Advanced Econometrics Lecture 7: Large Sample Theory (Hansen ch. 6)

Instructor: Ma, Jun

Renmin University of China

November 15, 2021

Why we need the large sample theory

- We have shown that the OLS estimator $\hat{\beta}$ has some desirable properties:
 - $\hat{\beta}$ is unbiased if the errors are strongly exogenous: $\mathbb{E}(e \mid X) = \mathbf{0}$.
 - If in addition the errors are homoskedastic then $\hat{V}_{\hat{\beta}}^0 = (X'X)^{-1} s^2$ is an unbiased estimator of the conditional variance of the OLS estimator $\hat{\beta}$.
 - ► If in addition the errors are normally distributed (given *X*) then the *t* statistic has a *t* distribution which can be used for hypotheses testing.

- ► If the errors are only weakly exogenous: E (X_ie_i) = 0 the OLS estimator is in general biased.
- If the errors are heteroskedastic: $\mathbb{E}(e_i^2 | X_i) = h(X_i)$, the "usual" variance formula is invalid; we also do not have an unbiased estimator for the variance in this case.
- ► If the errors are not normally distributed conditional on *X* then *t* and *F* statistics do not have *t* and *F* distributions under the null hypothesis.
- ► The asymptotic or large sample theory allows us to derive approximate properties and distributions of estimators and test statistics by assuming that the sample size *n* is very large.

- ➤ We will argue that even when the errors are not normally distributed, the OLS estimator has an approximately normal distribution in large samples, provided that some additional conditions hold.
- This property is used for hypothesis testing: in large samples, the *t* statistic has a standard normal distribution and the *F* statistic has a χ^2 distribution (approximately).

Limits and convergence concepts

- The concept of convergence cannot be applied in a straightforward way to sequences of random variables. This is so because a random variable is a function from the sample space Ω to the real line. The solution is to consider convergence of a non-random sequence derived from the random one.
- ► Let {X_n : n = 1, 2, ...} be a sequence of random variables. Let X be random or non-random.
- ► We will consider non-random sequences with the following typical elements: 1. $\mathbb{E} |X_n X|^r$; 2. Pr $(|X_n X| > \varepsilon)$ for some $\varepsilon > 0$.
 - Convergence in *r*-th mean. X_n converges to X in *r*-th mean if $\mathbb{E} |X_n X|^r \to 0$ as $n \to \infty$.
 - ► Convergence in probability. X_n converges in probability to X if for all $\varepsilon > 0$, Pr $(|X_n - X| \ge \varepsilon) \to 0$ as $n \to \infty$. It is denoted as $X_n \to_p X$ or plim_{$n\to\infty$} $X_n = X$.

- ► Convergence in *r*-th mean implies convergence in probability.
- (Markov's Inequality) Let *X* be a random variable. For $\varepsilon > 0$ and r > 0,

$$\Pr\left(|X| \ge \varepsilon\right) \le \mathbb{E} |X|^r / \varepsilon^r.$$

Suppose that X_n converges to X in r-th mean, $\mathbb{E} |X_n - X|^r \to 0$. Then,

$$\Pr\left(|X_n - X| \ge \varepsilon\right) \le \mathbb{E} |X_n - X|^r / \varepsilon^r$$

$$\to 0.$$

Rules for probability limits

Suppose that $X_n \rightarrow_p a$ and $Y_n \rightarrow_p b$, where *a* and *b* are some finite constants. Let *c* be another constant.

- $cX_n \rightarrow_p ca$.
- $\bullet \ X_n + Y_n \to_p a + b.$
- $X_n Y_n \to_p ab$.
- $X_n/Y_n \rightarrow_p a/b$, provided that $b \neq 0$.
- If $0 \le X_n \le Y_n$ and $Y_n \to_p 0$, then $X_n \to_p 0$.
- $X_n \rightarrow_p 0$ if and only if $|X_n| \rightarrow_p 0$.

Continuous mapping theorem (CMT)

- ► Suppose that $X_n \rightarrow_p c$, a constant, and let $h(\cdot)$ be a continuous function at *c*. Then, $h(X_n) \rightarrow_p h(c)$.
- suppose that $\widehat{\beta}_n \to_p \beta$. Then $\widehat{\beta}_n^2 \to_p \beta^2$, and $1/\widehat{\beta}_n \to_p 1/\beta$, provided $\beta \neq 0$.

Convergence of random vectors

- ► The random vectors/matrices converge in probability if their elements converge in probability.
- ► Consider the vector case. Let $\{X_n : n = 1, 2, ...\}$ be a sequence of random *k*-vectors. $X_n X \rightarrow_p 0$ element-by-element, where *X* is a possibly random *k*-vector, if and only if $||X_n X|| \rightarrow_p 0$, where $|| \cdot ||$ denotes the Euclidean norm.
- ► The rules for manipulation of probability limits in the vector/matrix case are similar to those in the scalar case.
- The CMT is valid in vector/matrix case as well.

Weak law of large numbers

- ► Let $X_1, ..., X_n$ be a sample of iid random variables such that $\mathbb{E} |X_1| < \infty$. Then, $n^{-1} \sum_{i=1}^n X_i \to_p \mathbb{E} X_1$ as $n \to \infty$.
- Due to iid assumption, we have that $\mathbb{E}X_i = \mathbb{E}X_1$ for all i = 1, ..., n.

Convergence in distribution

- Let $\{X_n : n = 1, 2, ...\}$ be a sequence of random variables.
- ► Let $F_n(x)$ denote the marginal CDF of X_n , i.e. $F_n(x) = \Pr(X_n \le x)$. Let F(x) be another CDF.
- We say that X_n converges in distribution if $F_n(x) \to F(x)$ for all x where F(x) is continuous.
- ► In this case, we write $X_n \rightarrow_d X$, where X is any random variable with the distribution function F(x).
- ▶ Note that while we say that *X_n* converges to *X*, the convergence in distribution is not convergence of random variables, but of the distribution functions.

- ► The extension to the vector case is straightforward. Let X_n and X be two random k-vectors.
- We say that $X_n \rightarrow_d X$ if the joint CDF of X_n converges to that of X at all continuity points, i.e.

$$F_n(x_1, \dots, x_k) = \Pr(X_{n,1} \le x_1, \dots, X_{n,k} \le x_k)$$

$$\rightarrow \Pr(X_1 \le x_1, \dots, X_k \le x_k)$$

$$= F(x_1, \dots, x_k),$$

for all points (x_1, \ldots, x_k) where *F* is continuous.

► In this case, we say that the elements of X_n, X_{n,1},...X_{n,k}, jointly converge in distribution to X₁,...X_k, the elements of X.

Rules of convergence in distribution

- (Cramer Convergence Theorem) Suppose that $X_n \rightarrow_d X$ and $Y_n \rightarrow_p c$. Then,
 - $X_n + Y_n \rightarrow_d X + c$.
 - $Y_n X_n \to_d c X$.
 - $X_n/Y_n \rightarrow_d X/c$, provided that $c \neq 0$.
- ► If $X_n \rightarrow_p X$, then $X_n \rightarrow_d X$. Converse is not true with one exception: If $X_n \rightarrow_d c$, a constant, then $X_n \rightarrow_p c$.
- If $X_n Y_n \rightarrow_p 0$, and $Y_n \rightarrow_d Y$, then $X_n \rightarrow_d Y$.

Continuous mapping theorem

- ► Suppose that $X_n \rightarrow_d X$, and let $h(\cdot)$ be a function continuous on a set X such that $Pr(X \in X) = 1$. Then, $h(X_n) \rightarrow_d h(X)$.
- ► Examples:
 - Suppose that $X_n \to_d X$. Then $X_n^2 \to_d X^2$. For example, if $X_n \to_d N(0, 1)$, then $X_n^2 \to_d \chi_1^2$.
 - ▶ Suppose that $(X_n, Y_n) \rightarrow_d (X, Y)$ (joint convergence in distribution), and set h(x, y) = x. Then $X_n \rightarrow_d X$. Set $h(x, y) = x^2 + y^2$. Then $X_n^2 + Y_n^2 \rightarrow_d X^2 + Y^2$. For example, if $(X_n, Y_n) \rightarrow_d N(0, I_2)$, then $X_n^2 + Y_n^2 \rightarrow_d \chi_2^2$.
- ▶ Note that contrary to convergence in probability, $X_n \rightarrow_d X$ and $Y_n \rightarrow_d Y$ does not imply that, for example, $X_n + Y_n \rightarrow_d X + Y$, unless a joint convergence result holds.

The central limit theorem

- ► Let $X_1, ..., X_n$ be a sample of iid random variables such that $\mathbb{E}X_1 = 0$ and $0 < \mathbb{E}X_1^2 < \infty$. Then, as $n \to \infty$, $n^{-1/2} \sum_{i=1}^n X_i \to_d N(0, \mathbb{E}X_1^2)$.
- ► Let $X_1, ..., X_n$ be a sample of iid random variables with $\mathbb{E}X_1 = \mu$ and $Var(X_1) = \sigma^2 < \infty$. Define

$$\overline{X}_n = n^{-1} \sum_{i=1}^n X_i.$$

► Consider $n^{-1/2} \sum_{i=1}^{n} (X_i - \mu)$. We have that $(X_1 - \mu), \dots, (X_n - \mu)$ are iid with the mean $\mathbb{E}(X_1 - \mu) = 0$, and the variance $\mathbb{E}(X_1 - \mu)^2 = \sigma^2 < \infty$. Therefore, by the CLT,

$$n^{1/2} \left(\overline{X}_n - \mu \right) = n^{-1/2} \sum_{i=1}^n \left(X_i - \mu \right)$$

$$\rightarrow_d \quad N \left(0, \sigma^2 \right).$$

- ► In practice, we use convergence in distribution as an approximation. Let ^a denote "approximately in large samples".
- Informally, one can say that $n^{1/2} \left(\overline{X}_n \mu \right) \stackrel{a}{\sim} N \left(0, \sigma^2 \right)$ or $\overline{X}_n \stackrel{a}{\sim} N \left(\mu, \sigma^2 / n \right)$.
- ► Note that under the normality assumption for *X_i*'s, the above result is obtained exactly for any sample size *n*.

Cramer-Wold device and multivariate CLT

- ► Let X_n be a random *k*-vector. Then, $X_n \rightarrow_d X$ if and only if $\lambda' X_n \rightarrow_d \lambda' X$ for all non-zero $\lambda \in \mathbb{R}^k$.
- ► Let $X_1, ..., X_n$ be a sample of iid random *k*-vectors such that $\mathbb{E}X_1 = \mathbf{0}$ (denote $X_i = (X_{i,1}, ..., X_{i,k})'$) and $\mathbb{E}X_{1,j}^2 < \infty$ for all j = 1, ..., k, and $\mathbb{E}(X_1X_1')$ is positive definite. Then, $n^{-1/2} \sum_{i=1}^n X_i \to_d N(0, \mathbb{E}(X_1X_1')).$

Delta method

- ► The delta method is used to derive the asymptotic distribution of the nonlinear functions of estimators. For example, $\overline{X}_n \rightarrow_p \mathbb{E}X_1 = \mu$. It follows from the CMT that $h(\overline{X}_n) \rightarrow_p h(\mu)$. The delta method provides approximation for the distribution of $h(\overline{X}_n)$.
- We have that $n^{1/2} (\overline{X}_n \mu) \rightarrow_d N(0, \sigma^2)$. Suppose that $\mu \neq 0$. Then, by the delta method,

$$\begin{split} n^{1/2} \left(\frac{1}{\overline{X}_n} - \frac{1}{\mu} \right) & \to_d & -\frac{1}{\mu^2} N\left(0, \sigma^2 \right) \\ & = & N\left(0, \frac{\sigma^2}{\mu^4} \right). \end{split}$$

• Let $\widehat{\theta}_n$ be a random k-vector, and suppose that $n^{1/2} \left(\widehat{\theta}_n - \theta \right) \to_d Y$ as $n \to \infty$, where θ is a k-vector of constants ($\theta = (\theta_1, ..., \theta_k)'$), and Y is a random k-vector. Let $h : \mathbb{R}^k \to \mathbb{R}^m$ be a function continuously differentiable on some open neighborhood of θ . Equivalently, we can denote $h = (h_1, ..., h_m)'$, where $h_j : \mathbb{R}^k \to \mathbb{R}, j = 1, ..., m$. Then, $n^{1/2} \left(h \left(\widehat{\theta}_n \right) - h(\theta) \right) \to_d \frac{\partial h(\theta)}{\partial \theta'} Y$, where

$$\frac{\partial \boldsymbol{h}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}'} = \begin{pmatrix} \frac{\partial h_1(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}'} \\ \vdots \\ \frac{\partial h_m(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}'} \end{pmatrix} = \begin{pmatrix} \frac{\partial h_1(\boldsymbol{\theta})}{\partial \theta_1} & \cdots & \frac{\partial h_1(\boldsymbol{\theta})}{\partial \theta_k} \\ \vdots & \ddots & \vdots \\ \frac{\partial h_m(\boldsymbol{\theta})}{\partial \theta_1} & \cdots & \frac{\partial h_m(\boldsymbol{\theta})}{\partial \theta_k} \end{pmatrix}$$