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Introduction

» The model is

Yi=XB+eii=1,..n
B=(E(X:X) " EX:Y,).

Assumption

1. The obervations (Y;, X;),i = 1,...n, are independent and
identically distributed.

2.E(Y?) < 0.

3E||X?]| < co.

4.0xx = E(XX') is positive definite.
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Consistency of Least-Squares Estimator

> “(Y;, X;),i=1,...nareiid” implies that any function of
(Y;, X;) is iid, including X; X/ and X;Y;.
» The LS estimator:

(1 35 v

i=1

Al A
=0xx0Oxy

-1
1 n
- X.Y;
(n;( )
1 n

Oxx =~ ) (XiX]) =, E(X.X]) = Qxx

i=1
1 n
Oxy =~ Z (XiY/) —p E(XY;) = Qxy-

i

» By Continuous Mapping Theorem,

~ A=l =

B=0xx0xy
—p OxxCxy

= /3‘
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» A different approach:
n Al -
B-B=0xx0x.
1 n
Ox. =+ le (Xie).
=
» The WLLN:
Ox. —p E(X;e;) =0.

» Therefore,

a-l &

B -B=0xx0x. —p Q;(1X0 =0.

Theorem

Consistency of Least-Squares

A p A P A=l P | p

Oxx — Oxx, Oxy = Qxy, Oxx = Qxx> @x. — 0. and

BLB.
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Asymptotic Normality

ilp-g)- (1 50| [ 3]

i=1

> X;e; =X; (Y; - X/B),i=1,...,nare iid and mean zero
(EX,-e,- = 0)
> The covariance matrix: Q@ =E (e?X;X}):

1

1/2 1/2
< iXer|l = ill“er] < i e;
el <E||x: x| =E(I1X:117e2) <E(I1X:0*)  (E (e

< 00,
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Theorem

72 Kie) SN 0.9,
i=1

Slutsky’s theorem:

Vi (B-B) 5 035N (0.9)

=N (0.0 20y )

Theorem
Vi (B = B) 5N (0,v)

V= Q;KIXQQ;(’IX’
Oxx =E (X;X}), and @ = E (X;X/e?).
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» Vg is often referred to as the asymptotic covariance matrix of

B.
» Distributional approximation: when # is large,
X \%
BEN ( : —”) .
n

» The finite-sample conditional variance

V= Var (B | X) - (xX’X)"(x'DX) (X’ X)"".

VB is the exact conditional variance of 3.

» We should expect V= VTB.

n

Lo, (1o 1,0\
nVﬁz -X'X - X'DX X'X
n n

and nVﬁ —p Vﬂ'
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Asymptotic Normality

» Under homoskedasticity, E (e7|X;) = o> = constant,
Q = EE (e2XX[|X;) = Qxx o
-1 -1 -1 2
Vp=0xxQ0xx = 0xx0 "

> We define V% = Qy'xo? no matter E (¢?|X;) = o2 is true or
false. When it is true, Vg = V%. V% is called the homoskedastic
asymptotic covariance matrix.
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Consistency of Error Variance Estimators

» Write the residual é; as the error e; plus a deviation term:
& =Y~ X|B
=ei+ X[p-XiB
=€i—Xf(ﬁ—ﬁ)-
» Thus

& = et —20X; (B-B)+ (B-B) X/X; (B-B).

> The estimator 6% = n~! 3, 6% of ? = Ee?:

&2:%28‘2_2(22&)(; (B—ﬂ)
(oo (3 3 x0) (=),
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> WLLN:

1
n

i=1

1 C , P 2y’
;Z;eiXi—ﬁE(eiXi)=0

i=1

n
D XiX] S E(XiX)) = Qxx-

> Another estimator s2 = (n — k)~! 2y €. Sincen/(n—k) — 1

as n — oo,

Theorem
Ao P P
S oland st S o
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Homoskedastic Covariance Matrix Estimation

» For inference (confidence intervals and tests), we need a

consistent estimate of V.

» Under homoskedasticity, Vg simplifies to V% = 0%y

» A natural estimator of V% = Q;(IXG'2 is ‘7?3 = Q;(lxsz-
» By CMT,

A —

0 1 _
Vg = Oxxs’ —p QXIXO-Z = V%-

£ 0 . . . Lo
> Vg is consistent for V¥ regardless if the regression is
homoskedastic or heteroskedastic.

» However, V9 = Vg, the asymptotic covariance matrix, only under
homoskedasticity.
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Heteroskedastic Covariance Matrix Estimation

> A method of moments estimator for Q:
A 1 S 7 A2
Q== XX/}
n <
i=1
» The White covariance matrix estimator
AW oaA-l A Al
Vﬂ =0xxQ0xx-
» QObserve

N »
Q=ZZX,~X.&

i=1

1 ¢ 1 ¢

~ Y XiXjel 4+~ > X X] (e2-e2).
i=1 i=1

> By WLLN,
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» It remains to show

1 n
=Y XX (& - et) =, 0.
n

i=1

12

» Recall matrix norm: ||A|| =tr (A’A)"/“ and therefore,

12 12

X = e (XX = e (XX = 1,1

» Thus,

-

()|

= —Zl 1X:17[e? = 2]
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» By the triangle inequality and Cauchy-Schwarz inequality,

2lesx; (B-B)|+ (B-B) X:X: (B-8)
x;(p-8) +|(-5) x|
< 2 e 1X:11[1B - B+ 1X:12 (1B - B

62—€|

=2 el

» Thus,

ZX X (2= < z(%zl 11 |el-|) 1B - Bl
1 n
¥ (;;nxin‘*

18-
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Theorem w
Q5 Qand Vg v
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Functions of Parameters

» The parameter of interest  is a function of the coefficients,
6 = r (B) for some function r : R* — R4. The estimate of 6:

o=r(B).

Theorem
If r (+) is continuous at the true value of B, then 6 LAY

» By the Delta Method, 8 is asymptotically normal.

Assumption

r : R¥ — R is continuously differentiable at the true value of B and
R = %r (B)’ has rank q.
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Theorem

vﬁ(é—a) L N(0,Vp)
where
Vo =R'VgR
» r can be linear: r (B) = R’B, for some k X ¢ matrix R.

» An even simpler case is when R is of the form R = ( 3 )

> Then we can partition 8 = (B8}, 8) so that R’ = ;. Then
1
Vo= (1 0 )v,,( 0):v11,

Vii Viz ]

where Vg is partitioned: Vg = [ Vou V
21 Va2
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> Take the example 6 = 8;/f; for j # [. Then

a5 (Bilg) 0
; % #i/8) g,
R = g (B) = : =
6%1 Bilp1) -Bilp}
o Bils) 0

> So
Vo =Vii/g* +VuBi/ — 2V uBi/p3.
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> For inference, we need an estimate of Vg = R’VgR. The natural
estimator of R is

ie:air(z;)’.

» The estimate of Vg is
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Asymptotic Standard Errors

» A standard error is an estimate of the standard deviation of the
distribution of an estimator.

> Since B £ N(ﬁ, VT‘B) and B; * N (/B’j,

error takes the form

[Vﬁ]jj

), the standard

> Suppose the parameter of interest is 6 = r (B8) (7 : R — R,
g = 1), the standard error for § = r (ﬁ) is
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t-statistic

> 0 =r (B) is the parameter of interest. Consider
6-6
s()
» Since \/ﬁ (é - 9) —4 N(0,Vy) and Vg —p Vo,

T () =

>

-0
s(6)
_Vn(6-6)
VW
i} N(O’ VH)

VW
—Z~N(0,1).

T () =
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» Since T (0) —4 Z, CMT yields |T ()| —4 |Z].

>
Pr(|Z|<u)=Pr(—u<Z<u)
=Pr(Z<u)-Pr(Z < —-u)
=0 (u) — D (-u)
=20 (u) — 1.
Theorem

d
T(0) -5 Z~N©,1)and |T (0)] 5| Z|.

22/26



Confidence Intervals

» A conventional confidence interval takes the form
C= [ O—c-s(0), O+c-s(d ],

where ¢ = Fl‘zl| (I—a)or2®(c)-1=1-a.
» Equivalently,

A 6-6
C={9:|T(0)|§c}:{9:—cs — SC}.
» The coverage probability:

Pr(aeé)zpr(|T(9)| <¢)—Pr(Zl<co)=1—-a.

Theorem
With ¢ =o' (1 - /2), Pr (9 c c) 5 1—a. Forc =1.96,

Pr (9 c é) 5 0.95.
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» Under homoskedasticity,

Vi (B = B) =a N (0,02 (B (X, X7) 7).

. . . _ -1
» We estimate the asymptotic variance by s? (n ! XX ).

» The confidence interval for 3; is given by

-1
XX,
1

/n

Ji

L

Bjxzi—ap | |5° (n‘l

n

= EJ + Zl_a/z\/[sz (X’X)_l] j

JJ

which is the same as the finite sample confidence interval.
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Wald Statistic

» The parameter of interest is @ = r (B). r : R* — R9. Consider

the Wald statistic

» Since

Theorem
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Confidence Regions

> A confidence region C is a set estimator for € R when ¢ > 1.
Ideally, we hope Pr (0 € C’) =1-a.

» A natural confidence region is
C={0:W(0) <cia},

with ¢_, being the 1 — a quantile of the /\/3 distribution:
F (cl—a) =1-0.
» Thus,
Pr(0 € é) —>Pr()(621 < cl_a) =1-a.
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