Advanced Econometrics

Lecture 8: Asymptotic Theory for Least Square (Hansen Chapter 7)

Instructor: Ma, Jun

Renmin University of China

November 22, 2021

Introduction

► The model is

$$Y_i = X_i' \boldsymbol{\beta} + e_i, i = 1, ..., n$$
$$\boldsymbol{\beta} = (\mathbb{E}(X_i X_i'))^{-1} \mathbb{E}(X_i Y_i).$$

Assumption

- 1. The observations (Y_i, X_i) , i = 1, ..., n, are independent and identically distributed.
- $2.\mathbb{E}\left(Y^2\right)<\infty.$
- $3.\mathbb{E}\|X^2\|<\infty.$
- $4.Q_{XX} = \mathbb{E}(XX')$ is positive definite.

Consistency of Least-Squares Estimator

- " (Y_i, X_i) , i = 1, ..., n are iid" implies that any function of (Y_i, X_i) is iid, including $X_i X_i'$ and $X_i Y_i$.
- ► The LS estimator:

$$\hat{\boldsymbol{\beta}} = \left(\frac{1}{n} \sum_{i=1}^{n} \left(X_{i} X_{i}^{\prime}\right)\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} \left(X_{i} Y_{i}\right)\right) = \hat{\boldsymbol{Q}}_{XX}^{-1} \hat{\boldsymbol{Q}}_{XY}$$

$$\hat{\boldsymbol{Q}}_{XX} = \frac{1}{n} \sum_{i=1}^{n} \left(X_{i} X_{i}^{\prime}\right) \rightarrow_{p} \mathbb{E}\left(X_{i} X_{i}^{\prime}\right) = \boldsymbol{Q}_{XX}$$

$$\hat{\boldsymbol{Q}}_{XY} = \frac{1}{n} \sum_{i=1}^{n} \left(X_{i} Y_{i}^{\prime}\right) \rightarrow_{p} \mathbb{E}\left(X_{i} Y_{i}\right) = \boldsymbol{Q}_{XY}.$$

► By Continuous Mapping Theorem,

$$\hat{\boldsymbol{\beta}} = \hat{\boldsymbol{Q}}_{XX}^{-1} \hat{\boldsymbol{Q}}_{XY}$$

$$\rightarrow_{p} \boldsymbol{Q}_{XX}^{-1} \boldsymbol{Q}_{XY}$$

$$= \boldsymbol{\beta}.$$

► A different approach:

$$\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} = \hat{\boldsymbol{Q}}_{XX}^{-1} \hat{\boldsymbol{Q}}_{Xe}$$

$$\hat{\boldsymbol{Q}}_{Xe} = \frac{1}{n} \sum_{i=1}^{n} (X_i e_i).$$

► The WLLN:

$$\hat{\boldsymbol{Q}}_{\boldsymbol{X}\boldsymbol{e}} \to_{p} \mathbb{E}\left(\boldsymbol{X}_{i}\boldsymbol{e}_{i}\right) = 0.$$

► Therefore,

$$\hat{\beta} - \beta = \hat{Q}_{XX}^{-1} \hat{Q}_{Xe} \rightarrow_{p} Q_{XX}^{-1} \mathbf{0} = \mathbf{0}.$$

Theorem

Consistency of Least-Squares

$$\hat{Q}_{XX} \xrightarrow{p} \hat{Q}_{XX}, \hat{Q}_{XY} \xrightarrow{p} \hat{Q}_{XY}, \hat{Q}_{XX}^{-1} \xrightarrow{p} \hat{Q}_{XX}^{-1}, \hat{Q}_{Xe} \xrightarrow{p} 0$$
, and $\hat{B} \xrightarrow{p} \hat{B}$

Asymptotic Normality

$$\sqrt{n}\left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}\right) = \left(\frac{1}{n}\sum_{i=1}^{n}\left(\boldsymbol{X}_{i}\boldsymbol{X}_{i}'\right)\right)^{-1}\left(\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\left(\boldsymbol{X}_{i}\boldsymbol{e}_{i}\right)\right)$$

- ► $X_i e_i = X_i (Y_i X_i' \beta)$, i = 1, ..., n are iid and mean zero $(\mathbb{E} X_i e_i = \mathbf{0})$.
- ► The covariance matrix: $\Omega = \mathbb{E}\left(e_i^2 X_i X_i'\right)$:

$$\|\mathbf{\Omega}\| \leq \mathbb{E} \|X_i X_i' e_i^2\| = \mathbb{E} \left(\|X_i\|^2 e_i^2 \right) \leq \mathbb{E} \left(\|X_i\|^4 \right)^{1/2} \left(\mathbb{E} \left(e_i^4 \right) \right)^{1/2} < \infty.$$

Theorem

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i e_i) \stackrel{d}{\to} N(\mathbf{0}, \mathbf{\Omega}).$$

Slutsky's theorem:

$$\sqrt{n} \left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \right) \stackrel{d}{\to} \boldsymbol{Q}_{XX}^{-1} \operatorname{N} \left(\boldsymbol{0}, \boldsymbol{\Omega} \right)$$

$$= \operatorname{N} \left(\boldsymbol{0}, \boldsymbol{Q}_{XX}^{-1} \boldsymbol{\Omega} \boldsymbol{Q}_{XX}^{-1} \right).$$

Theorem

$$\sqrt{n}\left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}\right) \stackrel{d}{\to} \mathrm{N}\left(\mathbf{0}, V_{\boldsymbol{\beta}}\right)$$

$$V_{\boldsymbol{\beta}} = \boldsymbol{Q}_{XX}^{-1} \boldsymbol{\Omega} \boldsymbol{Q}_{XX}^{-1},$$

$$\boldsymbol{Q}_{XX} = \mathbb{E}\left(X_{i}X_{i}'\right), \ and \ \boldsymbol{\Omega} = \mathbb{E}\left(X_{i}X_{i}'e^{2}\right).$$

6/26

- V_{β} is often referred to as the **asymptotic covariance matrix** of $\hat{\beta}$.
- ightharpoonup Distributional approximation: when n is large,

$$\hat{\boldsymbol{\beta}} \stackrel{a}{\sim} N\left(\boldsymbol{\beta}, \frac{\boldsymbol{V}_{\boldsymbol{\beta}}}{n}\right).$$

► The finite-sample conditional variance

$$V_{\hat{\beta}} = \operatorname{Var}\left(\hat{\beta} \mid X\right) = (X'X)^{-1} (X'DX) (X'X)^{-1}.$$

 $V_{\hat{\beta}}$ is the exact conditional variance of $\hat{\beta}$.

• We should expect $V_{\hat{\beta}} \approx \frac{V_{\beta}}{n}$.

$$nV_{\hat{\beta}} = \left(\frac{1}{n}X'X\right)^{-1} \left(\frac{1}{n}X'DX\right) \left(\frac{1}{n}X'X\right)^{-1}$$

and $nV_{\hat{\beta}} \to_p V_{\beta}$.

Asymptotic Normality

• Under homoskedasticity, $\mathbb{E}\left(e_i^2|X_i\right) = \sigma^2 = \text{constant}$,

$$\mathbf{\Omega} = \mathbb{E}\mathbb{E}\left(e_i^2 X_i X_i' | X_i\right) = \mathbf{Q}_{XX}\sigma^2$$

$$V_{\beta} = \mathbf{Q}_{XX}^{-1} \mathbf{\Omega} \mathbf{Q}_{XX}^{-1} = \mathbf{Q}_{XX}^{-1}\sigma^2.$$

▶ We define $V_{\beta}^0 = Q_{XX}^{-1} \sigma^2$ no matter $\mathbb{E}\left(e_i^2 | X_i\right) = \sigma^2$ is true or false. When it is true, $V_{\beta} = V_{\beta}^0$. V_{β}^0 is called the homoskedastic asymptotic covariance matrix.

Consistency of Error Variance Estimators

• Write the residual \hat{e}_i as the error e_i plus a deviation term:

$$\hat{e}_i = Y_i - X_i' \hat{\beta}$$

$$= e_i + X_i' \beta - X_i' \hat{\beta}$$

$$= e_i - X_i' (\hat{\beta} - \beta).$$

► Thus

$$\hat{e}_i^2 = e_i^2 - 2e_i X_i' \left(\hat{\beta} - \beta \right) + \left(\hat{\beta} - \beta \right)' X_i' X_i \left(\hat{\beta} - \beta \right).$$

► The estimator $\hat{\sigma}^2 = n^{-1} \sum_{i=1}^n \hat{e}_i^2$ of $\sigma^2 = \mathbb{E}e_i^2$:

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n e_i^2 - 2 \left(\frac{1}{n} \sum_{i=1}^n e_i X_i' \right) \left(\hat{\beta} - \beta \right) + \left(\hat{\beta} - \beta \right)' \left(\frac{1}{n} \sum_{i=1}^n X_i X_i' \right) \left(\hat{\beta} - \beta \right).$$

► WLLN:

$$\frac{1}{n} \sum_{i=1}^{n} e_i^2 \xrightarrow{p} \sigma^2$$

$$\frac{1}{n} \sum_{i=1}^{n} e_i X_i' \xrightarrow{p} \mathbb{E} \left(e_i^2 X_i' \right) = 0$$

$$\frac{1}{n} \sum_{i=1}^{n} X_i X_i' \xrightarrow{p} \mathbb{E} \left(X_i X_i' \right) = Q_{XX}.$$

Another estimator $s^2 = (n-k)^{-1} \sum_{i=1}^n \hat{e}_i^2$. Since $n/(n-k) \to 1$ as $n \to \infty$,

$$s^2 = \left(\frac{n}{n-k}\right) \hat{\sigma}^2 \xrightarrow{p} \sigma^2.$$

Theorem
$$\hat{\sigma}^2 \xrightarrow{p} \sigma^2 \text{ and } s^2 \xrightarrow{p} \sigma^2$$
.

Homoskedastic Covariance Matrix Estimation

- For inference (confidence intervals and tests), we need a consistent estimate of V_{β} .
- ▶ Under homoskedasticity, V_{β} simplifies to $V_{\beta}^{0} = Q_{XX}^{-1}\sigma^{2}$.
- A natural estimator of $V_{\beta}^0 = Q_{XX}^{-1} \sigma^2$ is $\hat{V}_{\beta}^0 = \hat{Q}_{XX}^{-1} s^2$.
- ► By CMT,

$$\hat{\boldsymbol{V}}_{\beta}^{0} = \hat{\boldsymbol{Q}}_{XX}^{-1} s^{2} \rightarrow_{p} \boldsymbol{Q}_{XX}^{-1} \sigma^{2} = \boldsymbol{V}_{\beta}^{0}.$$

- \hat{V}^0_{β} is consistent for V^0_{β} regardless if the regression is homoskedastic or heteroskedastic.
- ► However, $V_{\beta}^0 = V_{\beta}$, the asymptotic covariance matrix, only under homoskedasticity.

Heteroskedastic Covariance Matrix Estimation

ightharpoonup A method of moments estimator for Ω :

$$\hat{\mathbf{\Omega}} = \frac{1}{n} \sum_{i=1}^{n} X_i X_i' \hat{e}_i^2.$$

► The White covariance matrix estimator

$$\hat{\boldsymbol{V}}_{\boldsymbol{\beta}}^{W} = \hat{\boldsymbol{Q}}_{XX}^{-1} \hat{\boldsymbol{\Omega}} \hat{\boldsymbol{Q}}_{XX}^{-1}.$$

▶ Observe

$$\hat{\Omega} = \frac{1}{n} \sum_{i=1}^{n} X_i X_i' \hat{e}_i^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} X_i X_i' \hat{e}_i^2 + \frac{1}{n} \sum_{i=1}^{n} X_i X_i' \left(\hat{e}_i^2 - e_i^2 \right).$$

► By WLLN,

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}X_{i}'e_{i}^{2}\stackrel{p}{\to}\mathbb{E}\left(X_{i}X_{i}'e_{i}^{2}\right)=\mathbf{\Omega}.$$

► It remains to show

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}X'_{i}\left(\hat{e}_{i}^{2}-e_{i}^{2}\right)\rightarrow_{p}0.$$

► Recall matrix norm: $||A|| = \text{tr} (A'A)^{1/2}$ and therefore,

$$||X_i X_i'|| = \operatorname{tr} (X_i X_i')^{1/2} = \operatorname{tr} (X_i' X_i)^{1/2} = ||X_i||.$$

► Thus,

$$\left\| \frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}' \left(\hat{e}_{i}^{2} - e_{i}^{2} \right) \right\| \leq \frac{1}{n} \sum_{i=1}^{n} \left\| X_{i} X_{i}' \left(\hat{e}_{i}^{2} - e_{i}^{2} \right) \right\|$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left\| X_{i} \right\|^{2} \left| \hat{e}_{i}^{2} - e_{i}^{2} \right|.$$

▶ By the triangle inequality and Cauchy-Schwarz inequality,

$$\begin{aligned} \left| \hat{e}_{i}^{2} - e_{i}^{2} \right| &\leq 2 \left| e_{i} X_{i}' \left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \right) \right| + \left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \right)' X_{i}' X_{i} \left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \right) \\ &= 2 \left| e_{i} \right| \left| X_{i}' \left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \right) \right| + \left| \left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \right)' X_{i} \right|^{2} \\ &\leq 2 \left| e_{i} \right| \left\| X_{i} \right\| \left\| \hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \right\| + \left\| X_{i} \right\|^{2} \left\| \hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \right\|^{2}. \end{aligned}$$

► Thus,

$$\left\| \frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}' \left(\hat{e}_{i}^{2} - e_{i}^{2} \right) \right\| \leq 2 \left(\frac{1}{n} \sum_{i=1}^{n} \|X_{i}\|^{3} |e_{i}| \right) \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}\| + \left(\frac{1}{n} \sum_{i=1}^{n} \|X_{i}\|^{4} \right) \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}\|^{2}.$$

Theorem $\hat{\Omega} \stackrel{p}{\to} \Omega \text{ and } \hat{V}_{\beta}^{W} \stackrel{p}{\to} V_{\beta}.$

Functions of Parameters

► The parameter of interest θ is a function of the coefficients, $\theta = r(\beta)$ for some function $r : \mathbb{R}^k \to \mathbb{R}^q$. The estimate of θ :

$$\hat{\boldsymbol{\theta}} = \boldsymbol{r} \left(\hat{\boldsymbol{\beta}} \right).$$

Theorem

If $r(\cdot)$ is continuous at the true value of β , then $\hat{\theta} \stackrel{p}{\to} \theta$.

▶ By the Delta Method, $\hat{\theta}$ is asymptotically normal.

Assumption

 $\mathbf{r}: \mathbb{R}^k \to \mathbb{R}^q$ is continuously differentiable at the true value of $\boldsymbol{\beta}$ and $\mathbf{R} = \frac{\partial}{\partial \boldsymbol{\beta}} \mathbf{r}(\boldsymbol{\beta})'$ has rank q.

Theorem

$$\sqrt{n}\left(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}\right) \stackrel{d}{\rightarrow} N\left(\mathbf{0}, V_{\boldsymbol{\theta}}\right)$$

where

$$V_{\theta} = R'V_{\beta}R$$

- r can be linear: $r(\beta) = R'\beta$, for some $k \times q$ matrix R.
- An even simpler case is when R is of the form $R = \begin{pmatrix} I \\ 0 \end{pmatrix}$.
- ► Then we can partition $\beta = (\beta'_1, \beta'_2)'$ so that $R'\beta = \beta_1$. Then

$$V_{\theta} = (I \quad 0) V_{\beta} \begin{pmatrix} I \\ 0 \end{pmatrix} = V_{11},$$

where V_{β} is partitioned: $V_{\beta} = \begin{bmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{bmatrix}$.

► Take the example $\theta = \beta_i/\beta_l$ for $j \neq l$. Then

$$\boldsymbol{R} = \frac{\partial}{\partial \boldsymbol{\beta}} \boldsymbol{r} \left(\boldsymbol{\beta} \right) = \begin{pmatrix} \frac{\partial}{\partial \beta_{1}} \left(\beta_{j} / \beta_{l} \right) \\ \vdots \\ \frac{\partial}{\partial \beta_{j}} \left(\beta_{j} / \beta_{l} \right) \\ \vdots \\ \frac{\partial}{\partial \beta_{l}} \left(\beta_{j} / \beta_{l} \right) \\ \vdots \\ \frac{\partial}{\partial \beta_{k}} \left(\beta_{j} / \beta_{l} \right) \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ \frac{1}{\beta_{l}} \\ \vdots \\ -\beta_{j} / \beta_{l}^{2} \\ \vdots \\ 0 \end{pmatrix}.$$

► So

$$V_{\theta} = V_{jj}/\beta_l^2 + V_{ll}\beta_j^2/\beta_l^4 - 2V_{jl}\beta_j/\beta_l^3$$
.

For inference, we need an estimate of $V_{\theta} = R'V_{\beta}R$. The natural estimator of R is

$$\hat{\mathbf{R}} = \frac{\partial}{\partial \boldsymbol{\beta}} r \left(\hat{\boldsymbol{\beta}} \right)'.$$

▶ The estimate of V_{θ} is

$$\hat{V}_{\theta} = \hat{R}' \hat{V}_{\beta} \hat{R}.$$

Asymptotic Standard Errors

- ► A standard error is an estimate of the standard deviation of the distribution of an estimator.
- ► Since $\hat{\boldsymbol{\beta}} \stackrel{a}{\sim} N\left(\boldsymbol{\beta}, \frac{\boldsymbol{V}_{\boldsymbol{\beta}}}{n}\right)$ and $\hat{\boldsymbol{\beta}}_{j} \stackrel{a}{\sim} N\left(\boldsymbol{\beta}_{j}, \frac{\left[\boldsymbol{V}_{\boldsymbol{\beta}}\right]_{jj}}{n}\right)$, the standard error takes the form

$$s\left(\hat{\beta}_{j}\right) = \sqrt{\frac{\left[\hat{\boldsymbol{V}}_{\beta}^{W}\right]_{jj}}{n}}.$$

Suppose the parameter of interest is $\theta = r(\beta)$ ($r : \mathbb{R}^k \to \mathbb{R}$, q = 1), the standard error for $\hat{\theta} = r(\hat{\beta})$ is

$$s\left(\hat{\theta}\right) = \sqrt{\frac{\hat{R}'\hat{V}_{\beta}\hat{R}}{n}}.$$

t-statistic

 \bullet $\theta = r(\beta)$ is the parameter of interest. Consider

$$T(\theta) = \frac{\hat{\theta} - \theta}{s(\hat{\theta})}.$$

► Since $\sqrt{n} (\hat{\theta} - \theta) \rightarrow_d N(0, V_{\theta})$ and $\hat{V}_{\theta} \rightarrow_p V_{\theta}$,

$$T(\theta) = \frac{\hat{\theta} - \theta}{s(\hat{\theta})}$$

$$= \frac{\sqrt{n}(\hat{\theta} - \theta)}{\sqrt{\hat{V}_{\theta}}}$$

$$\xrightarrow{d} \frac{N(0, V_{\theta})}{\sqrt{V_{\theta}}}$$

$$= Z \sim N(0, 1).$$

► Since
$$T(\theta) \to_d Z$$
, CMT yields $|T(\theta)| \to_d |Z|$.

$$Pr(\mid Z \mid \leq u) = Pr(-u \leq Z \leq u)$$

$$= Pr(Z \leq u) - Pr(Z < -u)$$

$$= \Phi(u) - \Phi(-u)$$

$$= 2\Phi(u) - 1.$$

Theorem
$$T(\theta) \xrightarrow{d} Z \sim N(0, 1) \text{ and } |T(\theta)| \xrightarrow{d} |Z|$$
.

Confidence Intervals

► A conventional confidence interval takes the form

$$\hat{C} = \left[\begin{array}{cc} \hat{\theta} - c \cdot s(\hat{\theta}), & \hat{\theta} + c \cdot s(\hat{\theta}) \end{array} \right],$$

where $c = F_{|Z|}^{-1} (1 - \alpha)$ or $2\Phi(c) - 1 = 1 - \alpha$.

► Equivalently,

$$\hat{C} = \{\theta \colon |T(\theta)| \le c\} = \left\{\theta \colon -c \le \frac{\hat{\theta} - \theta}{s(\hat{\theta})} \le c\right\}.$$

► The coverage probability:

$$\Pr\left(\theta \in \hat{C}\right) = \Pr\left(|T\left(\theta\right)| \le c\right) \longrightarrow \Pr\left(|Z| \le c\right) = 1 - \alpha.$$

Theorem

With
$$c = \Phi^{-1}(1 - \alpha/2)$$
, $\Pr\left(\theta \in \hat{C}\right) \longrightarrow 1 - \alpha$. For $c = 1.96$,

$$\Pr\left(\theta \in \hat{C}\right) \longrightarrow 0.95.$$

► Under homoskedasticity,

$$\sqrt{n}\left(\widehat{\boldsymbol{\beta}}_{n}-\boldsymbol{\beta}\right) \rightarrow_{d} N\left(0,\sigma^{2}\left(\mathbb{E}\left(\boldsymbol{X}_{1}\boldsymbol{X}_{1}^{\prime}\right)\right)^{-1}\right).$$

- ► We estimate the asymptotic variance by $s^2 \left(n^{-1} \sum_{i=1}^n X_i X_i'\right)^{-1}$.
- ▶ The confidence interval for β_i is given by

$$\left[\widehat{\beta}_{j} \pm z_{1-\alpha/2} \sqrt{\left[s^{2} \left(n^{-1} \sum_{i=1}^{n} X_{i} X_{i}'\right)^{-1}\right]_{jj}/n}\right]$$

$$= \left[\widehat{\beta}_{j} \pm z_{1-\alpha/2} \sqrt{\left[s^{2} \left(X' X\right)^{-1}\right]_{jj}}\right]$$

which is the same as the finite sample confidence interval.

Wald Statistic

► The parameter of interest is $\theta = r(\beta)$. $r : \mathbb{R}^k \to \mathbb{R}^q$. Consider the Wald statistic

$$W(\theta) = n \left(\hat{\theta} - \theta\right)' \hat{V}_{\theta}^{-1} \left(\hat{\theta} - \theta\right).$$

► Since

$$\sqrt{n}\left(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}\right) \stackrel{d}{\longrightarrow} \mathbf{Z} \sim N\left(\mathbf{0}, \mathbf{V}_{\boldsymbol{\theta}}\right)$$

and $\hat{V}_{\theta} \stackrel{p}{\longrightarrow} V_{\theta}$,

$$W(\theta) = n \left(\hat{\theta} - \theta \right)' \hat{V}_{\theta}^{-1} \left(\hat{\theta} - \theta \right) \rightarrow_{d} \mathbf{Z}' V_{\theta}^{-1} \mathbf{Z} \sim \chi_{q}^{2}.$$

Theorem

$$W(\theta) \xrightarrow{d} \chi_q^2$$
.

Confidence Regions

- A confidence region \hat{C} is a set estimator for $\theta \in \mathbb{R}^q$ when q > 1. Ideally, we hope $\Pr\left(\theta \in \hat{C}\right) = 1 \alpha$.
- ► A natural confidence region is

$$\hat{C} = \{ \boldsymbol{\theta} : W(\boldsymbol{\theta}) \le c_{1-\alpha} \},\,$$

with $c_{1-\alpha}$ being the $1-\alpha$ quantile of the χ_q^2 distribution: $F_{\chi_q^2}(c_{1-\alpha}) = 1-\alpha$.

► Thus,

$$\Pr\left(\boldsymbol{\theta} \in \hat{C}\right) \to \Pr\left(\chi_q^2 \le c_{1-\alpha}\right) = 1 - \alpha.$$