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Why we need the large sample theory

» We have shown that the OLS estimator 8 has some desirable
properties:
> B is unbiased if the errors are strongly exogenous: E (e | X) = 0.

» If in addition the errors are homoskedastic then V% =(X'X)"'s2
is an unbiased estimator of the conditional variance of the OLS
estimator B

» If in addition the errors are normally distributed (given X) then
the ¢ statistic has a ¢ distribution which can be used for hypotheses
testing.



If the errors are only weakly exogenous: E (X;e;) = 0 the OLS
estimator is in general biased.

If the errors are heteroskedastic:E (el? | X l-) = h (X;), the "usual"
variance formula is invalid; we also do not have an unbiased
estimator for the variance in this case.

If the errors are not normally distributed conditional on X then ¢
and F statistics do not have ¢ and F distributions under the null
hypothesis.

The asymptotic or large sample theory allows us to derive
approximate properties and distributions of estimators and test
statistics by assuming that the sample size n is very large.



» We will argue that even when the errors are not normally
distributed, the OLS estimator has an approximately normal
distribution in large samples, provided that some additional
conditions hold.

» This property is used for hypothesis testing: in large samples, the
t statistic has a standard normal distribution and the F statistic
has a y? distribution (approximately).



Limits and convergence concepts

» The concept of convergence cannot be applied in a
straightforward way to sequences of random variables. This is so
because a random variable is a function from the sample space Q
to the real line. The solution is to consider convergence of a
non-random sequence derived from the random one.

» Let{X,, : n=1,2,...} be a sequence of random variables. Let X
be random or non-random.

» We will consider non-random sequences with the following
typical elements: 1. E|X,, — X|"; 2. Pr(|X,, — X| > &) for some
e>0.

» Convergence in r-th mean. X,, converges to X in r-th mean if
E|X, - X|" - 0asn — oo.

» Convergence in probability. X,, converges in probability to X if
foralle > 0,Pr(|X,, — X| = &) — 0 as n — oo. It is denoted as
X, —p X or plim X, =X.

n—0o0



» Convergence in r-th mean implies convergence in probability.

» (Markov’s Inequality) Let X be a random variable. For £ > 0 and
r >0,
Pr(|X|>¢) <EI[X]|" /&".

» Suppose that X,, converges to X in r-th mean, E |X,, — X|" — 0.
Then,

Pr(X,-X|>e) < E|X,-X|"/&

- 0.
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Rules for probability limits

Suppose that X,, —,, a and ¥;, —, b, where a and b are some finite
constants. Let ¢ be another constant.

» cX, —p ca.

» Xy +Y, =, a+b.

» XY, —, ab.

» X,,/Y, —p a/b, provided that b # 0.

» f0< X, <Y,and ¥, —, 0, then X,, —, 0.
» X, —p 0if and only if | X,,| —, 0.



Continuous mapping theorem (CMT)

» Suppose that X,, —, ¢, a constant, and let /() be a continuous
function at c. Then, & (X,) —, h(c).

» suppose that En —p B. Then E,ZL —p B2, and I/En —p 1/B,
provided g # 0.
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Convergence of random vectors

» The random vectors/matrices converge in probability if their
elements converge in probability.

» Consider the vector case. Let {X,, : n = 1,2,...} be a sequence
of random k-vectors. X,, — X —, 0 element-by-element, where
X is a possibly random k-vector, if and only if || X,, — X|| —, O,
where ||-|| denotes the Euclidean norm.

» The rules for manipulation of probability limits in the
vector/matrix case are similar to those in the scalar case.

» The CMT is valid in vector/matrix case as well.



Weak law of large numbers

» Let Xj,... X, be asample of iid random variables such that
E|X;| < co. Then, n~! 2 Xi —»p EXpasn — oo,

» Due to iid assumption, we have that EX; = EX; for all
i=1,...,n.
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Convergence in distribution

» Let{X, : n=1,2,...} be a sequence of random variables.

» Let F,,(x) denote the marginal CDF of X,,, i.e.
F,(x) =Pr(X, < x).Let F(x) be another CDF.

» We say that X,, converges in distribution if F,(x) — F(x) for all
x where F'(x) is continuous.

» In this case, we write X,, —4 X, where X is any random variable
with the distribution function F'(x).

» Note that while we say that X, converges to X, the convergence

in distribution is not convergence of random variables, but of the
distribution functions.



» The extension to the vector case is straightforward. Let X, and
X be two random k-vectors.

» We say that X,, —4 X if the joint CDF of X, converges to that
of X at all continuity points, i.e.

Fo(xpyo.0oxk) = Pr(Xp1 <xp,..., Xnk < xk)
- Pr(X; <xy,...,Xx < xp)
= F('xl""’xk)’
for all points (x1, ..., xx) where F' is continuous.

» In this case, we say that the elements of X,,, X, 1, . . . Xju k. jointly
converge in distribution to Xy, . .. X, the elements of X.



Rules of convergence in distribution

» (Cramer Convergence Theorem) Suppose that X,, —4 X and
Y, —, c. Then,
» X, +Y, —oq X +ec.
» 1, X, —acX.
» X,/Y, =4 X/c, provided that ¢ # 0.
» If X, —», X, then X,, —4 X. Converse is not true with one
exception: If X,, —4 ¢, a constant, then X,, —, c.

» IfX,-Y, >, 0,and Y, -4 Y, then X,, -4 Y.



Continuous mapping theorem

» Suppose that X,, —4 X, and let 4 (-) be a function continuous on
a set X such that Pr (X € X) = 1. Then, & (X,,) —4 h(X).
» Examples:

» Suppose that X,, —4 X. Then X2 —, X2. For example, if
X, =4 N (0,1), then Xﬁ -4 X%-

» Suppose that (X,,,Y,,) =4 (X,Y) (joint convergence in
distribution), and set i(x,y) = x. Then X, -4 X. Set
h(x,y) = x> + y2. Then X2 + Y? =, X* + Y. For example, if
(X, Yu) =a N (0, ), then X2 + Y2 >4 x3.

» Note that contrary to convergence in probability, X;,, —4 X and
Y, —4 Y does not imply that, for example, X,, + Y;, =4 X + 7Y,
unless a joint convergence result holds.



The central limit theorem

» Let Xi,..., X, be a sample of iid random variables such that
EX; = 0and 0 < EX? < co. Then, as n — oo,
n 23 X —q N(O,EX?).

» Let Xi,... X, be asample of iid random variables with EX; = u
and Var (X)) = 02 < 0. Define

n
Yn = n_l Z X,’.
i=1

» Consider n~!/2 ey (Xi = p) . We have that
X1 —=w,..., (X, — w are iid with the mean E (X; — u) =0,
and the variance E (X — ,u)2 = 0% < co. Therefore, by the CLT,

W2 (%y-p) = Y -
i=1
—d N (0, 0'2) .
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» In practice, we use convergence in distribution as an
approximation. Let < denote "approximately in large samples".

» Informally, one can say that n!/? (Yn - ,u) N (O, 0'2) or
Yn N (,u, a’z/n).

» Note that under the normality assumption for X;’s, the above
result is obtained exactly for any sample size n.
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Cramer-Wold device and multivariate CLT

» Let X, be arandom k-vector. Then, X,, —4 X if and only if
A'X, —4 A’X for all non-zero A € R¥.

» Let X1,..., X, be asample of iid random k-vectors such that
EX; = 0 (denote X; = (X;1,..., Xix)) and EXIZJ. < oo for all

j=1,...,k,and E (XlXi) is positive definite. Then,
n2 50 X —a NO.E (X1 X1)).



Delta method

» The delta method is used to derive the asymptotic distribution of
the nonlinear functions of estimators. For example,
X, —p EX| = u. It follows from the CMT that

h (Yn) —p h(u). The delta method provides approximation for
the distribution of & (Yn)

» We have that n!/? (Yn - ,u) —4 N (0, (72) . Suppose that u # 0.
Then, by the delta method,

1 1

1
n'/? (Y_n - ;) -y _EN (O, 0'2)
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» Let En be a random k-vector, and suppose that
nl/? (ﬁn - 0) —4 Y as n — oo, where 0 is a k-vector of
constants (8 = (84, ...,0¢)"), and Y is a random k-vector. Let
h : RF — R™ be a function continuously differentiable on some
open neighborhood of . Equivalently, we can denote
h = (hi, ..., hy)', where h; : R¥ - R,j=1,..,m. Then,
n'’? (h (En) - h(0)) —q MY, where
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