0- + 1., 2/) = 02Cov(-, /) + 12Cov(., /).
I Cov(-,. ) = Cov(., -).
I Cov(-, 0) = 0.
I Cov(-, -) = Var(-).
I E(- − E-) = 0.
I Cov(-,. ) = E(-. ) − E(-)E(. ).
I Var(-) = E

(
-2) − (E-)2 .

I If - and . are independent, then E(-. ) = E(-)E(. ) and
Cov(-,. ) = 0. However, zero correlation (uncorrelatedness) does not
imply independence.
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Moments of random vectors (matrices)

For a random vector (matrix), the expectation is defined as a vector (matrix)
composed of expected values of its corresponding elements:

E [^] = E
©­­­­«
-1
-2
...

-=

ª®®®®¬
=

©­­­­«
E-1
E-2
...

E-=

ª®®®®¬
.
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I The variance-covariance matrix of a random =-vector is a = × = matrix
defined as

Var(^) = E (^ − E^) (^ − E^) ′

= E
©­­­­«
-1 − E-1
-2 − E-2

...

-= − E-=

ª®®®®¬
(
-1 − E-1 -2 − E-2 . . . -= − E-=

)

=

©­­­«
Var((-1) Cov (-1, -2) . . . Cov (-1, -=)

Cov (-2, -1) Var((-2) . . . Cov (-2, -=)
. . . . . . . . . . . .

Cov (-=, -1) Cov (-=, -2) . . . Var (-=)

ª®®®¬ .
I It is a symmetric, positive semi-definite matrix, with variances on the

main diagonal and covariances off the main diagonal.
I The variance-covariance matrix is positive semi-definite (denoted by

Var(^) ≥ 0), since for any =-vector of constants a, we have that
a′Var(^)a ≥ 0.
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Let ^ ∈ R= and _ ∈ R: be two random vectors. Their covariance of ^ with
_ is a = × : matrix defined as

Cov(^,_) = E (^ − E^) (_ − E_) ′

=

©­­­«
Cov (-1, .1) Cov (-1, .2) . . . Cov (-1, .: )
Cov (-2, .1) Cov (-2, .2) . . . Cov (-2, .: )

. . . . . . . . . . . .

Cov (-=, .1) Cov (-=, .2) . . . Cov (-=, .: )

ª®®®¬ .
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Some useful properties:
I Var(^) = E (^^ ′) − E (^) E (^) ′ .
I Cov(^,_) = (Cov(_ , ^)) ′ .
I Var(^ + _) = Var(^) + Var(_) + Cov(^,_) + Cov(_ , ^).
I If _ = " + �^, where " ∈ R: is a fixed (non-random) vector and � is a
: × = fixed matrix, then Var(_) = �(Var(^))�′.

I For random vectors ^, _ , ` and non-random matrices A, B, C:
Cov(A^ + B_ ,C`) = A(Cov(^, `))C′ + B(Cov(_ , `))C′.
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Normal distribution

I For G ∈ R, the density function (PDF) of a normal distribution is given
by

5 (G; `, f2) = 1
√

2cf2
exp

(
− (G − `)

2

2f2

)
,

where ` and f2 are the two parameters determining the distribution.
The common notation for a normally distributed random variable is
- ∼ # (`, f2). The normal distribution with ` = 0 and f = 1 is called
the standard normal distribution.

I The joint PDF of ^ ∼ # (-,�) is given by

5 (x; -,�) = (2c)−=/2 (det�)−1/2 exp
(
−(x − -) ′�−1 (x − -)/2

)
, x ∈ R=,

where E [^] = - and Var(^) = �.
I Let ^ ∼ # (-,�), and define _ = " +�^. Then _ ∼ # (" + �-,���′).
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Other useful statistical distributions

The following distributions are related to normal and used extensively in
statistical inference:
I Suppose that ` ∼ # (0, I=), so the elements of `, /1, /2, . . . , /= are

independent identically distributed standard normal random variables.
Then - = `′` =

∑=
8=1 /

2
8
has a chi-square distribution with = degrees

of freedom. It is conventional to write - ∼ j2
=. The mean of the j2

=

distribution is = and the variance is 2=. If -1 ∼ j2
=1 , -2 ∼ j2

=2 and
independent, then -1 + -2 ∼ j2

=1+=2 .
I Let / ∼ # (0, 1) and - ∼ j2

= be independent, then . = //
√
-/= has a C

distribution with = degrees of freedom (. ∼ C=). For large =, the density
of C= approaches that of # (0, 1). The mean of C= does not exists for
= = 1, and zero for = > 1. The variance of the C= distribution is
=/(= − 2) for = > 2.

I Let -1 ∼ j2
=1 and -2 ∼ j2

=2 be independent, then . =
-1/=1
-2/=2

has an �
distribution with =1, =2 degrees of freedom (. ∼ �=1 ,=2 ). �1,= = (C=)2 .
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