Advanced Econometrics

Finite Sample Properties of Least Squares (Hansen Chapter 5)

Instructor: Ma, Jun

Renmin University of China

October 25, 2021

Normal Regression Model

► The normal regression model is the linear regression model with an independent normal error

$$Y = X'\beta + e$$
$$e \sim N(0, \sigma^2).$$

- ► The likelihood is the name for the joint probability density of the data, evaluated at the observed sample, and viewed as a function of the parameters.
- ► The maximum likelihood estimator is the value which maximizes this likelihood function.

ightharpoonup The conditional density of Y given X:

$$f(Y \mid X) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left(-\frac{1}{2\sigma^2} (Y - X'\boldsymbol{\beta})^2\right).$$

 \blacktriangleright The conditional density of Y given X:

$$f_{Y|X}(Y|X) = \prod_{i=1}^{n} f_{Y_{i}|X_{i}}(Y_{i}|X_{i})$$

$$= \prod_{i=1}^{n} \frac{1}{(2\pi\sigma^{2})^{1/2}} \exp\left(-\frac{1}{2\sigma^{2}}\left(Y_{i} - X_{i}'\boldsymbol{\beta}\right)^{2}\right)$$

$$= \frac{1}{(2\pi\sigma^{2})^{n/2}} \exp\left(-\frac{1}{2\sigma^{2}}\sum_{i=1}^{n}\left(Y_{i} - X_{i}'\boldsymbol{\beta}\right)^{2}\right)$$

$$= L\left(\boldsymbol{\beta}, \sigma^{2}\right).$$

 $L(\boldsymbol{\beta}, \sigma^2)$ is called the likelihood function.

► Work with the natural logarithm:

$$\log f(\mathbf{Y} \mid \mathbf{X}) = -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(Y_i - \mathbf{X}_i'\boldsymbol{\beta})^2$$
$$= \log L(\boldsymbol{\beta}, \sigma^2).$$

► The MLE:

$$\left(\hat{\boldsymbol{\beta}}_{\text{mle}}, \hat{\sigma}_{\text{mle}}^2\right) = \underset{\boldsymbol{\beta} \in \mathbb{R}^k, \sigma^2 > 0}{\operatorname{argmax}} \log L\left(\boldsymbol{\beta}, \sigma^2\right).$$

- ► In most applications of maximum likelihood, the MLE must be found by numerical methods. However, in the case of the normal regression model we can find an explicit expression.
- ► FOC:

$$\begin{split} 0 &= \frac{\partial \log L\left(\boldsymbol{\beta}, \sigma^2\right)}{\partial \boldsymbol{\beta}} \Bigg|_{\boldsymbol{\beta} = \hat{\boldsymbol{\beta}}_{\text{mle}}, \sigma^2 = \hat{\sigma}_{\text{mle}}^2} = \frac{1}{\hat{\sigma}_{\text{mle}}^2} \sum_{i=1}^n \boldsymbol{X}_i \left(Y_i - \boldsymbol{X}_i' \hat{\boldsymbol{\beta}}_{\text{mle}} \right) \\ 0 &= \frac{\partial \log L\left(\boldsymbol{\beta}, \sigma^2\right)}{\partial \sigma^2} \Bigg|_{\boldsymbol{\beta} = \hat{\boldsymbol{\beta}}_{\text{mle}}, \sigma^2 = \hat{\sigma}_{\text{mle}}^2} = -\frac{n}{2\hat{\sigma}_{\text{mle}}^2} + \frac{1}{\hat{\sigma}_{\text{mle}}^4} \sum_{i=1}^n \left(Y_i - \boldsymbol{X}_i' \hat{\boldsymbol{\beta}}_{\text{mle}} \right). \end{split}$$

► The MLE:

$$\hat{\boldsymbol{\beta}}_{\text{mle}} = \left(\sum_{i=1}^{n} X_i X_i'\right)^{-1} \left(\sum_{i=1}^{n} X_i Y_i\right) = \hat{\boldsymbol{\beta}}_{\text{ols}}.$$

▶ The MLE for σ^2 :

$$\hat{\sigma}_{\text{mle}}^2 = \frac{1}{n} \sum_{i=1}^n \left(Y_i - X_i' \hat{\beta}_{\text{mle}} \right)^2 = \frac{1}{n} \sum_{i=1}^n \left(Y_i - X_i' \hat{\beta}_{\text{ols}} \right)^2 = \frac{1}{n} \sum_{i=1}^n \hat{e}_i^2.$$

► Maximized log-likelihood is a measure of goodness of fit:

$$\log L\left(\hat{\boldsymbol{\beta}}_{\rm mle}, \hat{\sigma}_{\rm mle}^2\right) = -\frac{n}{2}\log\left(2\pi\hat{\sigma}_{\rm mle}^2\right) - \frac{n}{2}.$$

Distribution of OLS Coefficient Vector

► The normality assumption $e_i \mid X_i \sim N(0, \sigma^2)$ and iid assumption imply

$$e \mid X \sim N(\mathbf{0}, I_n \sigma^2)$$
.

► The OLS estimator satisfies

$$\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} = (X'X)^{-1} X'\boldsymbol{e},$$

which is a linear function of e.

ightharpoonup Conditional on X,

$$\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \mid_{\boldsymbol{X}} \sim (\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{X}' \mathbf{N} \left(0, \boldsymbol{I}_{n} \sigma^{2} \right)$$

$$\sim \mathbf{N} \left(0, \sigma^{2} \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1} \boldsymbol{X}' \boldsymbol{X} \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1} \right)$$

$$= \mathbf{N} \left(0, \sigma^{2} \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1} \right)$$

or

$$\hat{\boldsymbol{\beta}} \mid_{\boldsymbol{X}} \sim N \left(\boldsymbol{\beta}, \sigma^2 \left(\boldsymbol{X}' \boldsymbol{X} \right)^{-1} \right).$$

► This shows that under the assumption of normal errors, the OLS estimate has an exact normal distribution.

Theorem

In the linear regression model,

$$\hat{\boldsymbol{\beta}} \mid_{\boldsymbol{X}} \sim N\left(\boldsymbol{\beta}, \sigma^2 \left(\boldsymbol{X}' \boldsymbol{X}\right)^{-1}\right)$$

► Any linear function of the OLS estimate is also normally distributed, including individual estimates:

$$\hat{\beta}_j \mid_{\boldsymbol{X}} \sim N\left(\beta_j, \sigma^2 \left[(\boldsymbol{X}'\boldsymbol{X})^{-1} \right]_{jj} \right).$$

Distribution of OLS Residual Vector

- ► The OLS residual vector: $\hat{e} = Me$. \hat{e} is linear in e.
- ightharpoonup Conditional on X,

$$\hat{\boldsymbol{e}} = \boldsymbol{M}\boldsymbol{e} \mid \boldsymbol{X} \sim \mathrm{N}\left(0, \sigma^2 \boldsymbol{M} \boldsymbol{M}\right) = \mathrm{N}\left(0, \sigma^2 \boldsymbol{M}\right).$$

► The joint distribution of $\hat{\beta}$ and \hat{e} :

$$\left(\begin{array}{c} \hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \\ \hat{\boldsymbol{e}} \end{array}\right) = \left(\begin{array}{c} (X'X)^{-1} \ X'\boldsymbol{e} \\ \boldsymbol{M}\boldsymbol{e} \end{array}\right) = \left(\begin{array}{c} (X'X)^{-1} \ X' \\ \boldsymbol{M} \end{array}\right) \boldsymbol{e}.$$

► So

$$\left(\begin{array}{c} \hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \\ \hat{\boldsymbol{e}} \end{array}\right) \mid \boldsymbol{X} \sim \mathbf{N} \left(\begin{array}{cc} \sigma^2 \left(\boldsymbol{X}' \boldsymbol{X}\right)^{-1} & \boldsymbol{0} \\ \boldsymbol{0} & \sigma^2 \boldsymbol{M} \end{array}\right).$$

Theorem

In the linear regression model, $\hat{e} \mid X \sim N(0, \sigma^2 M)$ and is independent of $\hat{\beta}$.

Distribution of Variance Estimate

- $ightharpoonup s^2 = \hat{e}'\hat{e}/(n-k) = e'Me/(n-k).$
- The spectral decomposition of M: $M = H\Lambda H'$ with $H'H = I_n$ and Λ is diagonal with the eigenvalues of M on the diagonal.
- ► Since M is idempotent with rank n k, it has n k eigenvalues equalling 1 and k eigenvalues equalling 0:

$$\mathbf{\Lambda} = \left[\begin{array}{cc} \mathbf{I}_{n-k} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}_k \end{array} \right].$$

 $\vdash U = H'e \sim N(0, I_n\sigma^2).$

$$(n-k) s^{2} = e'Me$$

$$= e'H \begin{bmatrix} I_{n-k} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}_{k} \end{bmatrix} H'e$$

$$= U' \begin{bmatrix} I_{n-k} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}_{k} \end{bmatrix} U$$

$$\sim \sigma^{2} \chi_{n-k}^{2}.$$

Theorem

In the linear regression model, conditional on X,

$$\frac{(n-k)\,s^2}{\sigma^2} \sim \chi_{n-k}^2$$

and is independent of $\hat{\beta}$.

t-statistic

► The "z-statistic":

$$\frac{\hat{\beta}_{j} - \beta_{j}}{\sqrt{\sigma^{2} \left[(X'X)^{-1} \right]_{jj}}} \sim \mathcal{N}(0,1).$$

• Replace the unknown variance σ^2 with its estimate s^2 :

$$T = \frac{\hat{\beta}_j - \beta_j}{\sqrt{s^2 \left[(X'X)^{-1} \right]_{jj}}} = \frac{\hat{\beta}_j - \beta_j}{s \left(\hat{\beta}_j \right)}.$$

► Write the *t*-statistic as the ratio of the standardized statistic and the square root of the scaled variance estimate:

$$T = \frac{\hat{\beta}_{j} - \beta_{j}}{\sqrt{s^{2} \left[(\mathbf{X}'\mathbf{X})^{-1} \right]_{jj}}} / \sqrt{\frac{(n-k)s^{2}}{\sigma^{2}} / (n-k)}$$

$$\sim \frac{\mathbf{N}(0,1)}{\sqrt{\chi_{n-k}^{2} / (n-k)}}$$

$$\sim t_{n-k}.$$

Theorem

In the normal regression model, $T \sim t_{n-k}$.

- ▶ This derivation shows that the t-statistic has a sampling distribution which depends only on the quantity n k. The distribution does not depend on any other features of the data.
- ► In this context, we say that the distribution of the *t*-statistic is pivotal, meaning that it does not depend on unknowns.
- ► The theorem only applies to the *t*-statistic constructed with the homoskedastic standard error estimate. It does not apply to a *t*-statistic constructed with the robust standard error estimates.

Confidence Intervals for Regression Coefficients

- ▶ An OLS estimate $\hat{\beta}$ is a point estimate for the coefficients β .
- An interval estimate takes the form $\widehat{C} = [\widehat{L}, \widehat{U}]$. The goal of an interval estimate \widehat{C} is to contain the true value with high probability.
- ▶ The interval estimate \widehat{C} is a function of the data and hence is random.
- An interval estimate \widehat{C} is called a 1α confidence interval when $\Pr\left(\beta \in \widehat{C}\right) = 1 \alpha$.
- A good choice for a confidence interval is by adding and subtracting from the estimate $\hat{\beta}$ a fixed multiple of the standard error:

$$\widehat{C} = \left[\widehat{\beta} - c \cdot s\left(\widehat{\beta}\right), \widehat{\beta} + c \cdot s\left(\widehat{\beta}\right)\right].$$

▶ \widehat{C} is the set of parameter values for β such that the t-statistic $T(\beta)$ is smaller than some constant c:

$$\widehat{C} = [\beta : |T(\beta)| \le c] = \left\{ \beta : -c \le \frac{\widehat{\beta} - \beta}{s(\widehat{\beta})} \le c \right\}.$$

► The coverage probability is

$$\Pr\left(\beta \in \widehat{C}\right) = \Pr\left(|T\left(\beta\right)| \le c\right)$$
$$= \Pr\left(-c \le T\left(\beta\right) \le c\right)$$
$$= 2 \cdot F\left(c\right) - 1$$

where F is the t distribution with n - k degrees of freedom (F(-c) = 1 - F(c)).

Theorem

In the normal regression model, \widehat{C} with $c = F^{-1}(1 - \alpha/2)$ has coverage probability $\Pr\left(\beta \in \widehat{C}\right) = 1 - \alpha$.

Hypothesis Testing

- ▶ Let $\theta \in \Theta \subset \mathbb{R}^d$ be a parameter of interest. Some examples of θ include:
 - ► The coefficient of one of the regressors: $\theta = \beta_1$, d = 1, $\Theta = \mathbb{R}$.
 - A vector of coefficients: $\theta = (\beta_1, \dots, \beta_l)', d = l, \Theta = \mathbb{R}^l$.
 - ► The variance of errors: $\theta = \sigma^2$, d = 1, $\Theta = (0, \infty)$.
- ▶ A statistical hypothesis is an assertion about θ . Usually, we have two competing hypotheses, and we want to draw a conclusion, based on the data, as to which of the hypotheses is true. Let $\Theta_0 \subset \Theta$ and $\Theta_1 \subset \Theta$ such that $\Theta_0 \cap \Theta_1 = \emptyset$ and $\Theta_0 \cup \Theta_1 = \Theta$. The two competing hypotheses are:
 - Null hypothesis $\mathbb{H}_0: \theta \in \Theta_0$. This is a hypothesis that is held as true, unless data provides sufficient evidence against it.
 - Alternative hypothesis \mathbb{H}_1 : $\theta \in \Theta_1$. This is a hypothesis against which the null is tested. It is held to be true if the null is found false.

- ► The subsets Θ_0 and Θ_1 are chosen by the econometrician and therefore are known. Their union defines the maintained hypothesis, i.e. the space of values that θ can take. For example, when $\Theta = \mathbb{R}$, one may consider $\Theta_0 = \{0\}$, and $\Theta_1 = \mathbb{R} \setminus \{0\}$. Another example is $\Theta_0 = (-\infty, 0]$ and $\Theta_1 = (0, \infty)$.
- ▶ When Θ_0 has exactly one element (Θ_0 is a singleton), we say that $\mathbb{H}_0: \theta \in \Theta_0$ is a simple hypothesis. Otherwise, we say that \mathbb{H}_0 is a composite hypothesis. Similarly, $\mathbb{H}_1: \theta \in \Theta_1$ can be simple or composite depending on whether Θ_1 is a singleton or not.
- ▶ Let $S \in \mathcal{S}$ denote a statistic and the range of its values. A decision rule is defined by a partition of \mathcal{S} into acceptance region \mathcal{A} and rejection (critical) region \mathcal{R} ($\mathcal{A} \cap \mathcal{R} = \emptyset$ and $\mathcal{A} \cup \mathcal{R} = \mathcal{S}$).
- ▶ \mathbb{H}_0 is rejected when the test statistic falls in to the rejection region \mathcal{R} .

Type I and Type II Errors

► There are two types of errors that the econometrician can make:

		Truth		
		\mathbb{H}_0	\mathbb{H}_1	
Decision	\mathbb{H}_0	✓	Type II error	
	\mathbb{H}_1	Type I error	✓	

- ▶ Type I error is the error of rejecting \mathbb{H}_0 when \mathbb{H}_0 is true.
- ▶ Type II error is the error of accepting \mathbb{H}_0 when \mathbb{H}_1 is true.

Power Function

- ► The probabilities of Type I and II errors can be described using the power function.
- ► Consider a test based on *S* that rejects \mathbb{H}_0 when $S \in \mathcal{R}$. The power function of this test is defined as:

$$\pi(\theta) = \Pr_{\theta} (S \in \mathcal{R}),$$

where $Pr_{\theta}(\cdot)$ denotes that the probability must be calculated under the assumption that the true value of the parameter is θ .

► The largest probability of Type I error (rejecting \mathbb{H}_0 when it is true) is

$$\sup_{\theta \in \Theta_0} \pi(\theta) = \sup_{\theta \in \Theta_0} \Pr_{\theta} (S \in \mathcal{R}).$$

The expression above is also called the *size* of a test.

► When \mathbb{H}_0 is simple, i.e. $\Theta = \{\theta_0\}$, the size can be computed simply as $\pi(\theta_0) = \text{Pr}_{\theta_0}(S \in \mathcal{R})$.

► The probability of Type II error is:

$$1 - \pi(\theta) = 1 - \Pr_{\theta}(S \in \mathcal{R}) \quad \text{for } \theta \in \Theta_1.$$

- ► Typically, Θ_1 has many elements, and therefore the probability of Type II error depends on the true value θ .
- ► One would like to have the probabilities of Type I and II errors to be as small as possible, but unfortunately, they are inversely related.
- ► To reduce the probability of Type I error, one should make \mathcal{R} smaller. This, however, will increase the probability of Type II error.

Definition

A test with power function $\pi(\theta)$ is said to be a level α test if $\sup_{\theta \in \Theta_0} \pi(\theta) \le \alpha$. We say it is a size α test if $\sup_{\theta \in \Theta_0} \pi(\theta) = \alpha$.

- ► Significance level of a test us the largest Type I error probability one tolerates. Typically, the significance level is chosen to be a small number close to zero: for example, 0.01, 0.05, 0.10.
- ▶ By convention, a valid test must control the probability of Type I error (level α test, where α is equal to the significance level).
- ► We want the probability of a Type II error probability to be as small as possible for given Type I error probability.

Steps of Hypothesis Testing

- 1. Specify \mathbb{H}_0 and \mathbb{H}_1 .
- 2. Choose the significance level α .
- 3. Define a decision rule (a test statistic S and a rejection region \mathcal{R}_{α}) so that the resulting test is a level α test. Note that \mathcal{R}_{α} typically depends on α .
- 4. Perform the test.

p-Value

► The lowest significance level consistent with rejecting \mathbb{H}_0 is called the *p*-value:

$$p$$
-value=min $\{0 < \alpha < 1 : S \in \mathcal{R}_{\alpha}\}$.

- Note that p-value is a statistic and a measure of the evidence against \mathbb{H}_0 .
- ▶ If the *p*-value is smaller than our tolerance(significance level), then we reject \mathbb{H}_0 .

Power of a Test

► The power of a test with the power function $\pi(\theta)$ is defined as

$$\pi(\theta)$$
 for $\theta \in \Theta_1$.

- ightharpoonup Given two level α tests, we should prefer a more powerful test.
- ▶ We say that a level α test with power function $\pi_1(\theta)$ is uniformly more powerful than a level α test with power function $\pi_2(\theta)$ if $\pi_1(\theta) \ge \pi_2(\theta)$ for all $\theta \in \Theta_1$.

A Simple Example

- ► Consider a sample $(X_1, X_2, ..., X_n)$ from a normal population with mean μ and variance σ^2 . Suppose we know σ^2 for now. Consider $\mathbb{H}_0: \mu = 0$ against $\mathbb{H}_1: \mu > 0$.
- ► Consider $T = \frac{\overline{X}}{\sigma/\sqrt{n}}$, where $\overline{X} = n^{-1} \sum_{i=1}^{n} X_i$, which is a N (0, 1) random variable under \mathbb{H}_0 .
- Consider $\mathcal{R}_{\alpha} = [z_{1-\alpha}, \infty)$, where $\Pr(N(0, 1) > z_{1-\alpha}) = \alpha$. Under \mathbb{H}_0 , $\Pr[T \in \mathcal{R}_{\alpha}] = \alpha$.
- ► For any given value of μ , define

$$T_{\mu} = T - \frac{\mu}{\sigma/\sqrt{n}} = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}},$$

which is always N (0, 1) if the true mean is μ .

▶ We reject the test when $T \ge z_{1-\alpha}$, which holds if and only if

$$T_{\mu} = T - \frac{\mu}{\sigma/\sqrt{n}} \ge z_{1-\alpha} - \frac{\mu}{\sigma/\sqrt{n}}$$

It follows for this simple example, that the power function is

$$\pi\left(\mu\right) = 1 - \Phi\left(z_{1-\alpha} - \frac{\sqrt{n}\mu}{\sigma}\right).$$

- ▶ We notice that $\pi(\mu)$ is smaller for all μ if the significance level α is smaller (and hence $z_{1-\alpha}$ is larger). This reflects the trade-off between Type I error and Type II error probabilities: we cannot reduce both simultaneously.
- \blacktriangleright π (μ) is increasing in μ . For μ 's that are farther away from 0, the test can detect such deviation at a higher probability.
- ► As $\mu \to \infty$, the power converges to 1. The test is very likely to reject \mathbb{H}_0 if the true mean is very large.
- \blacktriangleright π (μ) increases with the sample size n. The test can detect falseness of \mathbb{H}_0 at a higher probability if our sample contains more information.

t Test

► The null hypothesis:

$$\mathbb{H}_0: \beta_j = \beta_{j,0}.$$

► The alternative hypothesis:

$$\mathbb{H}_1: \beta_j \neq \beta_{j,0}.$$

► The standard testing statistic is

$$|T| = \left| \frac{\hat{\beta}_j - \beta_{j,0}}{s(\hat{\beta}_j)} \right|.$$

▶ If \mathbb{H}_0 is true, we expect |T| to be small, but if \mathbb{H}_1 is true, then we would expect |T| to be large. Hence the standard rule is to reject \mathbb{H}_0 in favor of \mathbb{H}_1 for large values of the t-statistic |T|:

Reject
$$\mathbb{H}_0$$
 if $|T| > c$.

- c is called the critical value. Its value is selected to control the probability of false rejections.
- ► When the null hypothesis is true, *T* has an exact student distribution. The probability of false rejection is

$$\Pr\left(\text{Reject }\mathbb{H}_{0} \mid \mathbb{H}_{0}\right) = \Pr\left(|T| > c \mid \mathbb{H}_{0}\right)$$

$$= \Pr\left(T > c \mid \mathbb{H}_{0}\right) + \Pr\left(T < -c \mid \mathbb{H}_{0}\right)$$

$$= 1 - F\left(c\right) + F\left(-c\right)$$

$$= 2\left(1 - F\left(c\right)\right).$$

- ► We select the value c so that this probability equals the significance level: $F(c) = 1 \alpha/2$.
- ► The *p*-value of a *t*-statistic is p = 2(1 F(|T|)).

Theorem

In the normal regression model, if the null hypothesis is true, then $|T| \sim t_{n-k}$. If c is set so that $\Pr(|t_{n-k}| \geq c) = \alpha$, then the test "Reject \mathbb{H}_0 in favor of \mathbb{H}_1 if |T| > c" has level α .

Power

- Assume that the true value is given by β_j . Assume for simplicity that σ^2 is known, so that $s\left(\hat{\beta}_j\right) = \sqrt{\sigma^2 \left[(X'X)^{-1} \right]_{jj}}$.
- ► Write

$$T = \frac{\hat{\beta}_j - \beta_j}{s(\hat{\beta}_j)} + \frac{\beta_j - \beta_{j,0}}{s(\hat{\beta}_j)}.$$
 (1)

► We have that

$$Z = \frac{\hat{\beta}_j - \beta_j}{s(\hat{\beta}_j)} \mid X \sim N(0, 1)$$

and

$$\frac{\hat{\beta}_{j} - \beta_{j}}{s(\hat{\beta}_{j})} + \frac{\beta_{j} - \beta_{j,0}}{s(\hat{\beta}_{j})} \mid X \sim N\left(\frac{\beta_{j} - \beta_{j,0}}{s(\hat{\beta}_{j})}, 1\right).$$

► The critical value is $c = \Phi^{-1} (1 - \alpha/2)$ (Pr $(Z > c) = \alpha/2$).

- ▶ If the null hypothesis is false, the distribution of the test statistic is not centered around zero, and we will see rejection rates higher than α . The probability to reject is a function of the true value β_j and depends on the magnitude of $|\beta_j \beta_{j,0}| / s(\hat{\beta}_j)$.
- ► Now

$$\pi (\beta_1) = \Pr\left(\left|\frac{\hat{\beta}_j - \beta_{j,0}}{s(\hat{\beta}_j)}\right| > c\right) = \Pr\left(\left|\frac{\hat{\beta}_j - \beta_j + \beta_j - \beta_{j,0}}{s(\hat{\beta}_j)}\right| > c\right)$$
$$= \Pr\left(\left|Z + \frac{\beta_j - \beta_{j,0}}{s(\hat{\beta}_j)}\right| > c\right).$$

One-sided Test

► In the case of one-sided tests, the null and alternative hypotheses may be specified as

$$\mathbb{H}_0$$
: $\beta_j \leq \beta_{j,0}$, \mathbb{H}_1 : $\beta_i > \beta_{j,0}$.

► In this case, a valid test should satisfy the following condition:

$$\sup_{\beta_j \le \beta_{j,0}} \Pr\left(\text{reject } \mathbb{H}_0 \mid \beta_j\right) \le \alpha,\tag{2}$$

i.e. the maximum probability to reject H_0 when it is true should not exceed α .

► Consider the following test (decision rule):

Reject
$$\mathbb{H}_0$$
 when $T > c$.

where c is set so that $\Pr(t_{n-k} \ge c) = \alpha$.

▶ Under \mathbb{H}_0 , we have:

Pr (reject
$$\mathbb{H}_0 \mid \beta_j \leq \beta_{j,0}$$
) = Pr $(T > c \mid \beta_j \leq \beta_{j,0})$
= Pr $\left(\frac{\hat{\beta}_j - \beta_{j,0}}{s(\hat{\beta}_j)} > c \mid \beta_j \leq \beta_{j,0}\right)$
 $\leq \Pr\left(\frac{\hat{\beta}_j - \beta_j}{s(\hat{\beta}_j)} > c \mid \beta_j \leq \beta_{j,0}\right)$
since $\beta_j \leq \beta_{j,0}$
= α (since $\frac{\hat{\beta}_j - \beta_j}{s(\hat{\beta}_j)} \sim t_{n-k}$).

► The size control condition is satisfied.

Testing a Single Linear Restriction

► Suppose we want to test

$$\mathbb{H}_0$$
 : $c'\beta = r$,
 \mathbb{H}_1 : $c'\beta \neq r$.

► In this case, c is a k-vector, r is a scalar, and under the null hypothesis

$$c_1\beta_1+\ldots+c_k\beta_k-r=0.$$

• We have that the LS estimator of β

$$\hat{\boldsymbol{\beta}} \mid \boldsymbol{X} \sim N\left(\boldsymbol{\beta}, \sigma^2 \left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1}\right).$$

Then, under H_0 ,

$$\frac{\boldsymbol{c}'\hat{\boldsymbol{\beta}}-\boldsymbol{r}}{\sqrt{\sigma^2\boldsymbol{c}'\left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1}\boldsymbol{c}}}\mid\boldsymbol{X}\sim\mathrm{N}\left(0,1\right).$$

ightharpoonup The *t*-statistic

$$T = \frac{c'\hat{\beta} - r}{\sqrt{s^2c'(X'X)^{-1}c}}$$
$$= \left(\frac{c'\hat{\beta} - r}{\sqrt{\sigma^2c'(X'X)^{-1}c}}\right) / \sqrt{\frac{e'Me}{\sigma^2}/(n-k)}.$$

- $e'Me/\sigma^2 \mid X \sim \chi^2_{n-k}$ and is independent of $\hat{\beta}$. Therefore, under \mathbb{H}_0 , $T \mid X \sim t_{n-k}$.
- ► The significance level α two-sided test of \mathbb{H}_0 : $c'\beta = r$ is given by "reject \mathbb{H}_0 if |T| > c", where $\Pr(|t_{n-k}| > c) = \alpha$.

Testing Multiple Linear Restrictions

► Suppose we want to test

$$\mathbb{H}_0$$
: $R\beta = r$, \mathbb{H}_1 : $R\beta \neq r$,

where **R** is a $q \times k$ matrix and **r** is a q-vector.

▶ $R = I_k$, r = 0. In this case, we test that $\beta_1 = ... = \beta_k = 0$.

$$R = \begin{pmatrix} 1 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \end{pmatrix}, r = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$
 In this case,
$$H_0: \beta_1 + \beta_2 = 1, \beta_3 = 0.$$

 \triangleright Consider the *F*-statistic

$$F = \frac{(RSS_r - RSS_{ur})/q}{RSS_{ur}/(n-k)}.$$

- $ightharpoonup RSS_r$: the restricted Residual Sum of Squares.
- $ightharpoonup RSS_{ur}$: the unrestricted Residual Sum of Squares.

► Consider the restricted problem

$$\min_{b} (Y - Xb)' (Y - Xb) \text{ subject to } Rb = r.$$

► A Lagrangian function for this problem is

$$L(\boldsymbol{b}, \lambda) = (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{b})'(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{b}) + 2\lambda'(\boldsymbol{R}\boldsymbol{b} - \boldsymbol{r}),$$

where λ is a *q*-vector.

▶ Let $\tilde{\beta}$, $\tilde{\lambda}$ be the solution, where $\tilde{\beta}$ is the restricted LS estimator. It has to satisfy the first-order conditions

$$\frac{\partial L\left(\tilde{\boldsymbol{\beta}},\tilde{\boldsymbol{\lambda}}\right)}{\partial \boldsymbol{h}} = 2X'X\tilde{\boldsymbol{\beta}} - 2X'Y + 2R'\tilde{\boldsymbol{\lambda}} = \boldsymbol{0},\tag{3}$$

$$\frac{\partial L\left(\tilde{\boldsymbol{\beta}},\tilde{\boldsymbol{\lambda}}\right)}{\partial \boldsymbol{\lambda}} = \boldsymbol{R}\tilde{\boldsymbol{\beta}} - \boldsymbol{r} = \boldsymbol{0}. \tag{4}$$

► The restricted LS estimator is given by

$$\tilde{\boldsymbol{\beta}} = \hat{\boldsymbol{\beta}} - (\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{R}' \left(\boldsymbol{R} (\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{R}' \right)^{-1} \left(\boldsymbol{R} \hat{\boldsymbol{\beta}} - r \right),$$

where $\hat{\beta}$ is the LS estimator without the restriction Rb = r.

► Define the restricted residuals

$$\tilde{e} = Y - X\tilde{\beta}$$

$$= \left(Y - X\hat{\beta}\right) + X(X'X)^{-1}R'\left(R(X'X)^{-1}R'\right)^{-1}\left(R\hat{\beta} - r\right)$$

$$= \hat{e} + X(X'X)^{-1}R'\left(R(X'X)^{-1}R'\right)^{-1}\left(R\hat{\beta} - r\right),$$

► Then,

$$RSS_{r} = \tilde{e}'\tilde{e}$$

$$= \hat{e}'\hat{e} + \left(R\hat{\beta} - r\right)' \left(R\left(X'X\right)^{-1}R'\right)^{-1} \left(R\hat{\beta} - r\right)$$

$$+2\hat{e}'X\left(X'X\right)^{-1}R'\left(R\left(X'X\right)^{-1}R'\right)^{-1} \left(R\hat{\beta} - r\right)$$

$$= RSS_{ur} + \left(R\hat{\beta} - r\right)' \left(R\left(X'X\right)^{-1}R'\right)^{-1} \left(R\hat{\beta} - r\right).$$

 $F = \left(\mathbf{R}\hat{\boldsymbol{\beta}} - \mathbf{r}\right)' \left(s^2 \mathbf{R} \left(\mathbf{X}'\mathbf{X}\right)^{-1} \mathbf{R}'\right)^{-1} \left(\mathbf{R}\hat{\boldsymbol{\beta}} - \mathbf{r}\right) / q.$

ightharpoonup Since $s^2 = \hat{e}'\hat{e}/(n-k) = RSS_{ur}/(n-k)$,

▶ We show next that under \mathbb{H}_0 , $F \mid X \sim F_{q,n-k}$. First,

$$\mathbf{R}\hat{\boldsymbol{\beta}} \mid \mathbf{X} \sim \mathrm{N}\left(\mathbf{R}\boldsymbol{\beta}, \sigma^2 \mathbf{R} \left(\mathbf{X}'\mathbf{X}\right)^{-1} \mathbf{R}'\right).$$

▶ Then, under \mathbb{H}_0 ,

$$\mathbf{R}\hat{\boldsymbol{\beta}} - \mathbf{r} \mid \mathbf{X} \sim \mathrm{N}\left(0, \sigma^{2}\mathbf{R} \left(\mathbf{X}'\mathbf{X}\right)^{-1}\mathbf{R}'\right).$$

It follows that

$$\left(\mathbf{R}\hat{\boldsymbol{\beta}}-\mathbf{r}\right)'\left(\sigma^{2}\mathbf{R}\left(\mathbf{X}'\mathbf{X}\right)^{-1}\mathbf{R}'\right)^{-1}\left(\mathbf{R}\hat{\boldsymbol{\beta}}-\mathbf{r}\right)\mid\mathbf{X}\sim\chi_{q}^{2}.$$

The result follows from $e'Me/\sigma^2 \mid X \sim \chi^2_{n-k}$ and independent of $\hat{\beta}$ and the definition of F-distribution.

Therefore, the test is given by "reject \mathbb{H}_0 if F > c", where $\Pr(F_{q,n-k} > c) = \alpha$.

Test of Model Significance

► Consider a model with the intercept

$$Y_i = \beta_1 + \beta_2 X_{i2} + \ldots + \beta_k X_{ik} + U_i,$$

► Consider the null hypothesis $H_0: \beta_2 = \dots \beta_k = 0$. The restricted model is given by

$$Y_i = \beta_1 + U_i.$$

► In this case, the restricted LS estimator is $\tilde{\beta}_1 = n^{-1} \sum_{i=1}^n Y_i = \overline{Y}$, and $RSS_r = TSS = \sum_{i=1}^n \left(Y_i - \overline{Y}\right)^2$. In this case,

$$F = \frac{(TSS - RSS_{ur})/(k-1)}{RSS_{ur}/(n-k)}$$

$$= \frac{ESS/(k-1)}{RSS_{ur}/(n-k)}$$

$$= \frac{R^2/(k-1)}{(1-R^2)/(n-k)}$$

$$\sim F_{k-1,n-k}.$$