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Normal Regression Model

I The normal regression model is the linear regression model with
an independent normal error

. =^ ′# + 4

4 ∼N
(
0, f2

)
.

I The likelihood is the name for the joint probability density of the
data, evaluated at the observed sample, and viewed as a function
of the parameters.

I The maximum likelihood estimator is the value which maximizes
this likelihood function.
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I The conditional density of . given ^:

5 (. | ^) = 1(
2cf2)1/2 exp

(
− 1

2f2 (. − ^ ′#)2
)
.

I The conditional density of _ given ^:

5_ |^ (_ | ^) =

=∏
8=1

5.8 |^ 8
(.8 | ^8)

=

=∏
8=1

1(
2cf2)1/2 exp

(
− 1

2f2
(
.8 − ^ ′8#

)2
)

=
1(

2cf2)=/2 exp

(
− 1

2f2

=∑
8=1

(
.8 − ^ ′8#

)2
)

= !

(
#, f2

)
.

!
(
#, f2) is called the likelihood function.
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I Work with the natural logarithm:

log 5 (_ | ^) = −=
2

log
(
2cf2

)
− 1

2f2

=∑
8=1

(
.8 − ^ ′8#

)2

= log!
(
#, f2

)
.

I The MLE: (
#̂mle, f̂

2
mle

)
= argmax

#∈R: ,f2>0
log!

(
#, f2

)
.
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I In most applications of maximum likelihood, the MLE must be
found by numerical methods. However, in the case of the normal
regression model we can find an explicit expression.

I FOC:

0 =
mlog!

(
#, f2)

m#

�����
#=#̂mle ,f

2=f̂2
mle

=
1
f̂2

mle

=∑
8=1

^8

(
.8 − ^ ′8 #̂mle

)
0 =

mlog!
(
#, f2)

mf2

�����
#=#̂mle ,f

2=f̂2
mle

= − =

2f̂2
mle
+ 1
f̂4

mle

=∑
8=1

(
.8 − ^ ′8 #̂mle

)
.
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I The MLE:

#̂mle =

(
=∑
8=1

^8^
′
8

)−1 (
=∑
8=1

^8.8

)
= #̂ols.

I The MLE for f2:

f̂2
mle =

1
=

=∑
8=1

(
.8 − ^ ′8 #̂mle

)2
=

1
=

=∑
8=1

(
.8 − ^ ′8 #̂ols

)2
=

1
=

=∑
8=1

4̂2
8 .

I Maximized log-likelihood is a measure of goodness of fit:

log!
(
#̂mle, f̂

2
mle

)
= −=

2
log

(
2cf̂2

mle

)
− =

2
.
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Distribution of OLS Coefficient Vector
I The normality assumption 48 | ^8 ∼ N

(
0, f2) and iid

assumption imply

e | ^ ∼ N
(
0, O=f2

)
.

I The OLS estimator satisfies

#̂ − # = (^ ′^)−1 ^ ′e,

which is a linear function of e.
I Conditional on ^,

#̂ − # |^ ∼ (^ ′^)−1 ^ ′N
(
0, O=f2

)
∼ N

(
0, f2 (^ ′^)−1 ^ ′^ (^ ′^)−1

)
= N

(
0, f2 (^ ′^)−1

)
or

#̂ |^∼ N
(
#, f2 (^ ′^)−1

)
.
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I This shows that under the assumption of normal errors, the OLS
estimate has an exact normal distribution.

Theorem
In the linear regression model,

#̂ |^∼ N
(
#, f2 (^ ′^)−1

)
I Any linear function of the OLS estimate is also normally

distributed, including individual estimates:

V̂ 9 |^∼ N
(
V 9 , f

2
[
(^ ′^)−1

]
9 9

)
.
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Distribution of OLS Residual Vector
I The OLS residual vector: ê = Se. ê is linear in e.
I Conditional on ^,

ê = Se | ^ ∼ N
(
0, f2SS

)
= N

(
0, f2S

)
.

I The joint distribution of #̂ and ê:(
#̂ − #
ê

)
=

(
(^ ′^)−1 ^ ′e

Se

)
=

(
(^ ′^)−1 ^ ′

S

)
e.

I So (
#̂ − #
ê

)
| ^ ∼ N

(
f2 (^ ′^)−1 0

0 f2S

)
.

Theorem
In the linear regression model,ê | ^ ∼ N

(
0, f2S

)
and is

independent of #̂.
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Distribution of Variance Estimate
I B2 = ê′ê/(= − :) = e′Se/(= − :).
I The spectral decomposition of S: S = N�N′ with N′N = O=

and � is diagonal with the eigenvalues of S on the diagonal.
I Since S is idempotent with rank = − : , it has = − : eigenvalues

equalling 1 and : eigenvalues equalling 0:

� =

[
O=−: 0

0 0:

]
.

I [ = N′e ∼ N
(
0, O=f2) .
(= − :) B2 = e′Se

= e′N

[
O=−: 0

0 0:

]
N′e

= [′
[
O=−: 0

0 0:

]
[

∼ f2j2
=−: .
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Theorem
In the linear regression model, conditional on ^,

(= − :) B2

f2 ∼ j2
=−:

and is independent of #̂.
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C-statistic
I The “I-statistic”:

V̂ 9 − V 9√
f2

[
(^ ′^)−1

]
9 9

∼ N (0, 1) .

I Replace the unknown variance f2 with its estimate B2:

) =
V̂ 9 − V 9√

B2
[
(^ ′^)−1

]
9 9

=
V̂ 9 − V 9

B
(
V̂ 9

) .
I Write the C-statistic as the ratio of the standardized statistic and

the square root of the scaled variance estimate:

) =
V̂ 9−V9√

B2 [ (^′^ )−1] 9 9
/
√
(=−:)B2

f2 /(=−:)

∼ N (0, 1)√
j2
=−:/(=−:)

∼ C=−: .
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Theorem
In the normal regression model, ) ∼ C=−: .

I This derivation shows that the C-statistic has a sampling
distribution which depends only on the quantity = − : . The
distribution does not depend on any other features of the data.

I In this context, we say that the distribution of the C-statistic is
pivotal, meaning that it does not depend on unknowns.

I The theorem only applies to the C-statistic constructed with the
homoskedastic standard error estimate. It does not apply to a
C-statistic constructed with the robust standard error estimates.
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Confidence Intervals for Regression Coefficients

I An OLS estimate #̂ is a point estimate for the coefficients #.
I An interval estimate takes the form �̂ =

[
!̂, *̂

]
. The goal of an

interval estimate �̂ is to contain the true value with high
probability.

I The interval estimate �̂ is a function of the data and hence is
random.

I An interval estimate �̂ is called a 1 − U confidence interval when
Pr

(
# ∈ �̂

)
= 1 − U.

I A good choice for a confidence interval is by adding and
subtracting from the estimate V̂ a fixed multiple of the standard
error:

�̂ =
[
V̂ − 2 · B

(
V̂
)
, V̂ + 2 · B

(
V̂
) ]
.
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I �̂ is the set of parameter values for V such that the t-statistic
) (V) is smaller than some constant 2:

�̂ = [V : |) (V) | ≤ 2] =
{
V : −2 ≤ V̂ − V

B
(
V̂
) ≤ 2} .

I The coverage probability is

Pr
(
V ∈ �̂

)
= Pr ( |) (V) | ≤ 2)
= Pr (−2 ≤ ) (V) ≤ 2)
= 2 · � (2) − 1

where � is the C distribution with = − : degrees of freedom
(� (−2) = 1 − � (2)).

Theorem
In the normal regression model, �̂ with 2 = �−1 (1 − U/2) has
coverage probability Pr

(
V ∈ �̂

)
= 1 − U.
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Hypothesis Testing

I Let ) ∈ Θ ⊂ R3 be a parameter of interest. Some examples of )
include:
I The coefficient of one of the regressors: \ = V1, 3 = 1, Θ = R.
I A vector of coefficients: ) = (V1, . . . , V;) ′, 3 = ;, Θ = R; .
I The variance of errors: \ = f2, 3 = 1, Θ = (0,∞).

I A statistical hypothesis is an assertion about ) . Usually, we have
two competing hypotheses, and we want to draw a conclusion,
based on the data, as to which of the hypotheses is true. Let
Θ0 ⊂ Θ and Θ1 ⊂ Θ such that Θ0 ∩ Θ1 = ∅ and Θ0 ∪ Θ1 = Θ.
The two competing hypotheses are:
I Null hypothesis H0 : ) ∈ Θ0. This is a hypothesis that is held as

true, unless data provides sufficient evidence against it.
I Alternative hypothesis H1 : ) ∈ Θ1. This is a hypothesis against

which the null is tested. It is held to be true if the null is found
false.
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I The subsets Θ0 and Θ1 are chosen by the econometrician and
therefore are known. Their union defines the maintained
hypothesis, i.e. the space of values that ) can take. For example,
when Θ = R, one may consider Θ0 = {0}, and Θ1 = R \ {0}.
Another example is Θ0 = (−∞, 0] and Θ1 = (0,∞).

I When Θ0 has exactly one element (Θ0 is a singleton), we say that
H0 : ) ∈ Θ0 is a simple hypothesis. Otherwise, we say that H0 is
a composite hypothesis. Similarly, H1 : ) ∈ Θ1 can be simple or
composite depending on whether Θ1 is a singleton or not.

I Let ( ∈ S denote a statistic and the range of its values. A
decision rule is defined by a partition of S into acceptance region
A and rejection (critical) region R (A ∩ R = ∅ andA ∪ R = S).

I H0 is rejected when the test statistic falls in to the rejection
region R.
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Type I and Type II Errors

I There are two types of errors that the econometrician can make:

Truth

Decision
H0 H1

H0 X Type II error
H1 Type I error X

I Type I error is the error of rejecting H0 when H0 is true.
I Type II error is the error of accepting H0 when H1 is true.
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Power Function
I The probabilities of Type I and II errors can be described using

the power function.
I Consider a test based on ( that rejects H0 when ( ∈ R. The

power function of this test is defined as:

c()) = Pr) (( ∈ R) ,

where Pr) (·) denotes that the probability must be calculated
under the assumption that the true value of the parameter is ) .

I The largest probability of Type I error (rejecting H0 when it is
true) is

sup
)∈Θ0

c()) = sup
)∈Θ0

Pr) (( ∈ R) .

The expression above is also called the size of a test.
I When H0 is simple, i.e. Θ = {)0}, the size can be computed

simply as c()0) = Pr)0 (( ∈ R).

19 / 39



I The probability of Type II error is:

1 − c ()) = 1 − Pr) (( ∈ R) for ) ∈ Θ1.

I Typically, Θ1 has many elements, and therefore the probability of
Type II error depends on the true value ) .

I One would like to have the probabilities of Type I and II errors to
be as small as possible, but unfortunately, they are inversely
related.

I To reduce the probability of Type I error, one should make R
smaller. This, however, will increase the probability of Type II
error.
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Definition
A test with power function c()) is said to be a level U test if
sup)∈Θ0

c ()) ≤ U. We say it is a size U test if sup)∈Θ0
c ()) = U.

I Significance level of a test us the largest Type I error probability
one tolerates. Typically, the significance level is chosen to be a
small number close to zero: for example, 0.01, 0.05, 0.10.

I By convention, a valid test must control the probability of Type I
error (level U test, where U is equal to the significance level).

I We want the probability of a Type II error probability to be as
small as possible for given Type I error probability.
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Steps of Hypothesis Testing

1. Specify H0 and H1.

2. Choose the significance level U.
3. Define a decision rule (a test statistic ( and a rejection region
RU) so that the resulting test is a level U test. Note that RU

typically depends on U.
4. Perform the test.

22 / 39



?-Value

I The lowest significance level consistent with rejecting H0 is
called the ?-value:

?-value=min {0 < U < 1 : ( ∈ RU} .

I Note that ?-value is a statistic and a measure of the evidence
against H0.

I If the ?-value is smaller than our tolerance(significance level),
then we reject H0.
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Power of a Test

I The power of a test with the power function c()) is defined as

c()) for ) ∈ Θ1.

I Given two level U tests, we should prefer a more powerful test.
I We say that a level U test with power function c1()) is uniformly

more powerful than a level U test with power function c2()) if
c1()) ≥ c2()) for all ) ∈ Θ1.
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A Simple Example
I Consider a sample (-1, -2, ..., -=) from a normal population

with mean ` and variance f2. Suppose we know f2 for now.
Consider H0 : ` = 0 against H1 : ` > 0.

I Consider ) = -
f/√= , where - = =

−1 ∑=
8=1 -8 , which is a N (0, 1)

random variable under H0.
I Consider RU = [I1−U,∞), where Pr (N (0, 1) > I1−U) = U.

Under H0, Pr [) ∈ RU] = U.
I For any given value of `, define

)` = ) −
`

f/√= =
-̄ − `
f/√= ,

which is always N (0, 1) if the true mean is `.
I We reject the test when ) ≥ I1−U, which holds if and only if

)` = ) −
`

f/√= ≥ I1−U −
`

f/√= .

It follows for this simple example, that the power function is

c (`) = 1 −Φ
(
I1−U −

√
=`

f

)
.
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I We notice that c (`) is smaller for all ` if the significance level U
is smaller (and hence I1−U is larger). This reflects the trade-off
between Type I error and Type II error probabilities: we cannot
reduce both simultaneously.

I c (`) is increasing in `. For `’s that are farther away from 0, the
test can detect such deviation at a higher probability.

I As `→∞, the power converges to 1. The test is very likely to
reject H0 if the true mean is very large.

I c (`) increases with the sample size =. The test can detect
falseness of H0 at a higher probability if our sample contains
more information.
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C Test
I The null hypothesis:

H0 : V 9 = V 9 ,0.

I The alternative hypothesis:
H1 : V 9 ≠ V 9 ,0.

I The standard testing statistic is

|) | =
����� V̂ 9 − V 9 ,0

B
(
V̂ 9

) ����� .
I If H0 is true, we expect |) | to be small, but if H1 is true, then we

would expect |) | to be large. Hence the standard rule is to reject
H0 in favor of H1 for large values of the t-statistic |) |:

Reject H0 if |) | > 2.
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I 2 is called the critical value. Its value is selected to control the
probability of false rejections.

I When the null hypothesis is true, ) has an exact student
distribution. The probability of false rejection is

Pr (Reject H0 | H0) = Pr ( |) | > 2 | H0)
= Pr () > 2 | H0) + Pr () < −2 | H0)
= 1 − � (2) + � (−2)
= 2 (1 − � (2)) .

I We select the value 2 so that this probability equals the
significance level: � (2) = 1 − U/2.

I The ?-value of a C-statistic is ? = 2 (1 − � ( |) |)).

Theorem
In the normal regression model, if the null hypothesis is true, then
|) | ∼ C=−: . If c is set so that Pr ( |C=−: | ≥ 2) = U, then the test
“Reject H0 in favor of H1 if |) | > 2” has level U.
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Power

I Assume that the true value is given by V 9 . Assume for simplicity

that f2 is known, so that B
(
V̂ 9

)
=

√
f2

[
(^ ′^)−1

]
9 9
.

I Write

) =
V̂ 9 − V 9

B
(
V̂ 9

) + V 9 − V 9 ,0

B
(
V̂ 9

) . (1)

I We have that

/ =
V̂ 9 − V 9

B
(
V̂ 9

) | ^ ∼ N (0, 1)

and
V̂ 9 − V 9

B
(
V̂ 9

) + V 9 − V 9 ,0

B
(
V̂ 9

) | ^ ∼ N

(
V 9 − V 9 ,0

B
(
V̂ 9

) , 1

)
.

I The critical value is 2 = Φ−1 (1 − U/2) (Pr (/ > 2) = U/2).
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I If the null hypothesis is false, the distribution of the test statistic
is not centered around zero, and we will see rejection rates higher
than U. The probability to reject is a function of the true value V 9

and depends on the magnitude of
��V 9 − V 9 ,0

�� /B (
V̂ 9

)
.

I Now

c (V1) = Pr

(����� V̂ 9 − V 9 ,0

B
(
V̂ 9

) ����� > 2
)
= Pr

(����� V̂ 9 − V 9 + V 9 − V 9 ,0

B
(
V̂ 9

) ����� > 2
)

= Pr

(�����/ + V 9 − V 9 ,0

B
(
V̂ 9

) ����� > 2
)
.
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One-sided Test
I In the case of one-sided tests, the null and alternative hypotheses

may be specified as

H0 : V 9 ≤ V 9 ,0,

H1 : V 9 > V 9 ,0.

I In this case, a valid test should satisfy the following condition:

sup
V 9 ≤V 9,0

Pr
(
reject H0 | V 9

)
≤ U, (2)

i.e. the maximum probability to reject �0 when it is true should
not exceed U.

I Consider the following test (decision rule):

Reject H0 when ) > 2.

where 2 is set so that Pr (C=−: ≥ 2) = U.
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I Under H0, we have:

Pr
(
reject H0 | V 9 ≤ V 9 ,0

)
= Pr

(
) > 2 | V 9 ≤ V 9 ,0

)
= Pr

(
V̂ 9 − V 9 ,0

B
(
V̂ 9

) > 2 | V 9 ≤ V 9 ,0

)
≤ Pr

(
V̂ 9 − V 9

B
(
V̂ 9

) > 2 | V 9 ≤ V 9 ,0

)
since V 9 ≤ V 9 ,0

= U (since
V̂ 9 − V 9

B
(
V̂ 9

) ∼ C=−:).
I The size control condition is satisfied.
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Testing a Single Linear Restriction
I Suppose we want to test

H0 : c′# = A,

H1 : c′# ≠ A.

I In this case, c is a :-vector, A is a scalar, and under the null
hypothesis

21V1 + . . . + 2: V: − A = 0.

I We have that the LS estimator of #

#̂ | ^ ∼ #
(
#, f2 (^ ′^)−1

)
.

Then, under �0,

c′ #̂ − A√
f2c′ (^ ′^)−1 c

| ^ ∼ N (0, 1) .
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I The C-statistic

) =
c′ #̂ − A√

B2c′ (^ ′^)−1 c

=
©­­«

c′ #̂ − A√
f2c′ (^ ′^)−1 c

ª®®¬ /
√

e′Se

f2 /(= − :).

I e′Se/f2 | ^ ∼ j2
=−: and is independent of #̂. Therefore, under

H0, ) | ^ ∼ C=−: .
I The significance level U two-sided test of H0 : c′# = A is given

by “reject H0 if |) | > 2”, where Pr ( |C=−: | > 2) = U.
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Testing Multiple Linear Restrictions
I Suppose we want to test

H0 : X# = r,

H1 : X# ≠ r,

where X is a @ × : matrix and r is a @-vector.
I X = O: , r = 0. In this case, we test that V1 = . . . = V: = 0.

I ' =

(
1 1 0 0 . . . 0
0 0 1 0 . . . 0

)
, A =

(
1
0

)
. In this case,

�0 : V1 + V2 = 1, V3 = 0.
I Consider the �-statistic

� =
('((A − '((DA ) /@
'((DA/(= − :)

.

I '((A : the restricted Residual Sum of Squares.
I '((DA : the unrestricted Residual Sum of Squares.
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I Consider the restricted problem

min
b
(_ − ^b) ′ (_ − ^b) subject to Xb = r.

I A Lagrangian function for this problem is

! (b, ,) = (_ − ^b) ′ (_ − ^b) + 2,′ (Xb − r) ,

where , is a @-vector.
I Let #̃, ,̃ be the solution, where #̃ is the restricted LS estimator. It

has to satisfy the first-order conditions

m!
(
#̃, ,̃

)
mb

= 2^ ′^#̃ − 2^ ′_ + 2X′,̃ = 0, (3)

m!
(
#̃, ,̃

)
m,

= X#̃ − r = 0. (4)

I The restricted LS estimator is given by

#̃ = #̂ − (^ ′^)−1 X′
(
X (^ ′^)−1 X′

)−1 (
X#̂ − A

)
,

where #̂ is the LS estimator without the restriction Xb = r.
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I Define the restricted residuals

ẽ = _ − ^#̃

=

(
_ − ^#̂

)
+ ^ (^ ′^)−1 X′

(
X (^ ′^)−1 X′

)−1 (
X#̂ − A

)
= ê + ^ (^ ′^)−1 X′

(
X (^ ′^)−1 X′

)−1 (
X#̂ − A

)
,

I Then,

'((A = ẽ′ẽ

= ê′ê +
(
X#̂ − r

) ′ (
X (^ ′^)−1 X′

)−1 (
X#̂ − r

)
+2ê′^ (^ ′^)−1 X′

(
X (^ ′^)−1 X′

)−1 (
X#̂ − r

)
= '((DA +

(
X#̂ − r

) ′ (
X (^ ′^)−1 X′

)−1 (
X#̂ − r

)
.

I Since B2 = ê′ê/(= − :) = '((DA/(= − :),

� =

(
X#̂ − r

) ′ (
B2X (^ ′^)−1 X′

)−1 (
X#̂ − r

)
/@.
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I We show next that under H0, � | ^ ∼ �@,=−: . First,

X#̂ | ^ ∼ N
(
X#, f2X (^ ′^)−1 X′

)
.

I Then, under H0,

X#̂ − r | ^ ∼ N
(
0, f2X (^ ′^)−1 X′

)
.

It follows that(
X#̂ − r

) ′ (
f2X (^ ′^)−1 X′

)−1 (
X#̂ − r

)
| ^ ∼ j2

@ .

The result follows from
e′Se/f2 | ^ ∼ j2

=−: and independent of #̂ and the definition of
�-distribution.

I Therefore, the test is given by “reject H0 if � > 2”, where
Pr

(
�@,=−: > 2

)
= U.
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Test of Model Significance
I Consider a model with the intercept

.8 = V1 + V2-82 + . . . + V:-8: +*8 ,

I Consider the null hypothesis �0 : V2 = . . . V: = 0. The restricted
model is given by

.8 = V1 +*8 .

I In this case, the restricted LS estimator is Ṽ1 = =
−1 ∑=

8=1.8 = .,

and '((A = )(( =
∑=

8=1

(
.8 − .

)2
. In this case,

� =
()(( − '((DA ) /(: − 1)

'((DA/(= − :)

=
�((/(: − 1)
'((DA/(= − :)

=
'2/(: − 1)(

1 − '2) /(= − :)
∼ �:−1,=−: .
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