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Random Sampling

I The simplest context is when the observations are mutually
independent, in which case we say that they are independent and
identically distributed, or i.i.d. It is also common to describe iid
observations as a random sample.

Assumption
The observations {(.1, ^1) , ..., (.8 , ^8) , ..., (.=, ^=)} are
independent and identically distributed.

I If you take any two individuals 8 ≠ 9 in a sample, the values
(.8 , ^8) are independent of the values

(
. 9 , ^ 9

)
yet have the same

distribution.
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Linear Regression Model

Assumption (Linear Regression Model)
The observations (.8 , ^8) satisfy the linear regression equation

.8 = ^ ′8# + 48
E (48 | ^8) = 0.

I Heteroskedastic regression:E
(
42
8
| ^8

)
= f2 (^8) = f2

8
.

I Homoskedastic regression: the conditional variance is constant.

Assumption
The conditional variance of the error

E
(
42
8 | ^8

)
= f2 (^8) = f2

is independent of ^8 .
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Mean of Least-Squares Estimator
I Since the observations are assumed to be i.i.d., then

E (.8 | ^)
i.i.d.
= E (.8 | ^8) = ^ ′8#.

I By the conditioning theorem and the linearity of expectations,

E
(
#̂ | ^

)
= E

©­«
(
=∑
8=1

^8^
′
8

)−1 (
=∑
8=1

^8.8

)
| ^ª®¬

=

(
=∑
8=1

^8^
′
8

)−1

E

((
=∑
8=1

^8.8

)
| ^

)
=

(
=∑
8=1

^8^
′
8

)−1 =∑
8=1
E (^8.8 | ^)

=

(
=∑
8=1

^8^
′
8

)−1 =∑
8=1

^8E (.8 | ^)

=

(
=∑
8=1

^8^
′
8

)−1 =∑
8=1

^8^
′
8# = #.

4 / 59



I Using matrix notation,

E (_ | ^) =
©­­­«

...

E (.8 | ^)
...

ª®®®¬ =
©­­­«

...

^ ′8
...

#
ª®®®¬ = ^#

E (e | ^) =
©­­­«

...

E (48 | ^)
...

ª®®®¬ =
©­­­«

...

E (48 | ^8)
...

ª®®®¬ = 0.

I By the conditioning theorem and the linearity of expectations,

E
(
#̂ | ^

)
= E

(
(^ ′^)−1 ^ ′_ | ^

)
= (^ ′^)−1 ^ ′E (_ | ^)
= (^ ′^)−1 ^ ′^#

= #.
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I Since _ = ^# + e,

#̂ = (^ ′^)−1 (^ ′ (^# + e))
= (^ ′^)−1 ^ ′^# + (^ ′^)−1 (^ ′e)
= # + (^ ′^)−1 ^ ′e.

I By the conditioning theorem and the linearity of expectations,

E
(
#̂ − # | ^

)
= E

(
(^ ′^)−1 ^ ′e | ^

)
= (^ ′^)−1 ^ ′E (e | ^)
= 0.
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Theorem
In the linear regression model and i.i.d. sampling

E
(
#̂ | ^

)
= #

I The conditional distribution of #̂ is centered at #.
I Applying the law of iterated expectations,

E
(
#̂
)
= E

(
E

(
#̂ | ^

))
= #.

7 / 59



Variance of Least Squares Estimator

I For any A × 1 random vector `, define the A × A covariance matrix

Var (`) = E
(
(` − E (`)) (` − E (`)) ′

)
= E (``′) − (E (`)) (E (`)) ′ .

I For any pair (`, ^), define the conditional covariance matrix

Var (` | ^) = E
(
(` − E (` | ^)) (` − E (` | ^)) ′ | ^

)
.

I Define
\ #̂ = Var

(
#̂ | ^

)
,

the conditional covariance matrix of the LS estimators.
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I The conditional covariance matrix of the error e is

Var (e | ^) = E (ee′ | ^) = J .

The 8Cℎ diagonal element of J is

E
(
42
8 | ^

)
= E

(
42
8 | ^8

)
= f2

8

while the 8 9 Cℎ off-diagonal element of J is

E
(
484 9 | ^

) i.i.d
= E (48 | ^8) E

(
4 9 | ^ 9

)
= 0.

The first equality holds because of independence of the
observations.

I Thus J is a diagonal matrix with 8Cℎ diagonal element f2
8
:

J = diag
(
f2

1 , . . . , f
2
=

)
=

©­­­­­«
f2

1 0 · · · 0
0 f2

2 · · · 0
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · f2
=

ª®®®®®¬
.
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I In the special case of homoskedasticity,

E
(
42
8 | ^8

)
= f2

8 = f
2

and we have J = O=f
2.

I For any = × A matrix G = G (^),
Var

(
G′_ | ^

)
= Var

(
G′e | ^

)
= G′JG.

I We write #̂ = G′_ where G = ^ (^ ′^)−1 and thus

\ #̂ = Var
(
#̂ | ^

)
= G′JG =

(
^ ′^

)−1 ^ ′J^
(
^ ′^

)−1
.

^ ′J^ =

=∑
8=1

^8^
′
8f

2
8 .

I In the special case of homoskedasticity, J = O=f
2, so

\ #̂ =
(
^ ′^

)−1
f2.
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Theorem
In the linear regression model and i.i.d. sampling

\ #̂ = Var
(
#̂ | ^

)
= (^ ′^)−1 ^ ′J^ (^ ′^)−1

.

In the homoskedastic linear regression model and i.i.d. sampling

\ #̂ = f
2 (^ ′^)−1

.
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Gauss-Markov Theorem

I Now consider the class of estimators that can be written as
#̃ = G′_ , where G is an = × : matrix depending only on ^.

I The LS estimator is the special case: G = ^ (^ ′^)−1.
I The Gauss-Markov theorem says that the LS estimator is the best

choice among linear unbiased estimators when the errors are
homoskedastic, in the sense that the least-squares estimator has
the smallest variance.
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I For any linear estimator #̃ = G′_ we have

E
(
#̃ | ^

)
= G′E (_ | ^) = G′^#

so that #̃ is unbiased if and only if G′^ = O: . Furthermore,

Var
(
#̃ | ^

)
= Var (G′_ | ^) = G′JG = G′Gf2.

I The best unbiased linear estimator is obtained by finding the
matrix G0 satisfying G′0^ = O: such that for any other matrix G
satisfying G′^ = O: then G′G − G′0G0 is positive semi-definite.

13 / 59



Theorem
In the homoskedastic linear regression model and i.i.d sampling, if #̃
is a linear unbiased estimator of # then

Var
(
#̃ | ^

)
≥ f2 (^ ′^)−1

.

I The theorem is limited because the class of models is restricted
to homoskedastic linear regression and the class of potential
estimators is restricted to linear unbiased estimators.
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Residuals

I The residuals:
ê = Se

where S = O= − ^ (^ ′^)−1 ^ ′.
I We compute

E ( ê | ^) = E (Se | ^) = SE (e | ^) = 0
Var ( ê | ^) = Var (Se | ^) = SVar (Se | ^) S = SJS .

I Under the assumption of conditional homoskedasticity,

E
(
42
8 | ^8

)
= f2 and Var ( ê | ^) = Sf2.
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Estimation of Error Variance
I The method of moments estimator (MME) of f2 = E

(
42
8

)
is the

sample average of the squared residuals:

f̂2 =
1
=

=∑
8=1

4̂2
8 .

I Observe

f̂2 =
1
=
e′Se =

1
=

tr (e′Se) = 1
=

tr (See′)

and

E
(
f̂2 | ^

)
=

1
=

tr (E (See′ | ^))

=
1
=

tr (SE (ee′ | ^))

=
1
=

tr (SJ) .
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I Under the homoskedasticity assumption E
(
42
8
|^8

)
= f2 so that

J = O=f
2,

E
(
f̂2 | ^

)
=

1
=

tr
(
Sf2

)
= f2

(
= − :
=

)
.

I To obtain an unbiased estimator is by rescaling the estimator:

B2 =
1

= − :

=∑
8=1

4̂2
8 .

Now E
(
B2 | ^

)
= f2 and E

(
B2) = f2.
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Covariance Matrix Estimation Under Homoskedasticity
I Under homoskedasticity, the covariance matrix takes the

relatively simple form \0
#̂
= (^ ′^)−1 f2 which is known up to

the unknown scale f2.
I The classic covariance matrix estimator:

\̂
0
#̂ = (^ ′^)

−1
B2.

I \̂
0
#̂ is conditionally unbiased for \ #̂ under homoskedasticity:

E
(
\̂

0
#̂ | ^

)
= (^ ′^)−1 E

(
B2 | ^

)
= (^ ′^)−1

f2

= \0
#̂
.

I This was the dominant covariance matrix estimator in applied
econometrics for many years, and is still the default method in
most regression packages.
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Covariance Matrix Estimation Under Heteroskedasticity
I If the estimator \̂0

#̂ is used, but the regression error is
heteroskedastic, it is possible for \̂0

#̂ to be quite biased for

\ #̂ = (^
′^)−1 (^ ′J^) (^ ′^)−1

where

J =diag
(
f2

1 , . . . , f
2
=

)
=E (ee′ | ^) .

I If 42
8
, 8 = 1, ..., = are observed, we can construct an unbiased

estimator for \ #̂:

\̂
8340;

#̂ = (^ ′^)−1

(
=∑
8=1

^8^
′
84

2
8

)
(^ ′^)−1

.
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I Compute

E
(
\̂
8340;

#̂ | ^
)
= (^ ′^)−1

(
=∑
8=1

^8^
′
8E

(
42
8 | ^

))
(^ ′^)−1

= (^ ′^)−1

(
=∑
8=1

^8^
′
8f

2
8

)
(^ ′^)−1

= (^ ′^)−1 (^ ′J^) (^ ′^)−1

= \ #̂ .

I A feasible version:

\̂
,

#̂ =
(
^ ′^

)−1
(
=∑
8=1

^8^
′
8 4̂

2
8

) (
^ ′^

)−1
.

This is known as the White covariance matrix estimator. It is
biased: E

(
\̂
8340;

#̂ | ^
)
≠ \ #̂ .

20 / 59



Measures of Fit
I A commonly reported measure of regression fit is the regression
'2:

'2 = 1 −
∑=
8=1 4̂

2
8∑=

8=1
(
.8 − .̄

)2 = 1 − f̂
2

f̂2
.

.

I '2 can be viewed as an estimator of the population parameter

d2 =
Var

(
^ ′8#

)
Var (.8)

= 1 − f
2

f2
.

.

I f̂2 and f̂2
.
are biased estimators. The adjusted '2 uses unbiased

versions:

'̄2 = 1 − B2

f̃2
.

= 1 −
(= − :)−1 ∑=

8=1 4̂
2
8

(= − 1)−1 ∑=
8=1

(
.8 − .̄

)2 .

I '2 cannot be used for model selection, as it necessarily increases
when regressors are added to a regression model.
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Normal Regression Model

I The normal regression model is the linear regression model with
an independent normal error

. =^ ′# + 4

4 ∼N
(
0, f2

)
.

I The likelihood is the name for the joint probability density of the
data, evaluated at the observed sample, and viewed as a function
of the parameters.

I The maximum likelihood estimator is the value which maximizes
this likelihood function.

22 / 59



I The conditional density of . given ^:

5 (. | ^) = 1(
2cf2)1/2 exp

(
− 1

2f2 (. − ^ ′#)2
)
.

I The conditional density of _ given ^:

5_ |^ (_ | ^) =

=∏
8=1

5.8 |^ 8
(.8 | ^8)

=

=∏
8=1

1(
2cf2)1/2 exp

(
− 1

2f2
(
.8 − ^ ′8#

)2
)

=
1(

2cf2)=/2 exp

(
− 1

2f2

=∑
8=1

(
.8 − ^ ′8#

)2
)

= !

(
#, f2

)
.

!
(
#, f2) is called the likelihood function.
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I Work with the natural logarithm:

log 5 (_ | ^) = −=
2

log
(
2cf2

)
− 1

2f2

=∑
8=1

(
.8 − ^ ′8#

)2

= log!
(
#, f2

)
.

I The MLE: (
#̂mle, f̂

2
mle

)
= argmax

#∈R: ,f2>0
log!

(
#, f2

)
.
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I In most applications of maximum likelihood, the MLE must be
found by numerical methods. However, in the case of the normal
regression model we can find an explicit expression.

I FOC:

0 =
mlog!

(
#, f2)

m#

�����
#=#̂mle ,f

2=f̂2
mle

=
1
f̂2

mle

=∑
8=1

^8
(
.8 − ^ ′8 #̂mle

)
0 =

mlog!
(
#, f2)

mf2

�����
#=#̂mle ,f

2=f̂2
mle

= − =

2f̂2
mle
+ 1
f̂4

mle

=∑
8=1

(
.8 − ^ ′8 #̂mle

)
.
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I The MLE:

#̂mle =

(
=∑
8=1

^8^
′
8

)−1 (
=∑
8=1

^8.8

)
= #̂ols.

I The MLE for f2:

f̂2
mle =

1
=

=∑
8=1

(
.8 − ^ ′8 #̂mle

)2
=

1
=

=∑
8=1

(
.8 − ^ ′8 #̂ols

)2
=

1
=

=∑
8=1

4̂2
8 .

I Maximized log-likelihood is a measure of goodness of fit:

log!
(
#̂mle, f̂

2
mle

)
= −=

2
log

(
2cf̂2

mle

)
− =

2
.
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Distribution of OLS Coefficient Vector
I The normality assumption 48 | ^8 ∼ N

(
0, f2) and iid

assumption imply

e | ^ ∼ N
(
0, O=f2

)
.

I The OLS estimator satisfies

#̂ − # = (^ ′^)−1 ^ ′e,

which is a linear function of e.
I Conditional on ^,

#̂ − # | ^ ∼ (^ ′^)−1 ^ ′N
(
0, O=f2

)
∼ N

(
0, f2 (^ ′^)−1 ^ ′^ (^ ′^)−1

)
= N

(
0, f2 (^ ′^)−1

)
or

#̂ | ^ ∼ N
(
#, f2 (^ ′^)−1

)
.
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I This shows that under the assumption of normal errors, the OLS
estimate has an exact normal distribution.

Theorem
In the linear regression model,

#̂ | ^ ∼ N
(
#, f2 (^ ′^)−1

)
I Any linear function of the OLS estimate is also normally

distributed, including individual estimates:

V̂ 9 | ^ ∼ N
(
V 9 , f

2
[
(^ ′^)−1

]
9 9

)
.
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Distribution of OLS Residual Vector
I The OLS residual vector: ê = Se. ê is linear in e.
I Conditional on ^,

ê = Se | ^ ∼ N
(
0, f2SS

)
= N

(
0, f2S

)
.

I The joint distribution of #̂ and ê:(
#̂ − #
ê

)
=

(
(^ ′^)−1 ^ ′e

Se

)
=

(
(^ ′^)−1 ^ ′

S

)
e.

I So (
#̂ − #
ê

)
| ^ ∼ N

(
0, f

2 (^ ′^)−1 0
0 f2S

)
.

Theorem
In the linear regression model,ê | ^ ∼ N

(
0, f2S

)
and is

independent of #̂.
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Distribution of Variance Estimate
I B2 = ê′ê/(= − :) = e′Se/(= − :).
I The spectral decomposition of S: S = N�N′ with N′N = O=

and � is diagonal with the eigenvalues of S on the diagonal.
I Since S is idempotent with rank = − : , it has = − : eigenvalues

equalling 1 and : eigenvalues equalling 0:

� =

[
O=−: 0

0 0:

]
.

I [ = N′e ∼ N
(
0, O=f2) .

(= − :) B
2

f2 =
e′Se

f2

=
e′N

f

[
O=−: 0

0 0:

]
N′e

f

=
[

f

′ [ O=−: 0
0 0:

]
[

f

∼ j2
=−: .
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Theorem
In the linear regression model, conditional on ^,

(= − :) B2

f2 ∼ j2
=−:

and is independent of #̂.
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C-statistic
I The “I-statistic”:

V̂ 9 − V 9√
f2

[
(^ ′^)−1

]
9 9

∼ N (0, 1) .

I Replace the unknown variance f2 with its estimate B2:

) =
V̂ 9 − V 9√

B2
[
(^ ′^)−1

]
9 9

=
V̂ 9 − V 9
B
(
V̂ 9

) .
I Write the C-statistic as the ratio of the standardized statistic and

the square root of the scaled variance estimate:

) =
V̂ 9−V9√

B2 [ (^′^ )−1] 9 9
/
√
(=−:)B2

f2 /(=−:)

∼ N (0, 1)√
j2
=−:/(=−:)

∼ C=−: .
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Theorem
In the normal regression model, ) ∼ C=−: .

I This derivation shows that the C-statistic has a sampling
distribution which depends only on the quantity = − : . The
distribution does not depend on any other features of the data.

I In this context, we say that the distribution of the C-statistic is
pivotal, meaning that it does not depend on unknowns.

I The theorem only applies to the C-statistic constructed with the
homoskedastic standard error estimate. It does not apply to a
C-statistic constructed with the robust standard error estimates.
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Confidence Intervals for Regression Coefficients

I An OLS estimate #̂ is a point estimate for the coefficients #.
I An interval estimate takes the form �̂ =

[
!̂, *̂

]
. The goal of an

interval estimate �̂ is to contain the true value with high
probability.

I The interval estimate �̂ is a function of the data and hence is
random.

I An interval estimate �̂ is called a 1 − U confidence interval when
Pr

(
# ∈ �̂

)
= 1 − U.

I A good choice for a confidence interval is by adding and
subtracting from the estimate V̂ a fixed multiple of the standard
error:

�̂ =
[
V̂ − 2 · B

(
V̂
)
, V̂ + 2 · B

(
V̂
) ]
.
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I �̂ is the set of parameter values for V such that the t-statistic
) (V) is smaller than some constant 2:

�̂ = [V : |) (V) | ≤ 2] =
{
V : −2 ≤ V̂ − V

B
(
V̂
) ≤ 2} .

I The coverage probability is

Pr
(
V ∈ �̂

)
= Pr ( |) (V) | ≤ 2)
= Pr (−2 ≤ ) (V) ≤ 2)
= 2 · � (2) − 1

where � is the C distribution with = − : degrees of freedom
(� (−2) = 1 − � (2)).

Theorem
In the normal regression model, �̂ with 2 = �−1 (1 − U/2) has
coverage probability Pr

(
V ∈ �̂

)
= 1 − U.
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Hypothesis Testing

I Let ) ∈ Θ ⊂ R3 be a parameter of interest. Some examples of )
include:
I The coefficient of one of the regressors: \ = V1, 3 = 1, Θ = R.
I A vector of coefficients: ) = (V1, . . . , V;) ′, 3 = ;, Θ = R; .
I The variance of errors: \ = f2, 3 = 1, Θ = (0,∞).

I A statistical hypothesis is an assertion about ) . Usually, we have
two competing hypotheses, and we want to draw a conclusion,
based on the data, as to which of the hypotheses is true. Let
Θ0 ⊂ Θ and Θ1 ⊂ Θ such that Θ0 ∩ Θ1 = ∅ and Θ0 ∪ Θ1 = Θ.
The two competing hypotheses are:
I Null hypothesis H0 : ) ∈ Θ0. This is a hypothesis that is held as

true, unless data provides sufficient evidence against it.
I Alternative hypothesis H1 : ) ∈ Θ1. This is a hypothesis against

which the null is tested. It is held to be true if the null is found
false.
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I The subsets Θ0 and Θ1 are chosen by the econometrician and
therefore are known. Their union defines the maintained
hypothesis, i.e. the space of values that ) can take. For example,
when Θ = R, one may consider Θ0 = {0}, and Θ1 = R \ {0}.
Another example is Θ0 = (−∞, 0] and Θ1 = (0,∞).

I When Θ0 has exactly one element (Θ0 is a singleton), we say that
H0 : ) ∈ Θ0 is a simple hypothesis. Otherwise, we say that H0 is
a composite hypothesis. Similarly, H1 : ) ∈ Θ1 can be simple or
composite depending on whether Θ1 is a singleton or not.

I Let ( ∈ S denote a statistic and the range of its values. A
decision rule is defined by a partition of S into acceptance region
A and rejection (critical) region R (A ∩ R = ∅ andA ∪ R = S).

I H0 is rejected when the test statistic falls in to the rejection
region R.
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Type I and Type II Errors

I There are two types of errors that the econometrician can make:

Truth

Decision
H0 H1

H0 X Type II error
H1 Type I error X

I Type I error is the error of rejecting H0 when H0 is true.
I Type II error is the error of accepting H0 when H1 is true.
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Power Function
I The probabilities of Type I and II errors can be described using

the power function.
I Consider a test based on ( that rejects H0 when ( ∈ R. The

power function of this test is defined as:

c ()) = Pr) (( ∈ R) ,

where Pr) (·) denotes that the probability must be calculated
under the assumption that the true value of the parameter is ) .

I The largest probability of Type I error (rejecting H0 when it is
true) is

sup
)∈Θ0

c ()) = sup
)∈Θ0

Pr) (( ∈ R) .

The expression above is also called the size of a test.
I When H0 is simple, i.e. Θ = {)0}, the size can be computed

simply as c ()0) = Pr)0 (( ∈ R).
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I The probability of Type II error is:

1 − c ()) = 1 − Pr) (( ∈ R) for ) ∈ Θ1.

I Typically, Θ1 has many elements, and therefore the probability of
Type II error depends on the true value ) .

I One would like to have the probabilities of Type I and II errors to
be as small as possible, but unfortunately, they are inversely
related.

I To reduce the probability of Type I error, one should make R
smaller. This, however, will increase the probability of Type II
error.
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Definition
A test with power function c()) is said to be a level U test if
sup)∈Θ0

c ()) ≤ U. We say it is a size U test if sup)∈Θ0
c ()) = U.

I Significance level of a test us the largest Type I error probability
one tolerates. Typically, the significance level is chosen to be a
small number close to zero: for example, 0.01, 0.05, 0.10.

I By convention, a valid test must control the probability of Type I
error (level U test, where U is equal to the significance level).

I We want the probability of a Type II error probability to be as
small as possible for given Type I error probability.
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Steps of Hypothesis Testing

1. Specify H0 and H1.

2. Choose the significance level U.
3. Define a decision rule (a test statistic ( and a rejection region
RU) so that the resulting test is a level U test. Note that RU
typically depends on U.

4. Perform the test.
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?-Value

I The lowest significance level consistent with rejecting H0 is
called the ?-value:

?-value=min {0 < U < 1 : ( ∈ RU} .

I Note that ?-value is a statistic and a measure of the evidence
against H0.

I If the ?-value is smaller than our tolerance(significance level),
then we reject H0.
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Power of a Test

I The power of a test with the power function c()) is defined as

c()) for ) ∈ Θ1.

I Given two level U tests, we should prefer a more powerful test.
I We say that a level U test with power function c1()) is uniformly

more powerful than a level U test with power function c2()) if
c1()) ≥ c2()) for all ) ∈ Θ1.
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A Simple Example
I Consider a sample (-1, -2, ..., -=) from a normal population

with mean ` and variance f2. Suppose we know f2 for now.
Consider H0 : ` = 0 against H1 : ` > 0.

I Consider ) = -
f/√= , where - = =

−1 ∑=
8=1 -8 , which is a N (0, 1)

random variable under H0.
I Consider RU = [I1−U,∞), where Pr (N (0, 1) > I1−U) = U.

Under H0, Pr [) ∈ RU] = U.
I For any given value of `, define

)` = ) −
`

f/√= =
-̄ − `
f/√= ,

which is always N (0, 1) if the true mean is `.
I We reject the test when ) ≥ I1−U, which holds if and only if

)` = ) −
`

f/√= ≥ I1−U −
`

f/√= .

It follows for this simple example, that the power function is

c (`) = 1 −Φ
(
I1−U −

√
=`

f

)
.
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I We notice that c (`) is smaller for all ` if the significance level U
is smaller (and hence I1−U is larger). This reflects the trade-off
between Type I error and Type II error probabilities: we cannot
reduce both simultaneously.

I c (`) is increasing in `. For `’s that are farther away from 0, the
test can detect such deviation at a higher probability.

I As `→∞, the power converges to 1. The test is very likely to
reject H0 if the true mean is very large.

I c (`) increases with the sample size =. The test can detect
falseness of H0 at a higher probability if our sample contains
more information.
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C Test
I The null hypothesis:

H0 : V 9 = V 9 ,0.

I The alternative hypothesis:
H1 : V 9 ≠ V 9 ,0.

I The standard testing statistic is

|) | =
����� V̂ 9 − V 9 ,0B

(
V̂ 9

) ����� .
I If H0 is true, we expect |) | to be small, but if H1 is true, then we

would expect |) | to be large. Hence the standard rule is to reject
H0 in favor of H1 for large values of the t-statistic |) |:

Reject H0 if |) | > 2.
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I 2 is called the critical value. Its value is selected to control the
probability of false rejections.

I When the null hypothesis is true, ) has an exact student
distribution. The probability of false rejection is

Pr (Reject H0 | H0) = Pr ( |) | > 2 | H0)
= Pr () > 2 | H0) + Pr () < −2 | H0)
= 1 − � (2) + � (−2)
= 2 (1 − � (2)) .

I We select the value 2 so that this probability equals the
significance level: � (2) = 1 − U/2.

I The ?-value of a C-statistic is ? = 2 (1 − � ( |) |)).

Theorem
In the normal regression model, if the null hypothesis is true, then
|) | ∼ C=−: . If c is set so that Pr ( |C=−: | ≥ 2) = U, then the test
“Reject H0 in favor of H1 if |) | > 2” has level U.
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Power

I Assume that the true value is given by V 9 . Assume for simplicity

that f2 is known, so that B
(
V̂ 9

)
=

√
f2

[
(^ ′^)−1

]
9 9
.

I Write

) =
V̂ 9 − V 9
B
(
V̂ 9

) + V 9 − V 9 ,0
B
(
V̂ 9

) . (1)

I We have that

/ =
V̂ 9 − V 9
B
(
V̂ 9

) | ^ ∼ N (0, 1)

and
V̂ 9 − V 9
B
(
V̂ 9

) + V 9 − V 9 ,0
B
(
V̂ 9

) | ^ ∼ N

(
V 9 − V 9 ,0
B
(
V̂ 9

) , 1

)
.

I The critical value is 2 = Φ−1 (1 − U/2) (Pr (/ > 2) = U/2).
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I If the null hypothesis is false, the distribution of the test statistic
is not centered around zero, and we will see rejection rates higher
than U. The probability to reject is a function of the true value V 9
and depends on the magnitude of

��V 9 − V 9 ,0�� /B (
V̂ 9

)
.

I Now

c (V1) = Pr

(����� V̂ 9 − V 9 ,0B
(
V̂ 9

) ����� > 2
)
= Pr

(����� V̂ 9 − V 9 + V 9 − V 9 ,0B
(
V̂ 9

) ����� > 2
)

= Pr

(�����/ + V 9 − V 9 ,0B
(
V̂ 9

) ����� > 2
)
.
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One-sided Test
I In the case of one-sided tests, the null and alternative hypotheses

may be specified as

H0 : V 9 ≤ V 9 ,0,
H1 : V 9 > V 9 ,0.

I In this case, a valid test should satisfy the following condition:

sup
V 9 ≤V 9,0

Pr
(
reject H0 | V 9

)
≤ U, (2)

i.e. the maximum probability to reject �0 when it is true should
not exceed U.

I Consider the following test (decision rule):

Reject H0 when ) > 2.

where 2 is set so that Pr (C=−: ≥ 2) = U.
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I Under H0, we have:

Pr
(
reject H0 | V 9 ≤ V 9 ,0

)
= Pr

(
) > 2 | V 9 ≤ V 9 ,0

)
= Pr

(
V̂ 9 − V 9 ,0
B
(
V̂ 9

) > 2 | V 9 ≤ V 9 ,0

)
≤ Pr

(
V̂ 9 − V 9
B
(
V̂ 9

) > 2 | V 9 ≤ V 9 ,0

)
since V 9 ≤ V 9 ,0

= U (since
V̂ 9 − V 9
B
(
V̂ 9

) ∼ C=−:).
I The size control condition is satisfied.
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Testing a Single Linear Restriction
I Suppose we want to test

H0 : c′# = A,

H1 : c′# ≠ A.

I In this case, c is a :-vector, A is a scalar, and under the null
hypothesis

21V1 + . . . + 2: V: − A = 0.

I We have that the LS estimator of #

#̂ | ^ ∼ #
(
#, f2 (^ ′^)−1

)
.

Then, under �0,

c′ #̂ − A√
f2c′ (^ ′^)−1 c

| ^ ∼ N (0, 1) .
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I The C-statistic

) =
c′ #̂ − A√

B2c′ (^ ′^)−1 c

=
©­­«

c′ #̂ − A√
f2c′ (^ ′^)−1 c

ª®®¬ /
√

e′Se

f2 /(= − :).

I e′Se/f2 | ^ ∼ j2
=−: and is independent of #̂. Therefore, under

H0, ) | ^ ∼ C=−: .
I The significance level U two-sided test of H0 : c′# = A is given

by “reject H0 if |) | > 2”, where Pr ( |C=−: | > 2) = U.

54 / 59



Testing Multiple Linear Restrictions
I Suppose we want to test

H0 : X# = r,

H1 : X# ≠ r,

where X is a @ × : matrix and r is a @-vector.
I X = O: , r = 0. In this case, we test that V1 = . . . = V: = 0.

I ' =

(
1 1 0 0 . . . 0
0 0 1 0 . . . 0

)
, A =

(
1
0

)
. In this case,

�0 : V1 + V2 = 1, V3 = 0.
I Consider the �-statistic

� =
('((A − '((DA ) /@
'((DA/(= − :)

.

I '((A : the restricted Residual Sum of Squares.
I '((DA : the unrestricted Residual Sum of Squares.
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I Consider the restricted problem

min
b
(_ − ^b) ′ (_ − ^b) subject to Xb = r.

I A Lagrangian function for this problem is

! (b, ,) = (_ − ^b) ′ (_ − ^b) + 2,′ (Xb − r) ,

where , is a @-vector.
I Let #̃, ,̃ be the solution, where #̃ is the restricted LS estimator. It

has to satisfy the first-order conditions

m!
(
#̃, ,̃

)
mb

= 2^ ′^#̃ − 2^ ′_ + 2X′,̃ = 0, (3)

m!
(
#̃, ,̃

)
m,

= X#̃ − r = 0. (4)

I The restricted LS estimator is given by

#̃ = #̂ − (^ ′^)−1 X′
(
X (^ ′^)−1 X′

)−1 (
X#̂ − A

)
,

where #̂ is the LS estimator without the restriction Xb = r.
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I Define the restricted residuals

ẽ = _ − ^#̃

=

(
_ − ^#̂

)
+ ^ (^ ′^)−1 X′

(
X (^ ′^)−1 X′

)−1 (
X#̂ − A

)
= ê + ^ (^ ′^)−1 X′

(
X (^ ′^)−1 X′

)−1 (
X#̂ − A

)
,

I Then,

'((A = ẽ′ẽ

= ê′ê +
(
X#̂ − r

) ′ (
X (^ ′^)−1 X′

)−1 (
X#̂ − r

)
+2ê′^ (^ ′^)−1 X′

(
X (^ ′^)−1 X′

)−1 (
X#̂ − r

)
= '((DA +

(
X#̂ − r

) ′ (
X (^ ′^)−1 X′

)−1 (
X#̂ − r

)
.

I Since B2 = ê′ê/(= − :) = '((DA/(= − :),

� =

(
X#̂ − r

) ′ (
B2X (^ ′^)−1 X′

)−1 (
X#̂ − r

)
/@.
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I We show next that under H0, � | ^ ∼ �@,=−: . First,

X#̂ | ^ ∼ N
(
X#, f2X (^ ′^)−1 X′

)
.

I Then, under H0,

X#̂ − r | ^ ∼ N
(
0, f2X (^ ′^)−1 X′

)
.

It follows that(
X#̂ − r

) ′ (
f2X (^ ′^)−1 X′

)−1 (
X#̂ − r

)
| ^ ∼ j2

@ .

The result follows from
e′Se/f2 | ^ ∼ j2

=−: and independent of #̂ and the definition of
�-distribution.

I Therefore, the test is given by “reject H0 if � > 2”, where
Pr

(
�@,=−: > 2

)
= U.
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Test of Model Significance
I Consider a model with the intercept

.8 = V1 + V2-82 + . . . + V:-8: +*8 ,
I Consider the null hypothesis �0 : V2 = . . . V: = 0. The restricted

model is given by
.8 = V1 +*8 .

I In this case, the restricted LS estimator is Ṽ1 = =
−1 ∑=

8=1.8 = .,

and '((A = )(( =
∑=
8=1

(
.8 − .

)2
. In this case,

� =
()(( − '((DA ) /(: − 1)

'((DA/(= − :)

=
�((/(: − 1)
'((DA/(= − :)

=
'2/(: − 1)(

1 − '2) /(= − :)
∼ �:−1,=−: .
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