Advanced Econometrics

Lecture 8: Asymptotic Theory for Least Square (Hansen Chapters 7 and 9)

Instructor: Ma, Jun

Renmin University of China

November 29, 2021

Introduction

► The model is

$$Y_i = X'_i \beta + e_i, \ i = 1, ..., n$$
$$\beta = \left(\mathbb{E} \left(X_i X'_i \right) \right)^{-1} \mathbb{E} \left(X_i Y_i \right).$$

Assumption

1. The observations $(Y_i, X_i), i = 1, ..., n$, are independent and identically distributed. $2.\mathbb{E}(Y^2) < \infty.$ $3.\mathbb{E} ||X^2|| < \infty.$ $4.Q_{XX} = \mathbb{E}(XX')$ is positive definite.

Consistency of Least-Squares Estimator

- "(Y_i, X_i), i = 1, ... n are iid" implies that any function of (Y_i, X_i) is iid, including X_iX'_i and X_iY_i.
- ► The LS estimator:

$$\hat{\boldsymbol{\beta}} = \left(\frac{1}{n}\sum_{i=1}^{n} \left(X_{i}X_{i}'\right)\right)^{-1} \left(\frac{1}{n}\sum_{i=1}^{n} \left(X_{i}Y_{i}\right)\right) = \hat{\boldsymbol{Q}}_{\boldsymbol{X}\boldsymbol{X}}^{-1}\hat{\boldsymbol{Q}}_{\boldsymbol{X}\boldsymbol{Y}}$$
$$\hat{\boldsymbol{Q}}_{\boldsymbol{X}\boldsymbol{X}} = \frac{1}{n}\sum_{i=1}^{n} \left(X_{i}X_{i}'\right) \rightarrow_{p} \mathbb{E}\left(X_{i}X_{i}'\right) = \boldsymbol{Q}_{\boldsymbol{X}\boldsymbol{X}}$$
$$\hat{\boldsymbol{Q}}_{\boldsymbol{X}\boldsymbol{Y}} = \frac{1}{n}\sum_{i=1}^{n} \left(X_{i}Y_{i}'\right) \rightarrow_{p} \mathbb{E}\left(X_{i}Y_{i}\right) = \boldsymbol{Q}_{\boldsymbol{X}\boldsymbol{Y}}.$$

► By Continuous Mapping Theorem,

$$\hat{\boldsymbol{\beta}} = \hat{\boldsymbol{Q}}_{XX}^{-1} \hat{\boldsymbol{Q}}_{XY}$$
$$\rightarrow_p \boldsymbol{Q}_{XX}^{-1} \boldsymbol{Q}_{XY}$$
$$= \boldsymbol{\beta}.$$

► A different approach:

$$\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} = \hat{\boldsymbol{Q}}_{XX}^{-1} \hat{\boldsymbol{Q}}_{Xe}$$
$$\hat{\boldsymbol{Q}}_{Xe} = \frac{1}{n} \sum_{i=1}^{n} (X_i e_i) .$$

► The WLLN:

$$\hat{Q}_{Xe} \to_p \mathbb{E} \left(X_i e_i \right) = 0.$$

► Therefore,

$$\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} = \hat{\boldsymbol{Q}}_{XX}^{-1} \hat{\boldsymbol{Q}}_{Xe} \rightarrow_p \boldsymbol{Q}_{XX}^{-1} \boldsymbol{0} = \boldsymbol{0}.$$

Theorem Consistency of Least-Squares $\hat{Q}_{XX} \rightarrow_p Q_{XX}, \hat{Q}_{XY} \rightarrow_p Q_{XY}, \hat{Q}_{XX}^{-1} \rightarrow_p Q_{XX}^{-1}, \hat{Q}_{Xe} \rightarrow_p 0, and$ $\hat{\beta} \rightarrow_p \beta$.

Asymptotic Normality

$$\sqrt{n}\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}\right) = \left(\frac{1}{n}\sum_{i=1}^{n}\left(X_{i}X_{i}'\right)\right)^{-1}\left(\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\left(X_{i}e_{i}\right)\right)$$

- ► $X_i e_i = X_i (Y_i X'_i \beta), i = 1, ..., n$ are iid and mean zero $(\mathbb{E}X_i e_i = \mathbf{0}).$
- The covariance matrix: $\mathbf{\Omega} = \mathbb{E}\left(e_i^2 X_i X_i'\right)$:

$$\begin{aligned} \|\mathbf{\Omega}\| &\leq \mathbb{E} \left\| \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\prime} \boldsymbol{e}_{i}^{2} \right\| = \mathbb{E} \left(\|\boldsymbol{X}_{i}\|^{2} \boldsymbol{e}_{i}^{2} \right) \leq \mathbb{E} \left(\|\boldsymbol{X}_{i}\|^{4} \right)^{1/2} \left(\mathbb{E} \left(\boldsymbol{e}_{i}^{4} \right) \right)^{1/2} \\ &< \infty. \end{aligned}$$

Theorem

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\left(X_{i}e_{i}\right)\overset{d}{\rightarrow}\mathrm{N}\left(\boldsymbol{0},\boldsymbol{\Omega}\right).$$

Slutsky's theorem:

$$\sqrt{n} \left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \right) \stackrel{d}{\to} \boldsymbol{\mathcal{Q}}_{\boldsymbol{X}\boldsymbol{X}}^{-1} \operatorname{N}\left(\boldsymbol{0}, \boldsymbol{\Omega} \right)$$
$$= \operatorname{N}\left(\boldsymbol{0}, \boldsymbol{\mathcal{Q}}_{\boldsymbol{X}\boldsymbol{X}}^{-1} \boldsymbol{\Omega} \boldsymbol{\mathcal{Q}}_{\boldsymbol{X}\boldsymbol{X}}^{-1} \right).$$

Theorem

$$\begin{split} \sqrt{n} \left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \right) & \stackrel{d}{\to} \mathrm{N} \left(\boldsymbol{0}, \boldsymbol{V}_{\boldsymbol{\beta}} \right) \\ \boldsymbol{V}_{\boldsymbol{\beta}} &= \boldsymbol{Q}_{\boldsymbol{X}\boldsymbol{X}}^{-1} \boldsymbol{\Omega} \boldsymbol{Q}_{\boldsymbol{X}\boldsymbol{X}}^{-1}, \\ \boldsymbol{Q}_{\boldsymbol{X}\boldsymbol{X}} &= \mathbb{E} \left(\boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\prime} \right), \text{ and } \boldsymbol{\Omega} = \mathbb{E} \left(\boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\prime} \boldsymbol{e}_{i}^{2} \right). \end{split}$$

- V_{β} is often referred to as the **asymptotic covariance matrix** of $\hat{\beta}$.
- Distributional approximation: when *n* is large,

$$\hat{\boldsymbol{\beta}} \stackrel{a}{\sim} \mathrm{N}\left(\boldsymbol{\beta}, \frac{\boldsymbol{V}_{\boldsymbol{\beta}}}{n}\right).$$

► The finite-sample conditional variance

$$V_{\hat{\boldsymbol{\beta}}} = \operatorname{Var}\left(\hat{\boldsymbol{\beta}} \mid \boldsymbol{X}\right) = (\boldsymbol{X}'\boldsymbol{X})^{-1} (\boldsymbol{X}'\boldsymbol{D}\boldsymbol{X}) (\boldsymbol{X}'\boldsymbol{X})^{-1}$$

 $V_{\hat{\beta}}$ is the exact conditional variance of $\hat{\beta}$.

• We should expect $V_{\hat{\beta}} \approx \frac{V_{\beta}}{n}$.

$$nV_{\hat{\beta}} = \left(\frac{1}{n}X'X\right)^{-1} \left(\frac{1}{n}X'DX\right) \left(\frac{1}{n}X'X\right)^{-1}$$

and $nV_{\hat{\beta}} \rightarrow_p V_{\beta}$.

Asymptotic Normality

• Under homoskedasticity, $\mathbb{E}\left(e_i^2 \mid X_i\right) = \sigma^2 = \text{constant},$

$$\boldsymbol{\Omega} = \mathbb{E}\mathbb{E}\left(e_i^2 X_i X_i' \mid X_i\right) = \boldsymbol{Q}_{XX}\sigma^2$$
$$\boldsymbol{V}_{\boldsymbol{\beta}} = \boldsymbol{Q}_{XX}^{-1}\boldsymbol{\Omega}\boldsymbol{Q}_{XX}^{-1} = \boldsymbol{Q}_{XX}^{-1}\sigma^2.$$

• We define $V_{\beta}^{0} = Q_{XX}^{-1} \sigma^{2}$ no matter $\mathbb{E}\left(e_{i}^{2} \mid X_{i}\right) = \sigma^{2}$ is true or false. When it is true, $V_{\beta} = V_{\beta}^{0}$. V_{β}^{0} is called the homoskedastic asymptotic covariance matrix.

Consistency of Error Variance Estimators

• Write the residual \hat{e}_i as the error e_i plus a deviation term:

$$\hat{e}_{i} = Y_{i} - X'_{i}\hat{\beta}$$
$$= e_{i} + X'_{i}\beta - X'_{i}\hat{\beta}$$
$$= e_{i} - X'_{i}(\hat{\beta} - \beta)$$

Thus

$$\hat{e}_i^2 = e_i^2 - 2e_i X_i' \left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \right) + \left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \right)' X_i' X_i \left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \right).$$

• The estimator $\hat{\sigma}^2 = n^{-1} \sum_{i=1}^n \hat{e}_i^2$ of $\sigma^2 = \mathbb{E}e_i^2$:

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n e_i^2 - 2\left(\frac{1}{n} \sum_{i=1}^n e_i X_i'\right) (\hat{\beta} - \beta) \\ + (\hat{\beta} - \beta)' \left(\frac{1}{n} \sum_{i=1}^n X_i X_i'\right) (\hat{\beta} - \beta).$$

► WLLN:

$$\frac{1}{n} \sum_{i=1}^{n} e_i^2 \to_p \sigma^2$$
$$\frac{1}{n} \sum_{i=1}^{n} e_i X'_i \to_p \mathbb{E} \left(e_i^2 X'_i \right) = 0$$
$$\frac{1}{n} \sum_{i=1}^{n} X_i X'_i \to_p \mathbb{E} \left(X_i X'_i \right) = Q_{XX}.$$

• Another estimator $s^2 = (n-k)^{-1} \sum_{i=1}^n \hat{e}_i^2$. Since $n/(n-k) \to 1$ as $n \to \infty$,

$$s^2 = \left(\frac{n}{n-k}\right)\hat{\sigma}^2 \to_p \sigma^2.$$

Theorem $\hat{\sigma}^2 \rightarrow_p \sigma^2$ and $s^2 \rightarrow_p \sigma^2$.

Homoskedastic Covariance Matrix Estimation

- For inference (confidence intervals and tests), we need a consistent estimate of V_β.
- Under homoskedasticity, V_{β} simplifies to $V_{\beta}^{0} = Q_{XX}^{-1}\sigma^{2}$.
- A natural estimator of $V^0_{\beta} = Q^{-1}_{XX}\sigma^2$ is $\hat{V}^0_{\beta} = \hat{Q}^{-1}_{XX}s^2$.
- ► By CMT,

$$\hat{\boldsymbol{V}}_{\boldsymbol{\beta}}^{0} = \hat{\boldsymbol{Q}}_{\boldsymbol{X}\boldsymbol{X}}^{-1} \boldsymbol{s}^{2} \rightarrow_{p} \boldsymbol{Q}_{\boldsymbol{X}\boldsymbol{X}}^{-1} \boldsymbol{\sigma}^{2} = \boldsymbol{V}_{\boldsymbol{\beta}}^{0}.$$

- \hat{V}^0_{β} is consistent for V^0_{β} regardless if the regression is homoskedastic or heteroskedastic.
- However, $V_{\beta}^0 = V_{\beta}$, the asymptotic covariance matrix, only under homoskedasticity.

Heteroskedastic Covariance Matrix Estimation

• A method of moments estimator for Ω :

$$\hat{\mathbf{\Omega}} = \frac{1}{n} \sum_{i=1}^{n} X_i X_i' \hat{e}_i^2.$$

► The White covariance matrix estimator

$$\hat{\boldsymbol{V}}_{\boldsymbol{\beta}}^{W} = \hat{\boldsymbol{Q}}_{\boldsymbol{X}\boldsymbol{X}}^{-1} \hat{\boldsymbol{\Omega}} \hat{\boldsymbol{Q}}_{\boldsymbol{X}\boldsymbol{X}}^{-1}.$$

► Observe

$$\hat{\mathbf{\Omega}} = \frac{1}{n} \sum_{i=1}^{n} X_i X_i' \hat{e}_i^2$$

= $\frac{1}{n} \sum_{i=1}^{n} X_i X_i' \hat{e}_i^2 + \frac{1}{n} \sum_{i=1}^{n} X_i X_i' \left(\hat{e}_i^2 - \hat{e}_i^2 \right).$

► By WLLN,

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}X_{i}'e_{i}^{2}\rightarrow_{p}\mathbb{E}\left(X_{i}X_{i}'e_{i}^{2}\right)=\mathbf{\Omega}.$$

► It remains to show

$$\frac{1}{n}\sum_{i=1}^n X_i X_i' \left(\hat{e}_i^2 - e_i^2\right) \to_p 0.$$

• Recall matrix norm: $||A|| = \text{tr} (A'A)^{1/2}$ and therefore,

$$||X_i X'_i|| = \operatorname{tr} (X_i X'_i)^{1/2} = \operatorname{tr} (X'_i X_i)^{1/2} = ||X_i||.$$

► Thus,

$$\left\| \frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}' \left(\hat{e}_{i}^{2} - e_{i}^{2} \right) \right\| \leq \frac{1}{n} \sum_{i=1}^{n} \left\| X_{i} X_{i}' \left(\hat{e}_{i}^{2} - e_{i}^{2} \right) \right\|$$
$$= \frac{1}{n} \sum_{i=1}^{n} \left\| X_{i} \right\|^{2} \left| \hat{e}_{i}^{2} - e_{i}^{2} \right|.$$

► By the triangle inequality and Cauchy-Schwarz inequality,

$$\begin{aligned} \left| \hat{e}_i^2 - e_i^2 \right| &\leq 2 \left| e_i X_i' \left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \right) \right| + \left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \right)' X_i' X_i \left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \right) \\ &= 2 \left| e_i \right| \left| X_i' \left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \right) \right| + \left| \left(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \right)' X_i \right|^2 \\ &\leq 2 \left| e_i \right| \left\| X_i \right\| \left\| \hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \right\| + \left\| X_i \right\|^2 \left\| \hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \right\|^2. \end{aligned}$$

► Thus,

$$\begin{split} \left\| \frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}^{\prime} \left(\hat{e}_{i}^{2} - e_{i}^{2} \right) \right\| &\leq 2 \left(\frac{1}{n} \sum_{i=1}^{n} \|X_{i}\|^{3} |e_{i}| \right) \left\| \hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \right\| \\ &+ \left(\frac{1}{n} \sum_{i=1}^{n} \|X_{i}\|^{4} \right) \left\| \hat{\boldsymbol{\beta}} - \boldsymbol{\beta} \right\|^{2}. \end{split}$$

Theorem
$$\hat{\Omega} \rightarrow_p \Omega$$
 and $\hat{V}^W_{\beta} \rightarrow_p V_{\beta}$.

Functions of Parameters

► The parameter of interest θ is a function of the coefficients, $\theta = r(\beta)$ for some function $r : \mathbb{R}^k \to \mathbb{R}^q$. The estimate of θ :

$$\hat{\boldsymbol{\theta}} = \boldsymbol{r}\left(\hat{\boldsymbol{\beta}}\right).$$

Theorem If \mathbf{r} (·) is continuous at the true value of $\boldsymbol{\beta}$, then $\hat{\boldsymbol{\theta}} \rightarrow_p \boldsymbol{\theta}$.

• By the Delta Method, $\hat{\theta}$ is asymptotically normal.

Assumption

 $r : \mathbb{R}^k \to \mathbb{R}^q$ is continuously differentiable at the true value of β and $R = \frac{\partial}{\partial \beta} r(\beta)'$ has rank q.

Theorem

$$\sqrt{n}\left(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}\right) \xrightarrow{d} \mathrm{N}\left(\boldsymbol{0},\boldsymbol{V}_{\boldsymbol{\theta}}\right)$$

where

$$V_{\theta} = R' V_{\beta} R$$

- ► *r* can be linear: $r(\beta) = R'\beta$, for some $k \times q$ matrix *R*.
- An even simpler case is when **R** is of the form $\mathbf{R} = \begin{pmatrix} I \\ 0 \end{pmatrix}$.
- Then we can partition $\boldsymbol{\beta} = (\boldsymbol{\beta}_1', \boldsymbol{\beta}_2')'$ so that $\boldsymbol{R}' \boldsymbol{\beta} = \boldsymbol{\beta}_1$. Then

$$\boldsymbol{V}_{\boldsymbol{\theta}} = \begin{pmatrix} \boldsymbol{I} & \boldsymbol{0} \end{pmatrix} \boldsymbol{V}_{\boldsymbol{\beta}} \begin{pmatrix} \boldsymbol{I} \\ \boldsymbol{0} \end{pmatrix} = \boldsymbol{V}_{11},$$

where V_{β} is partitioned: $V_{\beta} = \begin{bmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{bmatrix}$.

• Take the example $\theta = \beta_j / \beta_l$ for $j \neq l$. Then

$$\boldsymbol{R} = \frac{\partial}{\partial \boldsymbol{\beta}} \boldsymbol{r} \left(\boldsymbol{\beta} \right) = \begin{pmatrix} \frac{\partial}{\partial \beta_1} \left(\beta_j / \beta_l \right) \\ \vdots \\ \frac{\partial}{\partial \beta_j} \left(\beta_j / \beta_l \right) \\ \vdots \\ \frac{\partial}{\partial \beta_k} \left(\beta_j / \beta_l \right) \\ \vdots \\ \frac{\partial}{\partial \beta_k} \left(\beta_j / \beta_l \right) \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 1 / \beta_l \\ \vdots \\ -\beta_j / \beta_l^2 \\ \vdots \\ 0 \end{pmatrix}.$$

► So

$$\boldsymbol{V}_{\boldsymbol{\theta}} = \boldsymbol{V}_{jj} / \beta_l^2 + \boldsymbol{V}_{ll} \beta_j^2 / \beta_l^4 - 2\boldsymbol{V}_{jl} \beta_j / \beta_l^3.$$

► For inference, we need an estimate of $V_{\theta} = R' V_{\beta} R$. The natural estimator of *R* is

$$\hat{\boldsymbol{R}} = \frac{\partial}{\partial \boldsymbol{\beta}} \boldsymbol{r} \left(\hat{\boldsymbol{\beta}} \right)'.$$

• The estimate of V_{θ} is

$$\hat{V}_{\theta} = \hat{R}' \hat{V}_{\beta} \hat{R}.$$

Asymptotic Standard Errors

- ► A standard error is an estimate of the standard deviation of the distribution of an estimator.
- Since $\hat{\boldsymbol{\beta}} \stackrel{a}{\sim} N\left(\boldsymbol{\beta}, \frac{\boldsymbol{V}_{\boldsymbol{\beta}}}{n}\right)$ and $\hat{\beta}_j \stackrel{a}{\sim} N\left(\beta_j, \frac{[\boldsymbol{V}_{\boldsymbol{\beta}}]_{jj}}{n}\right)$, the standard error takes the form

$$s\left(\hat{\beta}_{j}\right) = \sqrt{\frac{\left[\hat{V}_{\beta}^{W}\right]_{jj}}{n}}.$$

► Suppose the parameter of interest is $\theta = r(\beta)$ ($r : \mathbb{R}^k \to \mathbb{R}$, q = 1), the standard error for $\hat{\theta} = r(\hat{\beta})$ is

$$s\left(\hat{\theta}\right) = \sqrt{\frac{\hat{R}'\hat{V}_{\beta}\hat{R}}{n}}.$$

t-statistic

• $\theta = r(\beta)$ is the parameter of interest. Consider

$$T\left(\theta\right) = \frac{\hat{\theta} - \theta}{s(\hat{\theta})}.$$

• Since
$$\sqrt{n} \left(\hat{\theta} - \theta \right) \rightarrow_d N(0, V_{\theta})$$
 and $\hat{V}_{\theta} \rightarrow_p V_{\theta}$,

$$T(\theta) = \frac{\hat{\theta} - \theta}{s(\hat{\theta})}$$
$$= \frac{\sqrt{n}(\hat{\theta} - \theta)}{\sqrt{\hat{V}_{\theta}}}$$
$$\rightarrow_d \frac{N(0, V_{\theta})}{\sqrt{V_{\theta}}}$$
$$= Z \sim N(0, 1).$$

• Since $T(\theta) \rightarrow_d Z$, CMT yields $|T(\theta)| \rightarrow_d |Z|$.

$$Pr(|Z| \le u) = Pr(-u \le Z \le u)$$
$$= Pr(Z \le u) - Pr(Z < -u)$$
$$= \Phi(u) - \Phi(-u)$$
$$= 2\Phi(u) - 1.$$

Theorem $T(\theta) \rightarrow_d Z \sim N(0, 1) \text{ and } |T(\theta)| \rightarrow_d |Z|.$

►

Confidence Intervals

• A conventional confidence interval takes the form

$$\hat{C} = \left[\begin{array}{cc} \hat{\theta} - c \cdot s(\hat{\theta}), & \hat{\theta} + c \cdot s(\hat{\theta}) \end{array} \right],$$

where $c = F_{|Z|}^{-1} (1 - \alpha)$ or $2\Phi(c) - 1 = 1 - \alpha$.

Equivalently,

$$\hat{C} = \{\theta \colon \mid T(\theta) \mid \leq c\} = \left\{\theta \colon -c \leq \frac{\hat{\theta} - \theta}{s(\hat{\theta})} \leq c\right\}.$$

• The coverage probability:

$$\Pr\left(\theta \in \hat{C}\right) = \Pr\left(\mid T\left(\theta\right) \mid \leq c\right) \to \Pr\left(\mid Z \mid \leq c\right) = 1 - \alpha.$$

Theorem With $c = \Phi^{-1} (1 - \alpha/2)$, $\Pr(\theta \in \hat{C}) \rightarrow 1 - \alpha$. For c = 1.96, $\Pr(\theta \in \hat{C}) \rightarrow 0.95$. Under homoskedasticity,

$$\sqrt{n}\left(\widehat{\boldsymbol{\beta}}_{n}-\boldsymbol{\beta}\right)\rightarrow_{d} N\left(0,\sigma^{2}\left(\mathbb{E}\left(\boldsymbol{X}_{1}\boldsymbol{X}_{1}'\right)\right)^{-1}\right).$$

- We estimate the asymptotic variance by $s^2 \left(n^{-1} \sum_{i=1}^n X_i X_i^{\prime}\right)^{-1}$.
- The confidence interval for β_j is given by

$$\begin{bmatrix} \widehat{\beta}_{j} \pm z_{1-\alpha/2} \sqrt{\left[s^{2} \left(n^{-1} \sum_{i=1}^{n} X_{i} X_{i}^{\prime}\right)^{-1}\right]_{jj}} / n \end{bmatrix}$$
$$= \begin{bmatrix} \widehat{\beta}_{j} \pm z_{1-\alpha/2} \sqrt{\left[s^{2} \left(X^{\prime} X\right)^{-1}\right]_{jj}} \end{bmatrix}$$

which is the same as the finite sample confidence interval.

Wald Statistic

• The parameter of interest is $\theta = r(\beta)$. $r : \mathbb{R}^k \to \mathbb{R}^q$. Consider the Wald statistic

$$W(\boldsymbol{\theta}) = n\left(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}\right)' \hat{\boldsymbol{V}}_{\boldsymbol{\theta}}^{-1} \left(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}\right).$$

► Since

$$\sqrt{n} \left(\hat{\theta} - \theta \right) \rightarrow_{d} \mathbf{Z} \sim N \left(\mathbf{0}, \mathbf{V}_{\theta} \right)$$

and $\hat{\mathbf{V}}_{\theta} \rightarrow_{p} \mathbf{V}_{\theta}$,
$$W \left(\theta \right) = n \left(\hat{\theta} - \theta \right)' \hat{\mathbf{V}}_{\theta}^{-1} \left(\hat{\theta} - \theta \right) \rightarrow_{d} \mathbf{Z}' \mathbf{V}_{\theta}^{-1} \mathbf{Z} \sim \chi_{q}^{2}.$$

Theorem

$$W(\boldsymbol{\theta}) \rightarrow_d \chi_q^2.$$

Confidence Regions

- A confidence region \hat{C} is a set estimator for $\theta \in \mathbb{R}^q$ when q > 1. Ideally, we hope $\Pr(\theta \in \hat{C}) = 1 - \alpha$.
- A natural confidence region is

$$\hat{C} = \{ \boldsymbol{\theta} : W(\boldsymbol{\theta}) \le c_{1-\alpha} \},\$$

with $c_{1-\alpha}$ being the $1 - \alpha$ quantile of the χ_q^2 distribution: $F_{\chi_q^2}(c_{1-\alpha}) = 1 - \alpha$.

► Thus,

$$\Pr\left(\boldsymbol{\theta}\in\hat{C}\right)\rightarrow\Pr\left(\chi_{q}^{2}\leq c_{1-\alpha}\right)=1-\alpha.$$

- Hypothesis tests attempt to assess whether there is evidence to contradict a proposed parametric restriction.
- Let $\theta = r(\beta)$ be a $q \times 1$ parameter of interest where $r : \mathbb{R}^k \to \Theta \subset \mathbb{R}^q$ is some transformation.
- A point hypothesis concerning θ is a proposed restriction such as $\theta = \theta_0$, where θ_0 is a hypothesized (known) value.
- ► A hypothesis is a restriction $\beta \in B_0$. In the case of the hypothesis $r(\beta) = \theta_0$, $B_0 = \{\beta : r(\beta) = \theta_0\}$.

Definition The null hypothesis, written \mathbb{H}_0 , is the restriction $\theta = \theta_0$ or $\beta \in B_0$.

• We often write the null hypothesis as $\mathbb{H}_0: \boldsymbol{\theta} = \boldsymbol{\theta}_0$ or $\mathbb{H}_0: \boldsymbol{r}(\boldsymbol{\beta}) = \boldsymbol{\theta}_0$.

Definition The alternative hypothesis, written \mathbb{H}_1 , is the set $\{\theta \in \Theta : \theta \neq \theta_0\}$ or $\{\beta : \beta \notin B_0\}$

- We often write the alternative hypothesis as $\mathbb{H}_1 : \theta \neq \theta_0$ or $\mathbb{H}_1 : \mathbf{r}(\boldsymbol{\beta}) \neq \theta_0$.
- ► The goal of hypothesis testing is to assess whether or not H₀ is true, by asking if H₀ is consistent with the observed data.

Acceptance and Rejection

The decision is based on a function of the data. It is convenient to express this function as a real-valued function called a test statistic

$$T = T\left((Y_1, X_1), \ldots, (Y_n, X_n)\right).$$

• The hypothesis test then consists of the decision rule:

Accept \mathbb{H}_0 if $T \le c$ Reject \mathbb{H}_0 if T > c.

Small values of *T* are likely when ℍ₀ is true and large values are likely when ℍ₁ is true.

Acceptance and Rejection

• The most commonly used test statistic is the absolute value of the t-statistic $T = |T(\theta_0)|$ where

$$T\left(\theta\right) = \frac{\widehat{\theta} - \theta}{s\left(\widehat{\theta}\right)}.$$

 $\widehat{\theta}$ is a point estimate and $s\left(\widehat{\theta}\right)$ is its standard error.

Type I Error

► A false rejection of H₀ (rejecting H₀ when H₀ is true) is called a Type-I error. The probability of a Type I error is

 $\Pr(\operatorname{Reject} \mathbb{H}_0 \mid \mathbb{H}_0 \text{ is true}) = \Pr(T > c \mid \mathbb{H}_0 \text{ is true}).$

- ► The first goal is to control the type-I error: it should not be large.
- ► In typical econometric models the exact sampling distributions of estimators and test statistics are unknown.

• Suppose that when \mathbb{H}_0 is true,

$$T \rightarrow_d \xi$$
.

Let $G(u) = \Pr(\xi \le u)$ be the distribution of ξ . We call G the asymptotic null distribution. In simple cases, G is known and does not depend on unknown parameters.

► We define the asymptotic size of the test as the asymptotic probability of a Type I error:

$$\lim_{n \to \infty} \Pr(T > c \mid \mathbb{H}_0 \text{ is true}) = \Pr(\xi > c)$$
$$= 1 - G(c).$$

► In the dominant approach to hypothesis testing, the researcher pre-selects a significance level $\alpha \in (0, 1)$ and then selects *c* so that the asymptotic size is no larger than α .

t tests

• The most common test of "scalar" hypothesis: $\mathbb{H}_0 : \theta = \theta_0$ against $\mathbb{H}_1 : \theta \neq \theta_0$.

Theorem Under $\mathbb{H}_0: \theta = \theta_0$, $T(\theta_0) \to_d Z$. For c satisfying $\alpha = 2(1 - \Phi(c))$, $\Pr(|T(\theta_0)| > c \mid \mathbb{H}_0 \text{ is true}) \to \alpha$, and the test "Reject \mathbb{H}_0 if $|T(\theta_0)| > c$ " has asymptotic size α .

• The alternative $\theta \neq \theta_0$ is called a two-sided alternative.

- One-sided alternative could be $\mathbb{H}_1: \theta > \theta_0$.
- ► Tests of $\theta = \theta_0$ against $\theta > \theta_0$ are based on the signed t-statistic $T = T(\theta_0)$.
- We reject H₀ if T > c where c satisfies α = 1 − Φ (c). Negative values of are not taken as evidence against H₀.
- We should use one-sided tests and critical values only when the parameter space is known to satisfy a one-sided restriction such as $\theta \ge \theta_0$.

Type II Error and Power

- ► A false acceptance of the null hypothesis H₀ (accepting H₀ when H₁ is true) is called a Type II error.
- ► The rejection probability under the alternative hypothesis is called the power of the test.
- ► Power = 1 the probability of a Type II error:

 $\pi(\theta) = \Pr(\operatorname{Reject} \mathbb{H}_0 \mid \mathbb{H}_1 \text{ is true}) = \Pr(T > c \mid \mathbb{H}_1 \text{ is true})$

 $\pi(\theta)$ is called power function. The power depends on the true value of the parameter θ .

• A well behaved test the power is increasing both as θ moves away from θ_0 and as the sample size *n* increases.

► Four possibilities:

- When $T \leq c$, we accept H_0 (and risk making a Type II error).
- When T > c, we reject H_0 (and risk making a Type I error).

- Unfortunately, the probabilities of Type I and II errors are inversely related.
- ► By decreasing the probability of Type I error, one makes *c* larger, which increases the probability of the Type II error. Thus it is impossible to make both errors arbitrary small.
- ► We want the probability of a type-II error to be as small as possible for a given probability of a type-I error.

p-Values

p-value is a measure of the strength of information against the null hypothesis:

$$p=1-G\left(T\right).$$

G is the (asymptotic) distribution of *T* under \mathbb{H}_0 .

- *p*-value is the marginal significant level: the largest value of α for which the test rejects H₀.
- ► $T \rightarrow_d \xi$ under \mathbb{H}_0 , then $p = 1 G(T) \rightarrow_d 1 G(\xi)$:

$$\Pr(1 - G(\xi) \le u) = \Pr(1 - u \le G(\xi))$$

= 1 - \Pr(\xi \le \le G^{-1}(1 - u))
= 1 - G(G^{-1}(1 - u))
= 1 - (1 - u)
= u.

Wald Tests

► The parameter of interest is $\theta = r(\beta)$. Estimator: $\hat{\theta} = r(\hat{\beta})$. To test \mathbb{H}_0 : $\theta = \theta_0$ against \mathbb{H}_1 : $\theta \neq \theta_0$, one approach is to measure the discrepancy $\hat{\theta} - \theta_0$:

$$W = n\left(\boldsymbol{r}\left(\widehat{\boldsymbol{\beta}}\right) - \boldsymbol{\theta}_{0}\right)'\left(\widehat{\boldsymbol{R}}'\widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\beta}}}\widehat{\boldsymbol{R}}\right)^{-1}\left(\boldsymbol{r}\left(\widehat{\boldsymbol{\beta}}\right) - \boldsymbol{\theta}_{0}\right).$$

• When $r(\beta) = R'\beta$,

$$W = \left(\boldsymbol{R}'\widehat{\boldsymbol{\beta}} - \boldsymbol{\theta}_0\right)' \left(\boldsymbol{R}'\widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\beta}}}\boldsymbol{R}\right)^{-1} \left(\boldsymbol{R}'\widehat{\boldsymbol{\beta}} - \boldsymbol{\theta}_0\right).$$

Theorem Under $\mathbb{H}_0: \theta = \theta_0$, then $W \to_d \chi_q^2$, and for c satisfying $\alpha = 1 - G_q(c)$, $\Pr(W > c \mid \mathbb{H}_0 \text{ is true}) \to \alpha$ so the test "Reject \mathbb{H}_0 if W > c" has asymptotic size α .

Homoskedastic Wald Tests

• If the error is known to be homoskedastic,

$$W^{0} = \left(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_{0}\right)' \left(\widehat{\boldsymbol{V}}_{\widehat{\boldsymbol{\theta}}}^{0}\right)^{-1} \left(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_{0}\right)$$
$$= \left(\boldsymbol{r}\left(\widehat{\boldsymbol{\beta}}\right) - \boldsymbol{\theta}_{0}\right)' \left(\widehat{\boldsymbol{R}}' \left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1} \widehat{\boldsymbol{R}}\right)^{-1} \left(\boldsymbol{r}\left(\widehat{\boldsymbol{\beta}}\right) - \boldsymbol{\theta}_{0}\right) / s^{2}.$$

• In the case of linear hypotheses $\mathbb{H}_0: \mathbf{R}' \boldsymbol{\beta} = \boldsymbol{\theta}_0$,

$$W^{0} = \left(\boldsymbol{R}'\widehat{\boldsymbol{\beta}} - \boldsymbol{\theta}_{0}\right)' \left(\boldsymbol{R}' \left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1} \boldsymbol{R}\right)^{-1} \left(\boldsymbol{R}'\widehat{\boldsymbol{\beta}} - \boldsymbol{\theta}_{0}\right) / s^{2}.$$

• In this case, the F testing statistic: $F = W^0/q$ and $F \rightarrow_d \chi_q^2/q$.

Power and Test Consistency

- ► The power of a test is the probability of rejecting \mathbb{H}_0 when \mathbb{H}_1 is true.
- ► Random sample from $N(\theta, \sigma^2)$, with σ^2 known: $\{Y_1, ..., Y_n\}$. For testing $\mathbb{H}_0 : \theta = 0$ against $\mathbb{H}_1 : \theta > 0$,

$$T = \frac{\sqrt{n}\overline{Y}}{\sigma}$$

We reject \mathbb{H}_0 if T > c.

• Note $T = \frac{\sqrt{n}(\overline{Y}-\theta)}{\sigma} + \frac{\sqrt{n}\theta}{\sigma}$. The power of the test is

$$\Pr(T > c) = \Pr\left(Z + \sqrt{n}\theta/\sigma > c\right) = 1 - \Phi\left(c - \sqrt{n}\theta/\sigma\right).$$

- This power function is monotonically increasing in θ and n.
- If θ > 0, the power increases to 1 as n → ∞. This means whenever ℍ₁ is true, the test will reject ℍ₀ with a high probability if n is sufficiently large.

Definition A test of \mathbb{H}_0 : $\theta \in \Theta_0$ is consistent against fixed alternatives if for all $\theta \in \Theta_1$, Pr (Reject $\mathbb{H}_0 \mid \theta$ is the true parameter) $\rightarrow 1$ as $n \rightarrow \infty$.

In general, t test and Wald test are consistent. Take a t statistic for testing ℍ₀ : θ = θ₀,

$$T = \frac{\widehat{\theta} - \theta_0}{s\left(\widehat{\theta}\right)} = \frac{\widehat{\theta} - \theta}{s\left(\widehat{\theta}\right)} + \frac{\sqrt{n}\left(\theta - \theta_0\right)}{\sqrt{\widehat{V}_{\theta}}}$$

• $\frac{\widehat{\theta}-\theta}{s(\widehat{\theta})}$ converges in distribution to N(0,1) but $\frac{\sqrt{n}(\theta-\theta_0)}{\sqrt{\widehat{V}_{\theta}}}$ tends to be large if *n* is large, since $\sqrt{\widehat{V}_{\theta}}$ converges in probability to a positive constant.

Effects of covariates

- ► In practical applications, we often have a long list of potential explanatory variables.
- ► In addition, to capture the nonlinear effects and interaction effects, we may expand the linear model by incorporating higher order polynomials and interaction terms.
- While only few of the potential covariates may have non-zero coefficients in the true model, unfortunately we do not know which ones.
- Covariates with zero coefficients are called irrelevant.
- To avoid the omitted variables bias, the researcher may attempt to include all potential covariates. Unfortunately, that results in large variances and standard errors on the main parameters of interest.
- ► Two wrong practices: (1) include only significant regressors; (2) data snooping/p-hacking.
- ► Right way: consistent model selection.

• If a subset of the coefficients in the linear model

$$Y_i = \beta_1 X_{i,1} + \ldots + \beta_k X_{i,k} + U_i$$

are exactly zero, we wish to find the smallest sub-model consisting of only explanatory variables with non-zero coefficients.

- ► Estimate the full model with all variables. Let T_j denote the *t*-statistic for testing \mathbb{H}_0 : $\beta_j = 0$ versus \mathbb{H}_1 : $\beta_j \neq 0$.
- ► What if we run a second regression with only statistically significant coefficients in the first stage?
- ► Such a practice would typically result in exclusion of relevant covariates and the omitted variables bias.
 - ► Hypothesis testing controls for the probability of Type I error but leaves the probability of Type II error uncontrolled.
 - ► You find a coefficient to be non-significant, possibly due to a high probability of Type II error.
 - Failure to reject $\mathbb{H}_0: \beta_j = 0$ cannot be used as a reliable evidence that the true coefficient is zero.

Data snooping

- Data snooping or *p*-hacking occurs when the researcher uses the same data in order to produce statistically significant estimates with large *t*-statistics or small *p*-values.
- ► Data snooping destroys the validity of *t*-statistics and *p*-values and makes the empirical results less convincing.
- You may try dropping different combinations of potential explanatory variables from the regression to get a statistically significant estimate for the main variable of interest.
- Suppose that the researcher can construct *J* independent estimators for θ such that $\hat{\theta}_j \sim N(\theta, \sigma_j^2)$, j = 1, 2, ..., J, where σ_j^2 is known.
- The researcher conducts J tests with significance level 5% of ℍ₀: θ = 0 against ℍ₁: θ ≠ 0.

- The researcher concludes that $\theta \neq 0$ if one of the *J* tests rejects $\theta = 0$.
- Suppose that in fact $\theta = 0$. The probability of concluding that $\theta \neq 0$ (known as false discovery) is given by

$$\Pr\left(\max_{1 \le j \le J} \left| \frac{\widehat{\theta}_j}{\sigma_j} \right| > 1.96\right) = 1 - \Pr\left(\max_{1 \le j \le J} \left| \frac{\widehat{\theta}_j}{\sigma_j} \right| \le 1.96\right)$$
$$= 1 - \prod_{i=1}^J \Pr\left(\left| \frac{\widehat{\theta}_j}{\sigma_j} \right| \le 1.96\right)$$
$$= 1 - (0.95)^J.$$

- ► The false discovery probability quickly grows as $J \uparrow \infty$. E.g., $1 - (0.95)^{10} \approx 40\%$.
- ► When the researcher performs many of tests, the Type I error probability is not controlled and may be much larger than the nominal significance level.

- In practice, estimators are rarely independent, the same relationship holds qualitatively.
- If the researcher searchers long enough, with a high probability they would find a significant estimate.
- ➤ A procedure that automatically detects the smallest sub-model consisting of only relevant explanatory variables guards against data snooping and makes the empirical results more convincing to readers.

Consistent model selection

• Order $T_1, ..., T_k$ in absolute value:

$$|T_{(1)}| \ge |T_{(2)}| \ge \cdots \ge |T_{(k)}|.$$

- Let ĵ denote the value of j that minimizes RSS (j) + js²log (n), where RSS (j) is the residual sum of squares from the model with j variables corresponding to the j largest absolute t-statistics and s² = (n − k)⁻¹ ∑_{i=1}ⁿ Û_i².
- The selected model is the model with \hat{j} variables corresponding to the \hat{j} largest absolute *t*-statistics.
- ► When *n* is large, with high probability, this selected model is the same as the smallest sub-model with only nonzero coefficients.

Bonferroni Corrections

- Under the joint hypothesis that a set of k hypotheses are all true, what is the probability that the smallest p-value is smaller than α?
- Suppose our null hypothesis ℍ₀ is a joint hypothesis: "ℍ₀¹ is true, ℍ₀² is true, ..., and ℍ₀^k is true" and for each hypothesis we have a test (a testing statistic with an asymptotic *p*-value *p_j*).
- Consider the following rule: reject \mathbb{H}_0 if any of the hypotheses is rejected, or the smallest *p*-value is smaller than α .

But the test may not have "correct size" (the type-I error could be very large):

$$\Pr\left(\min_{1\leq j\leq k}p_j<\alpha\right)\leq \sum_{j=1}^k\Pr\left(p_j<\alpha\right)\to k\alpha.$$

• Bonferroni correction: use the adjusted significance level α/k ,

$$\Pr\left(\min_{1\leq j\leq k}p_j<\frac{\alpha}{k}\right)\leq \sum_{j=1}^k\Pr\left(p_j<\frac{\alpha}{k}\right)\to\alpha.$$

So the type-I error associated with the decision rule should not be much larger than α .