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Conditional expectation function
I Given the joint density fY ,X (y, x), X has the marginal density

fX (x) =
∫ ∞

−∞

fY ,X (y, x) dy.

I The conditional density of Y given X :

fY |X (y | x) =
fY ,X (y, x)

fX (x)
.

I The CEF of Y given X = x is the mean of the conditional density:

m (x) =
∫ ∞

−∞

y fY |X (y | x) dy.

m (x) is the mean of for the idealized subpopulation where the
conditioning variables are fixed at x.

I E (Y | X = x) or E (Y | x) is interpreted as m (x); E (Y | X) is
interpreted as m (X).

I We call this the conditional expectation function (CEF). The
CEF is a function of X .
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Law of iterated expectations

Theorem (Simple Law of Iterated Expectations)
If E |Y | < ∞ then for any random vector X ,

E (E (Y | X)) = E (Y ) .

I When X is discrete

E (E (Y | X)) =
∞∑
j=1
E

(
Y | x j

)
Pr

(
X = x j

)
and when X is continuous

E (E (Y | X)) =
∫
Rk
E (Y | x) fX (x) dx.

I In this course, we ignore conditions such as E |Y | < ∞.
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Theorem
For any random vectors X1and X2,

E (E (Y | X1,X2) | X1) = E (Y | X1)

E (E (Y | X1) | X1,X2) = E (Y | X1)
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When you condition on a random vector X you can effectively treat it
as if it is constant. For example, E (X | X) = X and
E (g (X) | X) = g (X) for any function g (·). The general property is
known as the Conditioning Theorem.

Theorem (Conditioning Theorem)

E (g (X)Y | X) = g (X)E (Y | X)

E (g (X)Y ) = E (g (X)E (Y | X)) .
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CEF error
I The CEF error is defined as

e = Y − m (X) .

By construction,
Y = m (X) + e.

I By the linearity of expectations, the definition m (X) = E (Y | X)
and the Conditioning Theorem

E (e | X) = E ((Y − m (X)) | X)

= E (Y | X) − E (m (X) | X)

= m (X) − m (X)

= 0.

I The unconditional mean is also zero:

E (e) = E (E (e | X)) = E (0) = 0.
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Theorem
Properties of the CEF error
1. E (e | X) = 0.
2. E (e) = 0.
3. For any function h (·), E (h (X) e) = 0.

I The equations
Y = m (X) + e

E (e | X) = 0

together imply that m (X) is the CEF of Y given X .
I It is important to understand that this is not a restriction. These

equations hold true by definition.
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I The equation E (e | X) = 0 is called a conditional mean
restriction, since the conditional mean of the error is restricted to
equal zero.

I The property is also called mean independence, for the
conditional mean of is 0 and thus independent of X . However, it
does not imply that the distribution of e is independent of X .

I As a simple example of a case where X and e are mean
independent yet dependent, let e = Xε where X and e are
independent N (0,1). Then conditional on X the error e has the
distribution N

(
0, x2) . Thus E (e | X) = 0 and e is mean

independent of X , yet e is not fully independent of X . Mean
independence does not imply full independence.

8 / 31



Regression variance

I An important measure of the dispersion about the CEF function
is the unconditional variance of the CEF error e. We write this as

σ2 = Var (e) = E
(
(e − Ee)2

)
= E

(
e2

)
.

I We can call σ2 the regression variance or the variance of the
regression error. The magnitude of σ2 measures the amount of
variation in Y which is not “explained” or accounted for in the
conditional mean E (Y | X).
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I The regression variance depends on the regressors. Consider two
regressions

Y = E (Y | X1) + e1

Y = E (Y | X1,X2) + e2.

I The simple relationship we now derive shows that the variance of
this unexplained portion decreases when we condition on more
variables. This relationship is monotonic in the sense that
increasing the amount of information always decreases the
variance of the unexplained portion.

Theorem

Var (Y ) ≥ Var (Y − E (Y | X1)) ≥ Var (Y − E (Y | X1,X2)) .
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Best predictor

I Suppose that given a realized value of X , we want to create a
prediction or forecast of Y .

I We can write any predictor as a function g (X) of X . A
non-stochastic measure of the magnitude of the prediction error
Y − g (X) is the expectation of its square E

(
(Y − g (X))2

)
.

I What function is the best predictor? It turns out that the answer is
the CEF:

E
(
(Y − g (X))2

)
= E

(
(e + m (X) − g (X))2

)
= E

(
e2

)
+ 2E (e (m (X) − g (X))) + E

(
(m (X) − g (X))2

)
= E

(
e2

)
+ E

(
(m (X) − g (X))2

)
≥ E

(
e2

)
= E

(
(Y − m (X))2

)
.
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Theorem
Conditional Mean as Best Predictor
For any predictor g (X),

E
(
(Y − g (X))2

)
≥ E

(
(Y − m (X))2

)
where m (X) = E (Y | X)
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Conditional variance

Definition
The conditional variance of W given X is

Var (W | X) = E
(
(W − E (W | X))2 | X

)
Definition
The conditional variance of the regression error e is

σ2 (X) = Var (e | X) = E
(
e2 | X

)
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I Generally, σ2 (X) > 0 is a function of X .
I Notice as well that σ2 (X) = Var (Y | X) so it is equivalently the

conditional variance of the dependent variable.
I We define the conditional standard deviation as its square root
σ (X) =

√
σ2 (X).

I The unconditional error variance and the conditional variance are
related by the law of iterated expectations

σ2 = E
(
e2

)
= E

(
E

(
e2 | X

))
= E

(
σ2 (X)

)
.
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I Given the conditional variance, we can define a rescaled error

ε =
e

σ (X)
.

I We can calculate that since σ (X) is a function of X

E (ε | X) = E

(
e

σ (X)
| X

)
=

1
σ (X)

E (e | X) = 0

and

Var (ε | X) = E
(
ε2 | X

)
= E

(
e2

σ2 (X)
| X

)
=

1
σ2 (X)

E
(
e2 | X

)
= 1

Thus ε has a conditional mean of zero, and a conditional
variance of 1.
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Homoskedasticity and heteroskedasticity

Definition
The error is homoskedastic if E

(
e2 | X

)
= σ2 does not depend on X .

Definition
The error is heteroskedastic if E

(
e2 | X

)
= σ2 (X) depends on X .
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I Older textbooks also tend to describe homoskedasticity as a
component of a correct regression specification, and describe
heteroskedasticity as an exception or deviance.

I The correct view is that heteroskedasticity is generic and
“standard”, while homoskedasticity is unusual and exceptional.
The default in empirical work should be to assume that the errors
are heteroskedastic.

I We will still frequently impose homoskedasticity when making
theoretical investigations. In many cases homoskedasticity
greatly simplifies the theoretical calculations.
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Regression derivative
I When a regressor X1 is continuously distributed, we define the

marginal effect of a change in X1, holding the variables X2, ...,Xk

fixed, as the partial derivative of the CEF ∂
∂X1

m (X1, . . . ,Xk) .

I When X1 is discrete we define the marginal effect as a discrete
difference. For example, if X1 is binary, then the marginal effect
of X1 on the CEF is

m (1,X2, ...,Xk ) − m (0,X2, ...,Xk ) .

I We can unify the continuous and discrete cases with the notation

∇1m (X) =

{
∂

∂X1
m (X1, . . . ,Xk ) , if x1 is continuous

m (1,X2, ...,Xk ) − m (0,X2, ...,Xk ) , if x1 is binary.

I Collecting the k effects into one k × 1 vector, we define we define
the regression derivative to be

∇m (X) =


∇1m (X)
∇2m (X)

.

.

.
∇km (X)


.
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Linear CEF
I An important special case is when the CEF m (X) = E (Y | X) is

linear in X :
m (X) = X1β1 + X2β2 + · · · + Xk βk + βk+1.

I An easy way to do so is to augment the regressor vector X by
listing the number “1” as an element. The corresponding
coefficient is called the “intercept”:

X =

©«

X1
X2
...

Xk−1
1

ª®®®®®®¬
.

I With this redefinition, the CEF is
m (X) = X1β1 + X2β2 + · · · + Xk βk + βk+1

= X ′β

where β = (β1, ..., βk+1)
′ . This is the linear CEF model. It is

also often called the linear regression model.
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I In the linear CEF model, the regression derivative is simply the
coefficient vector: ∇m (X) = β. The coefficients have simple and
natural interpretations as the marginal effects of changing one
variable, holding the others constant.

I Linear CEF model:

Y = X ′β + e

E (e | X) = 0.

I Homoskedastic linear CEF model:

Y = X ′β + e

E (e | X) = 0

E
(
e2 | X

)
= σ2.
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Linear CEF with nonlinear effects
I We can include as regressors nonlinear transformations of the

original variables.
I The CEF could take the quadratic form

m (X1,X2) = X1β1 + X2β2 + X2
1 β2 + X2

2 β4 + X1X2β5 + β6.

This is also a linear CEF in the sense of being linear in the
coefficients.

I The regression derivatives:

∂

∂X1
m (X1,X2) = β1 + 2X1β3 + X2β5

∂

∂X2
m (X1,X2) = β2 + 2X2β4 + X1β5.

We typically call β5 the interaction effect. If β5 > 0 then the
regression derivative with respect to X1 is increasing in the level
of X2.
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Best linear predictor
A linear predictor for is a function of the form X ′b for some b ∈ Rk .
The mean squared prediction error is

S (b) = E
( (

Y − X ′b
)2

)
.

Definition
The Best Linear Predictor of Y given X is

P (Y | X) = X ′β

where β minimizes the mean squared prediction error

S (b) = E
( (

Y − X ′b
)2

)
The minimizer

β = argmin
b∈Rk

S (b)

is called the Linear Projection Coefficient. 22 / 31



I By calculations,

S (b) = E
(
Y2

)
− 2b′E (XY ) + b′E

(
XX ′) b.

I By matrix calculus, the first-order condition for minimization is

0 =
∂

∂b
S (b) = −2E (XY ) + 2E

(
XX ′) b.

Solving for the first-order condition, β = Q−1
XXQXY where

QXY = E (XY ) is k × 1 and QXX = E (XX ′) is k × k.
I We now have an explicit expression for the best linear predictor:

P (Y | X) = X ′ (E (
XX ′) )−1

E (XY ) .

This expression is also referred to as the linear projection of Y
on X .
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I The projection error is

e = Y − X ′β.

I Rewriting, we obtain a decomposition of Y into linear predictor
and error

Y = X ′β + e.

I An important property of the projection error is

E (Xe) = E
(
X

(
Y − X ′β

) )
= E (XY ) − E

(
XX ′) (

E
(
XX ′) )−1

E (XY )

= 0.
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Theorem (Properties of Linear Projection Model)
1. The Linear Projection Coefficient equals

β =
(
E

(
XX ′) )−1

E (XY ) .

2. The best linear predictor of Y given X is

P (Y | X) = X ′ (E (
XX ′) )−1

E (XY ) .

3. The projection error e = Y − X ′β satisfies

E (Xe) = 0.

4. If X contains an constant, then

E (e) = 0.
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Best linear approximation
I We start by defining the mean-square approximation error of X ′b

to m (X) as the expected squared difference between X ′b and the
conditional mean m (X):

d (b) = E
(
(m (X) − X ′b)2

)
=

∫
Rk

(
m (x) − x′b

)2 fX (x) dx.

I We can then define the best linear approximation to the
conditional mean m (X) as the function X ′β obtained by
selecting β to minimize d (b):

β = argmin
b∈Rk

d (b) .

I It turns out that the best linear predictor and the best linear
approximation are identical:

β = (E (XX ′))−1 E (Xm (X))

= (E (XX ′))−1 E (XY ) .
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Causal effects

I Consider the effect of schooling on wages. The causal effect is
the actual difference a person would receive in wages if we could
change their level of education holding all else constant.

I The causal effect is unobserved because the most we can observe
is their actual level of education and their actual wage, but not the
counterfactual wage if their education had been different.

I A variable X1 can be said to have a causal effect on the response
variable if the latter changes when all other inputs are held
constant.

I A full model:
Y = h (X1,X2,U) ,

where X1 and X2 are observed variables, U is some unobserved
random factor and h is a functional relationship.
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Definition
The causal effect of X1 on Y is

C (X1,X2,U) = ∇1h (X1,X2,U)

the change in Y due to a change in X1, holding X2 and U constant.

I We define the causal effect of X1 within this model as the change
in due to a change in X1 holding the other variables X2 and U
constant.
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Average causal effect

Definition
The average causal effect of X1 on Y conditional on X2 is

ACE (X1,X2) = E (C (X1,X2,U) | X1,X2)

=

∫
∇1h (X1,X2, u) fU |X1,X2 (u | X1,X2) du

where fU |X1,X2 (u | x1, x2) is the conditional density of U given
X1,X2.
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Linear causal model
I Suppose that h (X1,X2,U) = g (X1,X2) +U (U is

one-dimensional). Then, C (X1,X2,U) = ∇1g (X1,X2) and
ACE (X1,X2) = ∇1g (X1,X2).

I The linear causal model specifies that g (X1,X2) is linear in
parameters. E.g., g (X1,X2) = γX1 + X ′2β (∇1g (X1,X2) = γ) or
g (X1,X2) = γX1 + X ′2β + X1X

′
2δ (∇1g (X1,X2) = γ + X ′2δ),

where γ, β,δ are unknown parameters.
I Without additional assumptions, it is impossible to recover the

parameters γ, β,δ.
I If we assume the stronger condition E (U | X1,X2) = 0, then

g (X1,X2) = E (Y | X1,X2).
I If g (X1,X2) = γX1 + X ′2β and a weaker condition E (X1U) = 0

and E (X2U) = 0 holds, then g (X1,X2) = P (Y | X1,X2).
I Under either stronger or weaker condition, the unobservable

factor U is uncorrelated with the observable factors.
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Omitted variable bias
I Consider the projection of Y on X1 only:

Y = X ′1γ1 + e

E (X1e) = 0.

I Suppose that the linear causal model holds:
Y = X ′1β1 + X ′2β2 +U, with E (X1U) = 0 and E (X2U) = 0.

I Typically, β1 , γ1:

γ1 =
(
E

(
X1X

′
1
) )−1
E (X1Y )

=
(
E

(
X1X

′
1
) )−1
E

(
X1

(
X ′1β1 + X ′2β2 +U

) )
= β1 +

(
E

(
X1X

′
1
) )−1
E

(
X1X

′
2
)
β2

, β1

unless
(
E

(
X1X

′
1
) )−1
E

(
X1X

′
2
)
= 0 or β2 = 0.
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