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Normal Regression Model

» The normal regression model is the linear regression model with
an independent normal error

Y=X'B+e
e ~N (0,0’2).

» The likelihood is the name for the joint probability density of the
data, evaluated at the observed sample, and viewed as a function
of the parameters.

» The maximum likelihood estimator is the value which maximizes
this likelihood function.
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» The conditional density of Y given X:
FOX) = ———exp (- (v - X'
=————exp|-—— (Y - .
(2770'2)1/2 P\ 7202

» The conditional density of Y given X:

Fx@1X) = ] fux 1 X)
i=1

= 1 1
l_[ Wexp (—ﬁ (¥i - X;'B)Z)

izl (2mo?

1 1< ’ 2
WCXP (_F Z (Y - XB)

i=1

L (ﬁ, 0'2) .
L (B,0?) is called the likelihood function.
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» Work with the natural logarithm:

n 2 1 = 7 p\2
—Elog (271'0' ) - 27"2 , (Yl - Xlﬁ)

i=1

logf (Y | X)

logL (ﬂ, 0'2) .
» The MLE:

(ﬁmle,&ile) = argmax logL (ﬁ, (72) .
BeR¥, 5250
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» In most applications of maximum likelihood, the MLE must be
found by numerical methods. However, in the case of the normal
regression model we can find an explicit expression.

» FOC:
dlogL (B, o) S "
B B T 52 Z (Yi - Xiﬁmle)
ﬁ:Bmlea(Tz:é'Zl mle i=1
dlogL (B, ?) " | .
= Ho2 :——2 +—A4 Z(Yi_Xiﬁmle)~
v B=Bmles0'2=(5'r2n]c mle mle i=1
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» The MLE:

n

n -1
ﬂmle: (ZXIX;) (ZXlYl) :ﬂOIS'
i=1 i=1
» The MLE for o2

A2 1 . %, 2 1
Ole = ;Z (Yl _Xiﬂmle) = ;

i=1 i=1

=

1, 2 1 C A2
(Yl - Xiﬂols) = ; Z € -
i=1

» Maximized log-likelihood is a measure of goodness of fit:

N n ~ n
logL (ﬂmle’ O—Iile) = —Elog (27W§11e) 5
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Distribution of OLS Coefficient Vector
> The normality assumption e; | X; ~ N (0, (72) and iid
assumption imply

e| X ~ N(o,INZ) .
» The OLS estimator satisfies
B-B=(X'X)"X,

which is a linear function of e.
» Conditional on X,

B-Blx

¢

(X'X)"' X'N (o, In0'2)

¢

N (0, 2 XX X'X (X’X)_l)

N (0, o2 (X’X)_l)
or
Blx~N(p.o? (xx)).
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» This shows that under the assumption of normal errors, the OLS
estimate has an exact normal distribution.

Theorem
In the linear regression model,

Blx~N(go*(x'x)™)

» Any linear function of the OLS estimate is also normally
distributed, including individual estimates:

By Ix~N (ﬁj,az [(X’X)‘l]jj) .
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Distribution of OLS Residual Vector

» The OLS residual vector: @ = Me. é is linear in e.

» Conditional on X,
é=Me| X~ N(O,O'ZMM) :N(O,O'QM) .
» The joint distribution of E and é:

( B-p ) =( (X'X)"' Xe )=( (X'X)"'x’

Je

é Me M
> So R ) ]
B-B\ v XX 0
( é )'X N( 0 oM |-
Theorem

In the linear regression model,é | X ~ N (0,0>M) and is
independent of B.
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Distribution of Variance Estimate
> s2=¢'¢/(n—k)=e'Me/(n- k).
» The spectral decomposition of M: M = HAH' with H'H =1,
and A is diagonal with the eigenvalues of M on the diagonal.

» Since M is idempotent with rank n — k, it has n — k eigenvalues
equalling 1 and k eigenvalues equalling 0:

| Tk O
A_[ - Ok].

» U=H'e ~N(0,1,0?).

(n-k)s> = e'Me

_ ’ I i 0 ’
= H[ 0 Ok]He
_ ’ Ink 0
AR
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Theorem
In the linear regression model, conditional on X,

(”—k)52~ 2

Xn—
0_2 n—k

and is independent of ﬁ
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t-statistic
» The “z-statistic”:

Bj = B;
Jr o]
Ji
> Replace the unknown variance o> with its estimate s2:
Bj - Bj _ Bi = B;
§2 [(X’X)_l] S(IBJ)
JJj

~N(0,1).

T =

> Write the ¢-statistic as the ratio of the standardized statistic and
the square root of the scaled variance estimate:
Bi-B;
T — J 17 / (n— k).s /(n k)
\/52[(X’X) 1]“
N (0,1)

Vi (k)

~ In—k-
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Theorem
In the normal regression model, T ~ t,,_.

» This derivation shows that the 7-statistic has a sampling
distribution which depends only on the quantity n — k. The
distribution does not depend on any other features of the data.

» In this context, we say that the distribution of the #-statistic is
pivotal, meaning that it does not depend on unknowns.

» The theorem only applies to the z-statistic constructed with the
homoskedastic standard error estimate. It does not apply to a
t-statistic constructed with the robust standard error estimates.
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Confidence Intervals for Regression Coeflicients

» An OLS estimate f3 is a point estimate for the coefficients 3.

> An interval estimate takes the form C = [Z, U ] . The goal of an
interval estimate C is to contain the true value with high
probability.

> The interval estimate C is a function of the data and hence is
random.

> An interval estimate C is called a 1 — @ confidence interval when
Pr(,BeC) —1-a

» A good choice for a confidence interval is by adding and
subtracting from the estimate £ a fixed multiple of the standard
error:

C=[f-c-s(B).B+c-s(h)].
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> C is the set of parameter values for 8 such that the t-statistic
T (B) is smaller than some constant c:

IA
=
|
=
IN
[
——

5=[/3:|T(/3)|SC]={B:—C

» The coverage probability is

Pr(IT (B)] < ¢)
Pr(-c<T(B) <c)
2-F(c)-1

H@eﬂ

where F is the ¢ distribution with n — k degrees of freedom
(F(=¢c) =1-F(c)).

Theorem R
In the normal regression model, C with ¢ = F~' (1 — a/2) has

coverage probability Pr (,8 € 5) =1-a
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Hypothesis Testing

» Let § € ® c RY be a parameter of interest. Some examples of 6
include:

» The coefficient of one of the regressors: 6 = 81,d = 1,0 =R.
> A vector of coefficients: 8 = (B1,...,8;),d=1,0 = R
» The variance of errors: 6 = 02, d = 1, ® = (0, ).
> A statistical hypothesis is an assertion about #. Usually, we have
two competing hypotheses, and we want to draw a conclusion,
based on the data, as to which of the hypotheses is true. Let
Oy CcB®and ®; c ®suchthat ®y N B = @ and Oy U B = B.
The two competing hypotheses are:
> Null hypothesis Hy : 8 € ®¢. This is a hypothesis that is held as
true, unless data provides sufficient evidence against it.
> Alternative hypothesis H; : 8 € ©;. This is a hypothesis against
which the null is tested. It is held to be true if the null is found
false.
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The subsets ®¢ and ©; are chosen by the econometrician and
therefore are known. Their union defines the maintained
hypothesis, i.e. the space of values that § can take. For example,
when ® = R, one may consider ®y = {0}, and ®; =R \ {0}.
Another example is @y = (-0, 0] and ©; = (0, c0).

When O has exactly one element (Q is a singleton), we say that
Hp : 6 € O is a simple hypothesis. Otherwise, we say that Hy is
a composite hypothesis. Similarly, H; : § € ®; can be simple or
composite depending on whether ® is a singleton or not.

Let S € S denote a statistic and the range of its values. A

decision rule is defined by a partition of § into acceptance region
A and rejection (critical) region R (ANR =@ andAUR = 8).

Hj is rejected when the test statistic falls in to the rejection
region R.
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Type I and Type II Errors

» There are two types of errors that the econometrician can make:

Truth
Hy H;y
Decision  Hp v Type II error
H; TypelIerror v

» Type I error is the error of rejecting Hy when Hy is true.

» Type Il error is the error of accepting Hy when H; is true.
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Power Function

>

>

>

The probabilities of Type I and II errors can be described using
the power function.

Consider a test based on S that rejects Hy when S € R. The
power function of this test is defined as:

n(0) =Prg (S eR),

where Prg(-) denotes that the probability must be calculated
under the assumption that the true value of the parameter is 6.
The largest probability of Type I error (rejecting Hy when it is
true) is

sup (@) = sup Pry (S € R).
0cO 6cB

The expression above is also called the size of a test.
When Hj is simple, i.e. ® = {6}, the size can be computed
simply as m(6g) = Prg, (S € R).
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The probability of Type II error is:
1-7(0)=1-Prp(Se€R) forfecO,.

Typically, ®; has many elements, and therefore the probability of
Type II error depends on the true value 6.

One would like to have the probabilities of Type I and II errors to
be as small as possible, but unfortunately, they are inversely
related.

To reduce the probability of Type I error, one should make R
smaller. This, however, will increase the probability of Type 11
error.
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Definition
A test with power function 7(8) is said to be a level « test if
SUPgep, 7 (0) < a. We say itis a size @ test if supy.q, 7 (6) = .

» Significance level of a test us the largest Type I error probability
one tolerates. Typically, the significance level is chosen to be a
small number close to zero: for example, 0.01,0.05, 0.10.

» By convention, a valid test must control the probability of Type I
error (level a test, where « is equal to the significance level).

> We want the probability of a Type II error probability to be as
small as possible for given Type I error probability.
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Steps of Hypothesis Testing

1. Specify Hy and Hj.
2. Choose the significance level «.

3. Define a decision rule (a test statistic S and a rejection region
R o) so that the resulting test is a level « test. Note that R,
typically depends on a.

4. Perform the test.
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p-Value

» The lowest significance level consistent with rejecting Hy is
called the p-value:

p-value=min{0 <a <1:85 € R,}.

> Note that p-value is a statistic and a measure of the evidence
against Hy.

» If the p-value is smaller than our tolerance(significance level),
then we reject Hy.
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Power of a Test

» The power of a test with the power function 7 (@) is defined as
n(@) for@ € O.

» Given two level a tests, we should prefer a more powerful test.

> We say that a level @ test with power function 71 (@) is uniformly
more powerful than a level « test with power function 75 () if
71(8) > m(0) for all 8 € ;.
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A Simple Example

>

Consider a sample (X, X», ..., X;;) from a normal population
with mean y and variance 2. Suppose we know o> for now.
Consider Hy : ¢ = 0 against H; : u > 0.

Consider T = /W where X = n~! 2.ieq Xi, which is a N (0, 1)

random variable under Hj.

Consider R, = [21—a, %), Where Pr (N (0, 1) > z1_,) = a.
Under Hy, Pr [T € Ry] =«

For any given value of u, define

[
ofNm o
which is always N (0, 1) if the true mean is yu.
We reject the test when T > z;_,, which holds if and only if

T,=T-

THZT— > Zl-a —

H H
7/\n 7/Nn
It follows for this simple example, that the power function is
w0 =1-0 (5, - V).
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We notice that 7 (u) is smaller for all u if the significance level a
is smaller (and hence z;_, is larger). This reflects the trade-off
between Type I error and Type II error probabilities: we cannot
reduce both simultaneously.

7 (w) is increasing in y. For y’s that are farther away from 0, the
test can detect such deviation at a higher probability.

As pu — oo, the power converges to 1. The test is very likely to
reject Hy if the true mean is very large.

7 (w) increases with the sample size n. The test can detect
falseness of Hy at a higher probability if our sample contains
more information.
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t Test

The null hypothesis:

Hy : B; = Bj.0-

The alternative hypothesis:
H; : ,8 j * ﬁ 7,0-

The standard testing statistic is

A

Bj—Bj.0

§ (,éj)

If Hy is true, we expect |T| to be small, but if H is true, then we
would expect |T| to be large. Hence the standard rule is to reject
Hp in favor of H; for large values of the t-statistic |T|:

IT| =

Reject Hy if |T| > c.
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» ¢ is called the critical value. Its value is selected to control the
probability of false rejections.

» When the null hypothesis is true, T has an exact student
distribution. The probability of false rejection is

Pr (Reject Hy | Ho)

Pr(|T| > ¢ | Hp)
= Pr(T >c|Hy)+Pr(T < —c|Hyp)
= 1-F(c)+F(-c)
= 2(1-F(o)).
» We select the value ¢ so that this probability equals the
significance level: F (¢) =1 — /2.
» The p-value of a t-statistic is p =2 (1 — F (|T])).

Theorem

In the normal regression model, if the null hypothesis is true, then
|T| ~ tp—k. If ¢ is set so that Pr (|t,—_r| = ¢) = a, then the test
“Reject Hy in favor of Hy if |T| > ¢” has level a.
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Power

Assume that the true value is given by B;. Assume for simplicity

that o2 is known, so that s ( Aj) = \/0'2 [(X'X)_l]
JJ

Write R
Bi—=Bj Bj—Bjo0
= — + — . (D)
s(B;) s (By)
We have that
ﬁ Bj = Bj
| X ~N(0,1)
s (B))
and A
Pi—Bj  Bi~Bio X ~N Bj—Bj.o 1).
s (B)) s (B)) s (B))
The critical value is ¢ = @' (1 — a/2) (Pr(Z > ¢) = /2).
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» If the null hypothesis is false, the distribution of the test statistic
is not centered around zero, and we will see rejection rates higher
than a. The probability to reject is a function of the true value S;
and depends on the magnitude of |8; — B;.0| /s (8;)-

» Now
Bj = Bj.0 ) (Bj‘ﬁj"‘ﬁj_ﬁj,o )
m(By) =Pr >c|=Pr — > c
1 (swj) s (B)
_pe||z+ BP0 c).
s (B))
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One-sided Test

» In the case of one-sided tests, the null and alternative hypotheses
may be specified as

Ho : Bj<Bjo0
Hy : Bj>Bjo.

» In this case, a valid test should satisfy the following condition:

sup Pr(reject Hy | ;) < a, (2)
Bj<Bjo

i.e. the maximum probability to reject Hy when it is true should
not exceed «.

» Consider the following test (decision rule):
Reject Hop when T > c.

where c is set so that Pr (¢,_x > ¢) = a.
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» Under Hy, we have:

PI'(T >c |ﬂ] <ﬁj,0)
Pr (:8] ﬁ] 0
s (B))

Bj—Bj
p | ,
r(s(ﬂ]) >C ﬂ] ,8]0)

since B; < B0

A

Pr (reject Ho | B < B;.0)

|ﬂj :Bj,O)

IA

Bj = Bj
—— ~ty—k)

= « (since
A ,3]'

» The size control condition is satisfied.
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Testing a Single Linear Restriction
» Suppose we want to test
Ho . C,ﬂ =r,
H, : ¢B#r.

» In this case, ¢ is a k-vector, r is a scalar, and under the null
hypothesis
C1,81+...+Ck,8k—l’=0.

> We have that the LS estimator of 8
Blx~N (o> xx)").
Then, under Hy),

c’B-r

Joze (X'X) e

| X ~N(0,1).
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» The ¢-statistic
cB-r

\s2e (X'X) e
c’'B-r / /e’]\fe/(n_k)‘
JoZe! (X'X) e 7

> e'Me/o? | X ~ )(,21_ . and is independent of B. Therefore, under
Ho, T | X ~ t.

» The significance level a two-sided test of Hy : ¢’ = r is given
by “reject Hy if |T'| > ¢”, where Pr (|t,—x| > ¢) = a.

T =
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Testing Multiple Linear Restrictions

» Suppose we want to test

Ho : RB=vr,
H, : RB=#r,

where R is a ¢ X k matrix and r is a g-vector.

» R =1, r=0.Inthis case, we test that 8 = ... = Bx = 0.
1100 ...0 1 _
» R = _
K 0010 .. 0),r (0)-Inthlscase,

H() 2ﬂ1+,82 = 1,,83 =0.
» Consider the F'-statistic

_ (RSSr B RSSur) /q
- RSSur/(n - k)

> RSS,: the restricted Residual Sum of Squares.
> RSS,,: the unrestricted Residual Sum of Squares.
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Consider the restricted problem
rr},in (Y - Xb)' (Y — Xb) subjectto Rb =r.
A Lagrangian function for this problem is
L(b,2) =(Y - Xb) (Y - Xb) +24" (Rb - r),

where A is a g-vector.
Let B, A be the solution, where S is the restricted LS estimator. It
has to satisfy the first-order conditions

w = 2X'XB-2X'Y +2R'21=0, 3)
OLBA _ pn
— - RB—-r=0. (4)

The restricted LS estimator is given by
- A -1 A
B=B-(XX)"'R’ (R (X'X)"! R') (R,B - r) :

where B is the LS estimator without the restriction Rb = r.
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» Define the restricted residuals

¢ = Y-XB
- (Y - X,B) +X(X'X)' R (R (X'X)"! R’)_l (R,B - r)

e+ X (X'X)'R’ (R (X' Xx)"! R') : (Rﬁ - r) :

» Then,
RSS, = &'¢
Y R
&'e + (Rﬂ—r) (R (X/X)_IR') (R,B—r)

120'X (X'X)"' R’ (R (X'X)"! R’) (RB _ r)

RSS,, + (RB - r), (R (X'X)™! R’)_l (RB - r) .

» Since s> =é’é/(n—k) = RSS,/(n —k),

F= (R,Za - r)/ (szR (X'X)"! R') l (R,B - r) /q.
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We show next that under Ho, F | X ~ F, ,_x. First,
RB| X ~N (R,B, 2R (X'X)"! R') .
Then, under H,
RB-r|X~N (o, 2R (X'X)"! R’) .
It follows that
(R,B - r), (0’2R (X'Xx)"! R’)_] (R,is - r) | X ~ x2.
The result follows from

e’Me/o? | X ~ szl— . and independent of B and the definition of
F-distribution.

Therefore, the test is given by “reject Hy if F' > ¢”, where
Pr(Fyn-k > ¢) = a.
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Test of Model Significance

» Consider a model with the intercept
Yi =1+ B2 Xin+ ...+ BiXik + Ui,

» Consider the null hypothesis Hy : 52 = ... B = 0. The restricted

model is given by
Y,' =ﬂ1 + U,'.

> In this case, the restricted LS estimator is 8; =n~' Y1, ¥; = Y,

\2
and RSS, =TSS = 3.1, (Y,- - Y) . In this case,

(TSS — RSS.,) /(k — 1)
RSSyy/(n— k)
ESS/(k—-1)
RSS. /(n—k)
R?/(k —1)
(1 - R2) /(n—k)
~ Fr-1n-k-

F
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