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Why we need the large sample theory

I We have shown that the OLS estimator β̂ has some desirable
properties:
I β̂ is unbiased if the errors are strongly exogenous: E (e | X ) = 0.
I If in addition the errors are homoskedastic then V̂ 0

β̂ =
(
X ′X

)−1 s2

is an unbiased estimator of the conditional variance of the OLS
estimator β̂.

I If in addition the errors are normally distributed (given X) then
the t statistic has a t distribution which can be used for hypotheses
testing.
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I If the errors are only weakly exogenous: E (X iei) = 0 the OLS
estimator is in general biased.

I If the errors are heteroskedastic:E
(
e2
i | X i

)
= h (X i), the "usual"

variance formula is invalid; we also do not have an unbiased
estimator for the variance in this case.

I If the errors are not normally distributed conditional on X then t
and F statistics do not have t and F distributions under the null
hypothesis.

I The asymptotic or large sample theory allows us to derive
approximate properties and distributions of estimators and test
statistics by assuming that the sample size n is very large.
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I We will argue that even when the errors are not normally
distributed, the OLS estimator has an approximately normal
distribution in large samples, provided that some additional
conditions hold.

I This property is used for hypothesis testing: in large samples, the
t statistic has a standard normal distribution and the F statistic
has a χ2 distribution (approximately).
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Limits and convergence concepts

I The concept of convergence cannot be applied in a
straightforward way to sequences of random variables. This is so
because a random variable is a function from the sample space Ω
to the real line. The solution is to consider convergence of a
non-random sequence derived from the random one.

I Let {Xn : n = 1, 2, . . .} be a sequence of random variables. Let X
be random or non-random.

I We will consider non-random sequences with the following
typical elements: 1. E |Xn − X |r ; 2. Pr ( |Xn − X | > ε) for some
ε > 0.
I Convergence in r-th mean. Xn converges to X in r-th mean if
E |Xn − X |r → 0 as n → ∞.

I Convergence in probability. Xn converges in probability to X if
for all ε > 0, Pr (|Xn − X | ≥ ε) → 0 as n → ∞. It is denoted as
Xn →p X or plimn→∞Xn = X .

5 / 19



I Convergence in r-th mean implies convergence in probability.
I (Markov’s Inequality) Let X be a random variable. For ε > 0 and

r > 0,
Pr (|X | ≥ ε) ≤ E |X |r /εr .

I Suppose that Xn converges to X in r-th mean, E |Xn − X |r → 0.
Then,

Pr (|Xn − X | ≥ ε) ≤ E |Xn − X |r /εr

→ 0.
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Rules for probability limits

Suppose that Xn →p a and Yn →p b, where a and b are some finite
constants. Let c be another constant.
I cXn →p ca.
I Xn + Yn →p a + b.
I XnYn →p ab.
I Xn/Yn →p a/b, provided that b , 0.
I If 0 ≤ Xn ≤ Yn and Yn →p 0, then Xn →p 0.
I Xn →p 0 if and only if |Xn | →p 0.
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Continuous mapping theorem (CMT)

I Suppose that Xn →p c, a constant, and let h(·) be a continuous
function at c. Then, h (Xn) →p h(c).

I suppose that β̂n →p β. Then β̂2
n →p β2, and 1/ β̂n →p 1/β,

provided β , 0.
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Convergence of random vectors

I The random vectors/matrices converge in probability if their
elements converge in probability.

I Consider the vector case. Let {Xn : n = 1, 2, . . .} be a sequence
of random k-vectors. Xn − X →p 0 element-by-element, where
X is a possibly random k-vector, if and only if ‖Xn − X ‖ →p 0,
where ‖·‖ denotes the Euclidean norm.

I The rules for manipulation of probability limits in the
vector/matrix case are similar to those in the scalar case.

I The CMT is valid in vector/matrix case as well.
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Weak law of large numbers

I Let X1, . . . Xn be a sample of iid random variables such that
E |X1 | < ∞. Then, n−1 ∑n

i=1 Xi →p EX1 as n → ∞.
I Due to iid assumption, we have that EXi = EX1 for all

i = 1, . . . , n.
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Convergence in distribution

I Let {Xn : n = 1, 2, . . .} be a sequence of random variables.
I Let Fn(x) denote the marginal CDF of Xn, i.e.

Fn(x) = Pr (Xn ≤ x) . Let F (x) be another CDF.
I We say that Xn converges in distribution if Fn(x) → F (x) for all

x where F (x) is continuous.
I In this case, we write Xn →d X, where X is any random variable
with the distribution function F (x).

I Note that while we say that Xn converges to X, the convergence
in distribution is not convergence of random variables, but of the
distribution functions.
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I The extension to the vector case is straightforward. Let Xn and
X be two random k-vectors.

I We say that Xn →d X if the joint CDF of Xn converges to that
of X at all continuity points, i.e.

Fn (x1, . . . , xk ) = Pr
(
Xn,1 ≤ x1, . . . , Xn,k ≤ xk

)
→ Pr (X1 ≤ x1, . . . , Xk ≤ xk )

= F (x1, . . . , xk ) ,

for all points (x1, . . . , xk ) where F is continuous.
I In this case, we say that the elements of Xn, Xn,1, . . . Xn,k, jointly
converge in distribution to X1, . . . Xk, the elements of X .
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Rules of convergence in distribution

I (Cramer Convergence Theorem) Suppose that Xn →d X and
Yn →p c. Then,
I Xn + Yn →d X + c.
I YnXn →d cX .
I Xn/Yn →d X/c, provided that c , 0.

I If Xn →p X, then Xn →d X . Converse is not true with one
exception: If Xn →d c, a constant, then Xn →p c.

I If Xn − Yn →p 0, and Yn →d Y, then Xn →d Y .
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Continuous mapping theorem

I Suppose that Xn →d X, and let h (·) be a function continuous on
a set X such that Pr (X ∈ X) = 1. Then, h (Xn) →d h(X ).

I Examples:
I Suppose that Xn →d X . Then X2

n →d X2. For example, if
Xn →d N (0, 1) , then X2

n →d χ2
1.

I Suppose that (Xn,Yn) →d (X,Y ) (joint convergence in
distribution), and set h(x, y) = x. Then Xn →d X . Set
h(x, y) = x2 + y2. Then X2

n + Y 2
n →d X2 + Y 2. For example, if

(Xn,Yn) →d N (0, I2), then X2
n + Y 2

n →d χ2
2.

I Note that contrary to convergence in probability, Xn →d X and
Yn →d Y does not imply that, for example, Xn + Yn →d X + Y,
unless a joint convergence result holds.
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The central limit theorem
I Let X1, . . . , Xn be a sample of iid random variables such that
EX1 = 0 and 0 < EX2

1 < ∞. Then, as n → ∞,
n−1/2 ∑n

i=1 Xi →d N (0,EX2
1 ).

I Let X1, . . . Xn be a sample of iid random variables with EX1 = µ

and Var (X1) = σ2 < ∞. Define

Xn = n−1
n∑
i=1

Xi .

I Consider n−1/2 ∑n
i=1 (Xi − µ) .We have that

(X1 − µ) , . . . , (Xn − µ) are iid with the mean E (X1 − µ) = 0,
and the variance E (X1 − µ)2 = σ2 < ∞. Therefore, by the CLT,

n1/2
(
Xn − µ

)
= n−1/2

n∑
i=1

(Xi − µ)

→d N
(
0, σ2

)
.
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I In practice, we use convergence in distribution as an
approximation. Let a

∼ denote "approximately in large samples".
I Informally, one can say that n1/2

(
Xn − µ

)
a
∼ N

(
0, σ2

)
or

Xn
a
∼ N

(
µ, σ2/n

)
.

I Note that under the normality assumption for Xi’s, the above
result is obtained exactly for any sample size n.
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Cramer-Wold device and multivariate CLT

I Let Xn be a random k-vector. Then, Xn →d X if and only if
λ ′Xn →d λ ′X for all non-zero λ ∈ Rk .

I Let X1, . . . , Xn be a sample of iid random k-vectors such that
EX1 = 0 (denote X i =

(
Xi,1, ..., Xi,k

) ′) and EX2
1, j < ∞ for all

j = 1, . . . , k, and E
(
X1X

′
1

)
is positive definite. Then,

n−1/2 ∑n
i=1 X i →d N (0,E

(
X1X

′
1

)
).
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Delta method

I The delta method is used to derive the asymptotic distribution of
the nonlinear functions of estimators. For example,
Xn →p EX1 = µ. It follows from the CMT that
h

(
Xn

)
→p h(µ). The delta method provides approximation for

the distribution of h
(
Xn

)
.

I We have that n1/2
(
Xn − µ

)
→d N

(
0, σ2

)
. Suppose that µ , 0.

Then, by the delta method,

n1/2
(

1
Xn

−
1
µ

)
→d −

1
µ2 N

(
0, σ2

)
= N

(
0,
σ2

µ4

)
.

18 / 19



I Let θ̂n be a random k-vector, and suppose that
n1/2

(
θ̂n − θ

)
→d Y as n → ∞, where θ is a k-vector of

constants (θ = (θ1, ..., θk )′), and Y is a random k-vector. Let
h : Rk → Rm be a function continuously differentiable on some
open neighborhood of θ. Equivalently, we can denote
h = (h1, ..., hm)′, where h j : Rk → R, j = 1, ...,m. Then,
n1/2

(
h

(
θ̂n

)
− h(θ)

)
→d

∂h(θ)
∂θ′ Y, where

∂h(θ)
∂θ ′

=
*...
,

∂h1 (θ)
∂θ′

...
∂hm (θ)
∂θ′

+///
-

=
*...
,

∂h1 (θ)
∂θ1

· · ·
∂h1 (θ)
∂θk

...
. . .

...
∂hm (θ)
∂θ1

· · ·
∂hm (θ)
∂θk

+///
-

.
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