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Samples
I Consider the best linear predictor of . given ^ for a pair of

random variables (., ^) ∈ R × R: with joint distribution � and
call this the linear projection model. We are interested in
estimating the projection coefficients

# = (E (^^ ′))−1 E (^. ) .

I The dataset is {(.8 , ^8) : 8 = 1, ..., =}. We call this the sample or
the observations.

I From the viewpoint of empirical analysis, a dataset is an array of
numbers often organized as a table, where the columns of the
table correspond to distinct variables and the rows correspond to
distinct observations.

I For empirical analysis, the dataset and observations are fixed in
the sense that they are numbers presented to the researcher. For
statistical analysis we need to view the dataset as random, or
more precisely as a realization of a random process.

2 / 28



Assumption
The observations {(.1, ^1) , . . . , (.8 , ^8) , . . . (.=, ^=)} are
identically distributed; they are draws from a common distribution
�.

I In econometric theory, we refer to the underlying common
distribution as the population. Some authors prefer the label the
data-generating-process (DGP).

I In contrast we refer to the observations available to us
{(.8 , ^8) : 8 = 1, ..., =} as the sample or dataset.

3 / 28



We can write the model as

.8 = ^ ′8V + 48 ,

where the linear projection coefficient # is defined as

# = argmin
1∈R:

( (b) ,

the minimizer of the expected squared error

( (b) = E
( (
.8 − ^ ′8b

)2
)
,

and has the explicit solution

# =
(
E

(
^8^

′
8

) )−1
E (^8.8) .
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Moment estimators

I Suppose that we are interested in the population mean ` of a
random variable .8: ` = E (.8).

I The mean ` is a function of the distribution �. To estimate `
given a sample {.1, ..., .=} a natural estimator is the sample
mean ˆ̀ = .̄ = =−1 ∑=

8=1.8 .

I Now suppose that we are interested in a set of population means
of possibly non-linear functions of a random vector _ , say
- = E (h (_ 8)). For example, we may be interested in the first
two moments of .8 , E (.8) and E

(
.2
8

)
. In this case the natural

estimator is the vector of sample means, -̂ = =−1 ∑=
8=1 h (_ 8).

I For example, ˆ̀1 = =−1 ∑=
8=1.8 and ˆ̀2 = =−1 ∑=

8=1.
2
8
. We call -̂

the moment estimator for -.
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I Now suppose that we are interested in a nonlinear function of a
set of moments. For example,

f2 = Var (.8) = E
(
.2
8

)
− (E (.8))2 .

Many parameters of interest can be written as a function of
moments of _:

# = g (-) , where - = E (h (_ 8)).

I In this context a natural estimator of # is obtained by replacing -
with -̂:

#̂ = g ( -̂) , where -̂ =
1
=

=∑
8=1

h (_ 8) .

We call #̂ a moment estimator of #. For example, the moment
estimator of f2 is

f̂2 = ˆ̀2 − ˆ̀2
1 =

1
=

=∑
8=1
.2
8 −

(
1
=

=∑
8=1
.8

)2

.
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Least squares estimator
I The moment estimator of ( (b) is the sample average:

(̂ (b) =1
=

=∑
8=1

(
.8 − ^ ′8b

)2

=
1
=
((� (b)

where

((� (b) =
=∑
8=1

(
.8 − ^ ′8b

)2

is called the sum-of-squared-errors function.
I Since the projection coefficient minimizes ( (b), the OLS

estimator minimizes (̂ (b):

#̂ = argmin
b∈R:

(̂ (b) = argmin
b∈R:

((� (b) .
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Solving for least squares with one regressor
I Consider the case : = 1 so that the coefficient V is a scalar. Then

((� (V) =
=∑
8=1
(.8 − -8V)2

=

(
=∑
8=1
.2
8

)
− 2V

(
=∑
8=1

-8.8

)
+ V2

(
=∑
8=1

-2
8

)
.

I The minimizer of ((� (V) is

V̂ =

∑=
8=1 -8.8∑=
8=1 -

2
8

.

I The intercept-only model: -8 = 1 and

V̂ =

∑=
8=1 1.8∑=
8=1 12 =

1
=

=∑
8=1
.8 = .̄ .
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Solving for least squares with multiple regressors
I Expand ((� to find

((� (b) =
=∑
8=1
.2
8 − 2b′

=∑
8=1

^8.8 + b′
=∑
8=1

^8^
′
8b.

I The first-order condition is

0 =
m

mb
((�

(
#̂
)
= −2

=∑
8=1

^8.8 + 2
=∑
8=1

^8^
′
8 #̂,

which is actually a system of : equations with : unknowns.
I We find an explicit formula for the OLS:

#̂ =

(
=∑
8=1

^8^
′
8

)−1 (
=∑
8=1

^8.8

)
.
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I Alternatively, we can write the projection coefficient # as an
explicit function of the moments W^. = E (^. ) and
W^^ = E (^^ ′). Their moment estimators are

Ŵ^. =
1
=

=∑
8=1

^8.8 and Ŵ^^ =
1
=

=∑
8=1

^8^
′
8 .

I The moment estimator of # replaces the population moments
with the sample moments:

#̂ = Ŵ
−1
^^ Ŵ^.

=

(
1
=

=∑
8=1

^8^
′
8

)−1 (
1
=

=∑
8=1

^8.8

)
=

(
=∑
8=1

^8^
′
8

)−1 (
=∑
8=1

^8.8

)
which is identical with OLS.
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Least squares residuals
I Define the fitted value .̂8 = ^ ′8 #̂ and the residual
4̂8 = .8 − .̂8 = .8 − ^ ′8 #̂.

I Note that .8 = .̂8 + 4̂8 and .8 = ^ ′8 #̂ + 4̂8 .
I 48 is called error and 4̂8 is called residual. The OLS first-order

condition implies
∑=
8=1 ^8 4̂8 = 0.

I Alternatively,
=∑
8=1

^8 4̂8 =

=∑
8=1

^8
(
.8 − ^ ′8 #̂

)
=

=∑
8=1

^8.8 −
=∑
8=1

^8^
′
8 #̂

=

=∑
8=1

^8.8 −
=∑
8=1

^8^
′
8

(
=∑
8=1

^8^
′
8

)−1 (
=∑
8=1

^8.8

)
= 0.

I When ^8 contains a constant,
∑=
8=1 4̂8 = 0.
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Demeaned regressors

I Sometimes it is useful to separate the constant from the other
regressors: .8 = ^ ′8# + U + 48 , where U is the intercept and ^8
does not contain a constant.

I The least-squares estimates and residuals can be written as
.8 = ^ ′

8
#̂ + Û + 4̂8.

I Then
∑=
8=1 4̂8 = 0 and

∑=
8=1 ^8 4̂8 = 0 can be written as

0 =

=∑
8=1

(
.8 − ^ ′8 #̂ − Û

)
0 =

=∑
8=1

^8
(
.8 − ^ ′8 #̂ − Û

)
.
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I Inserting Û = .̄ − ¯̂ ′ #̂ into the second equation:

=∑
8=1

^8
( (
.8 − .̄

)
−

(
^8 − ¯̂ ) ′

#̂
)
= 0.

I Solving for #̂ we find

#̂ =

(
=∑
8=1

(
^8 − ¯̂ ) (

^8 − ¯̂ ) ′)−1 (
=∑
8=1

(
^8 − ¯̂ ) (

.8 − .̄
))
.
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Model in matrix notation
I We can stack these = equations together

.1 = ^ ′1# + 41

.2 = ^ ′2# + 42

...

.= = ^ ′=# + 4=.

I Define

_ =

©«
.1
.2
...

.=

ª®®®®¬
, ^ =

©«
^ ′1
^ ′2
...

^ ′=

ª®®®®¬
, e =

©«
41
42
...

4=

ª®®®®¬
.

_ and e are = × 1 vectors and ^ is an = × : matrix.
I The system of = equations can be written as

_ = ^# + e.
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I Sample sums can be written in matrix notation:

=∑
8=1

^8^
′
8 = ^ ′^ and

=∑
8=1

^8.8=^ ′_ .

I Therefore the least-squares estimator can be written as

#̂ = (^ ′^)−1 (^ ′_) .

I The residual vector is ê = _ − ^#̂. We can write
∑=
8=1 ^8 4̂8 = 0

as ^ ′ê = 0.
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Projection matrix

I Define
V = ^ (^ ′^)−1 ^ ′.

Observe
V^ = ^ (^ ′^)−1 ^ ′^ = ^ .

This is a property of a projection matrix.
I For any matrix ` which can be written as ` = ^� for some

matrix �,

V` = V^� = ^ (^ ′^)−1 ^ ′^� = ^� = `.

I If we partition the matrix ^ into two matrices ^1 and ^2 so that

^ =
[
^1 ^2

]
then V^1 = ^1.
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The matrix V is symmetric and idempotent:

V′ =
(
^ (^ ′^)−1 ^ ′

) ′
= (^ ′) ′

(
(^ ′^)−1

) ′
(^) ′

= ^
(
(^ ′^) ′

)−1
^ ′

= ^
(
(^) ′ (^ ′) ′

)−1
^ ′

= V

VV = V^ (^ ′^)−1 ^ ′

= ^ (^ ′^)−1 ^ ′

= V.
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I The matrix V has the property that it creates the fitted values in a
least-squares regression:

V_ = ^ (^ ′^)−1 ^ ′_ = ^#̂ = _̂ .

I A special example of a projection matrix occurs when ^ = 1 is
an =-vector of ones. Then

V1 = 1 (1′1)−1 1′

=
1
=

11′.

I Note

V1_ = 1 (1′1)−1 1′_
= 1.̄

creates an =-vector whose elements are the sample mean .̄ of .8
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Theorem
The 8Cℎ diagonal element of V = ^ (^ ′^)−1 ^ ′ is

ℎ88 = ^ ′8 (^ ′^)
−1 ^8 .

=∑
8=1

ℎ88 = trV = :

and 0 ≤ ℎ88 ≤ 1.

trV = tr
(
^ (^ ′^)−1 ^ ′

)
= tr

(
(^ ′^)−1 ^ ′^

)
= tr (O:)
= :

One implication is that the rank of V is : .
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Orthogonal projection
I Define

S = O= − V

= O= − ^ (^ ′^)−1 ^ ′.

I Note
S^ = (O= − V) ^ = ^ − V^ = ^ − ^ = 0.

Thus S and ^ are orthogonal. We call S the orthogonal
projection matrix.

I If ` = ^�, then
S` = ` − V` = 0.

For example, S^1 = 0 for any subcomponent ^1 of ^ and
SV = 0.

I S is symmetric (S ′ = S) and idempotent (SS = S).
trS = = − : . The rank of S is = − : .
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I S creates least-square residuals:

S_ = _ − V_ = _ − ^#̂ = ê.

I When ^ = 1,

S1 = O= − V1

= O= − 1 (1′1)−1 1′

and S1 creates demeaned values S1_ = _ − 1.̄ .
I We find

ê = S_ = S (^# + e) = Se.

21 / 28



Estimation of error variance

I If 48 were observed, we would estimate f2 = E
(
42
8

)
by

f̃2 = =−1 ∑=
8=1 4

2
8
. This is infeasible as 48 is not observed.

I The feasible estimator: f̂2 = =−1 ∑=
8=1 4̂

2
8
. In matrix notation,

f̃2 = =−1e′e and f̂2 = =−1 ê′ê.
I Since ê = S_ = Se,

f̂2 = =−1 ê′ê = =−1_ ′SS_ = =−1_ ′S_ = =−1e′Se.

I An implication:

f̃2 − f̂2 = =−1e′e − =−1e′Se = =−1e′Ve ≥ 0.
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Analysis of variance

I Write
_ = V_ + S_ = _̂ + ê,

where
_̂
′
ê = (V_) ′ (S_) = _ ′VS_ = 0.

I Then
_ ′_ = _̂

′
_̂ + 2_̂ ′ê + ê′ê = _̂

′
_̂ + ê′ê

or
=∑
8=1
.2
8 =

=∑
8=1
.̂2
8 +

=∑
8=1

4̂2
8 .
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I Since _ = _̂ + ê,
_ − 1.̄ = _̂ − 1.̄ + ê,

where (
_̂ − 1.̄

) ′
ê = _̂

′
ê − .̄1′ê = 0.

I Then (
_ − 1.̄

) ′ (
_ − 1.̄

)
=

(
_̂ − 1.̄

) ′ (
_̂ − 1.̄

)
+ ê′ê

or
=∑
8=1

(
.8 − .̄

)2
=

=∑
8=1

(
.̂8 − .̄

)2 +
=∑
8=1

4̂2
8 .

This is commonly called the analysis-of-variance formula for
least squares regression.
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I A commonly reported statistic is the '2:

'2 =

∑=
8=1

(
.̂8 − .̄

)2∑=
8=1

(
.8 − .̄

)2 = 1 −
∑=
8=1 4̂

2
8∑=

8=1
(
.8 − .̄

)2 .

This is a measure of goodness of regression fit.
I One deficiency with '2 is that it increases when regressors are

added to a regression so the “fit” can be always increased by
increasing the number of regressors.
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Regression components
I Partition

^ =
[
^1 ^2

]
and

# =

(
#1
#2

)
.

I Then the regression model can be rewritten as

_ = ^1#1 + ^2#2 + e

and
_ = ^#̂ + ê = ^1 #̂1 + ^2 #̂2 + ê.

I We show that

#̂1 =
(
^ ′1S2^1

)−1 (
^ ′1S2_

)
#̂2 =

(
^ ′2S1^2

)−1 (
^ ′2S1_

)
.

26 / 28



Residual regression

I Note

#̂2 =
(
^ ′2S1^2

)−1 (
^ ′2S1_

)
=

(
^ ′2S1S1^2

)−1 (
^ ′2S1S1_

)
=

(˜̂ ′2 ˜̂2

)−1 (˜̂ ′2 ẽ1

)
where ˜̂2 = S1^2 and ẽ1 = S1_ .

I The estimate #̂2 is algebraically equal to the least-squares
regression of ẽ1 on ˜̂2. ẽ1 is the least-squares residuals from a
regression of _ on ^1. The columns of ˜̂2 are the least-squares
residuals from the regressions of the columns of ^2 on ^1.
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Theorem (Frisch-Waugh-Lovell (FWL) )
The OLS estimator of #2 and the OLS residuals ê may be
equivalently computed by either the OLS regression or via the
following algorithm:
1. Regress _ on ^1 , obtain residuals ẽ1;
2. Regress ^2 on ^1, obtain residuals ˜̂2;
3. Regress ẽ1 on ˜̂2, obtain OLS estimates #̂2 and residuals ê .

I To check (3), note(
O= − ˜̂2

(˜̂ ′2 ˜̂2

)−1 ˜̂ ′2) ẽ1 = S1_ − S1^2 #̂2 =

S1

(
^1 #̂1 + ^2 #̂2 + ê

)
− S1^2 #̂2 = S1 ê = ê.
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