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Introduction

» The model is

Y=XB+e,i=1,..,n
B=(E(x:x]) EX¥).

Assumption

1. The obervations (Y;, X;),i = 1,...n, are independent and
identically distributed.

2E(r?) < .

3E[|X?| < oo

4.0xx = E (XX') is positive definite.




Consistency of Least-Squares Estimator

» “(Y;, X;),i=1,...nareiid” implies that any function of (¥;, X;)
is iid, including X; X} and X;Y;.
» The LS estimator:

B=(;; XX') ( Z(XY))=Q;IXQXY
QXX=—Z X;X]) -, E(X:X]) = Qxx

Oxy = Z (X:Y/) -p E(Xi¥5) = Qxy-

i=1
» By Continuous Mapping Theorem,
~ A=l A
B=0xx0xy
—p OxxQxy

:ﬂ.



» A different approach:
B-B= QXX Ox.

Z(Xel.

» The WLLN:
Ox. ~p E(X;e;)) =0

» Therefore,

Theorem
Consistency of Least-Squares

~ A | TN
Oxx —p Oxx, Oxy —p @xv> Oxx —p Cxx> @x. —p 0, and

ﬁqpﬂ-
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Asymptotic Normality

«/ﬁ(is—ﬂ)=(%n XX') ( Z(Xe))

i=1
» Xie; = X; (Yl- - Xl'.ﬂ), i = 1,...,nare iid and mean zero
(EX,'E,’ = 0)
» The covariance matrix: Q = E (e?X,-Xl'.):

“E (102 e) <E(1xa04) (B ()

Il < E||X;X/e;

< 09,



Theorem

1 n
72 (Xie) SNO.9).
i=1

Slutsky’s theorem:

Vi (B - B) 5 035N (0.9)
=N (0, Q;QXQQ;}X) .

Theorem
\/E(B—ﬂ) i)N(O,Vﬁ)

Vp= Q;(IXQQ;(IX’
Oxx =E(X;X]), and @ =E (X;Xe?).




» Vg is often referred to as the asymptotic covariance matrix of
B.

» Distributional approximation: when n is large,
A Vv
B N( : —”) .
n
» The finite-sample conditional variance

Vy=Var(B|X)=(XX)" (XDX) (X'X)"".

\ % pis the exact conditional variance of ﬁ

» We should expect V B VT‘B.

1 e 1 -1
nvy = (—X’X) (—X’DX) (—X’X)
n n n

and nVB -, Vg.



Asymptotic Normality

» Under homoskedasticity, E (ef | X ,-) = o = constant,
Q =EE (e} XX | X;) = Qxx0
-1 -1 -1 2
Vg =0xxQ0yxyx = Oxx0"-
» We define V% = Q;KIXO'Z no matter E (e? | X[-) = o2 is true or

false. When it is true, Vg = V%. V% is called the homoskedastic
asymptotic covariance matrix.
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Consistency of Error Variance Estimators

» Write the residual é; as the error e; plus a deviation term:

& =Y -X|B
=e;+ X B-XB
=ei-X|(B-B).

» Thus

& =e-2eX; (B-B)+ (B-B) X;X: (B-B).

» The estimator 62 = n~! 2 éf of 0?2 = Eef:

6’2=%ie?—2(%iei.¥;)(ﬁ—ﬂ)

i=1 i=1

+@—m(%ZXJQ@—m-



» WLLN:
-
; Zelz —)p 0'2
1< -
- Zl eiX| -, E(e2X]) =0
P

% D XiX[ -, E(X:X]) = Oxx.
i=1

» Another estimator s2 = (n — k)~ 1 éf. Sincen/ (n—k) — 1

as n — oo,
n A
2= ( ) 2, 02
n—=k
Theorem
o2 —p o2 and s* —p o2,
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Homoskedastic Covariance Matrix Estimation

» For inference (confidence intervals and tests), we need a

consistent estimate of V g.

» Under homoskedasticity, V g simplifies to V% = Q}IX a2,

. -1
» A natural estimator of V% = Q;KIXO'Z is V% = Q0xxs>
» By CMT,

N P | -

Vg = Oxxs’ —p QX]Xo-Z = V%‘

~ 0

> Vg is consistent for V% regardless if the regression is
homoskedastic or heteroskedastic.

» However, V% = V g, the asymptotic covariance matrix, only
under homoskedasticity.
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Heteroskedastic Covariance Matrix Estimation

» A method of moments estimator for Q:
Q= Z XX,

» The White covariance matrix estimator
AW a-l A Al
Vp =0xxQ0xx-

» Observe

> By WLLN,
- ZX Xjel >, E(XiX[e}) = Q.
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» It remains to show

n
% > Xixj (el -ef) =p 0.
i=1

1/2

» Recall matrix norm: ||A|| = tr (A’A) /< and therefore,

1/2 1/2

r (X7X:) 7 =1l

= tr (X,-X')

» Thus,

=)

é—e

i=1




» By the triangle inequality and Cauchy-Schwarz inequality,

& —e| <2lex; (B-B)|+ (B-B) XX (B-B)
=2leil |X; (B~ B)| +|(B - B) x|
<2leil X,
» Thus,

8- 4]

( an ¥ |el)
+(;;||Xi||“)||/?—ﬁ|| :
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Theorem w
Q—,QandVyg -, Vg.




Functions of Parameters

» The parameter of interest @ is a function of the coeflicients,
6 = r (B) for some function r : R*¥ — R4, The estimate of :

b=r(B).

Theorem
If r () is continuous at the true value of B, then  — p 6.

» By the Delta Method, 8 is asymptotically normal.

Assumption

r : Rk — RY is continuously differentiable at the true value of B and
R = %r (B)’ has rank q.
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Theorem

Vi (6-6) 4N, Ve)

where
Vo = R'VBR

» r can be linear: r (8) = R’B, for some k X g matrix R.

» An even simpler case is when R is of the form R = ( (I) )

» Then we can partition 8 = (ﬂ;,ﬂé), so that R’B = B,. Then

Vo=(1 o)vﬁ(f))zvu,

Vii Voo ]

where V g is partitioned: Vg = [ v v
21 V22
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» Take the example § = B,/ for j # [. Then

» So

0
R=@r(ﬂ)=

2 Bilpo)
a; Bilp)
a5 Bilg)

a5 Bils)

0
g,
-Bi/p?

0

Vo = Viils: + Vubijpt — 2V b/},
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» For inference, we need an estimate of Vg = R’V gR. The natural
estimator of R is P
R = %r (ﬂ) .
» The estimate of Vg is

Vo= RVsR.

19/51



Asymptotic Standard Errors

» A standard error is an estimate of the standard deviation of the
distribution of an estimator.

» Since B <N (B, VT‘B) and /§j <N (,Bj,
takes the form

(Ve ].ij

), the standard error

n

» Suppose the parameter of interestis @ = r (8) (r : R¥ - R,
g = 1), the standard error for § = r (B) is
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t-statistic

T (0) =

» 0 =r (B) is the parameter of interest. Consider

0-0

N

0)

» Since vn (é - 0) —4 N (0, Vp) and Vy —p Vo,

T©O) =

>

S

—d

s(0)
V(@ - 0)
N0, Vy)

Ve

Z~N(@O1).



» Since T (0) —4 Z, CMT yields |T (8)| —4 |Z].

>

Pr(| Z |<u) Pr(—u<Z <u
= Pr(Z<u)-Pr(Z < —-u)
= ®w)—Dd(-u)

= 20 (u)-1.

Theorem
TO) >4 Z~N(,1)and|T (0)| =4l Z]|.




Confidence Intervals

» A conventional confidence interval takes the form
¢ = [ 9—c-s(9), §+c's(é) ],

where ¢ = F|-le (I—a@)or2®(c)-1=1-a.
» Equivalently,

C=1{0: |T®OI|< c}={0: —c

IA
>
|
S
I\
o
——

» The coverage probability:

Pr(0eC)=Pr(IT@)|<c)>Pr(Z|<c)=1-a.

Theorem
With c =d~' (1 — a/2), Pr (9 € c) — 1 —a. Forc =1.96,

Pr (9 € é) - 0.95.




» Under homoskedasticity,

Vi (B~ ) =a ¥ (0.0 (= (x1%7)) ).

-1
» We estimate the asymptotic variance by s> (n‘l XX :) .

» The confidence interval for §3; is given by

/n

n -1
Bi % Zi—a2_||5? (n‘l Z XiX,'-)
i=1 ji

NPT Ein

which is the same as the finite sample confidence interval.
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Wald Statistic

» The parameter of interestis @ = r (). r : R¥ — R4, Consider
the Wald statistic

» Since
Vi (0-0) >4 Z ~ N (0.Vg)
and Vg —p Ve,

W) =n(0-0)Vy (0-0)—aZ'V,'Z ~ x2.

Theorem

W (0) —>a x2.




Confidence Regions

» A confidence region C is a set estimator for § € R? when g > 1.
Ideally, we hope Pr (0 € (:’) =1-a.

» A natural confidence region is

A

C=1{0:W(0) <ci-a},
with ¢|_, being the 1 — @ quantile of the )(é distribution:
Fp2(cl-a) = 1 - a.

» Thus,
Pr(0eC)—Pr(x;<cia)=1-a.



Hypothesis tests attempt to assess whether there is evidence to
contradict a proposed parametric restriction.

Let @ = r (B) be a g X 1 parameter of interest where
r : R¥ — © c RY is some transformation.

A point hypothesis concerning 6 is a proposed restriction such as
0 = 6y, where 0 is a hypothesized (known) value.

A hypothesis is a restriction S € Bg. In the case of the
hypothesis r (B8) = 6o, Bo = {B : r (B) = 6o}.
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Definition
The null hypothesis, written Hy, is the restriction 8 = 8¢ or 8 € By.

» We often write the null hypothesis as Hy : @ = 6 or
Ho : r (B) = 6o.

Definition
The alternative hypothesis, written Hj, is the set {§ € @ : 6 # ¢} or

{B: P ¢Bo)

» We often write the alternative hypothesis as H; : 8 # ¢ or
H, :r (B) # 0y.

» The goal of hypothesis testing is to assess whether or not Hy is
true, by asking if Hy is consistent with the observed data.
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Acceptance and Rejection

» The decision is based on a function of the data. It is convenient
to express this function as a real-valued function called a test
statistic

T=T(N,X1),....,(YXn).

» The hypothesis test then consists of the decision rule:

Accept Hy if T < ¢
Reject Hy if T > c.

» Small values of T are likely when Hj is true and large values are
likely when H is true.
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Acceptance and Rejection

» The most commonly used test statistic is the absolute value of the
t-statistic T = |T (6p)| where

@.

0is a point estimate and s (5) is its standard error.

T (0) =
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Type I Error

» A false rejection of Hy (rejecting Hy when Hj is true) is called a
Type-I error. The probability of a Type I error is

Pr (Reject Hy | Hy is true) = Pr (T > ¢ | Hy is true) .

» The first goal is to control the type-I error: it should not be large.

» In typical econometric models the exact sampling distributions of
estimators and test statistics are unknown.
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» Suppose that when Hj is true,
T —d .f

Let G (1) = Pr (¢ < u) be the distribution of £&. We call G the
asymptotic null distribution. In simple cases, G is known and
does not depend on unknown parameters.

» We define the asymptotic size of the test as the asymptotic
probability of a Type I error:

lim Pr (T > ¢ | Hy is true)

n—oo

Pr (¢ > ¢)
1-G(c).

» In the dominant approach to hypothesis testing, the researcher
pre-selects a significance level @ € (0, 1) and then selects ¢ so
that the asymptotic size is no larger than «.



t tests

» The most common test of “scalar” hypothesis:Hy : 6 = 6y against
H; : 6 # 6.

Theorem
Under Hy : 0 = 6,
T (6p) —a Z.

For c satisfying a =2 (1 — ® (¢)),
Pr(|IT (6y)| > c | Hy is true) — «,

and the test “Reject Hy if |T (6p)| > ¢” has asymptotic size .

» The alternative 6 # 6 is called a two-sided alternative.



One-sided alternative could be H; : 6 > 6.

Tests of 8 = 6 against § > 6 are based on the signed t-statistic
T =T ().

We reject Hy if T > ¢ where c satisfies @« = 1 — ® (¢). Negative
values of are not taken as evidence against Hy.

We should use one-sided tests and critical values only when the
parameter space is known to satisfy a one-sided restriction such
as 8 > 6.
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Type II Error and Power

» A false acceptance of the null hypothesis Hy (accepting Hy when
H, is true) is called a Type II error.

» The rejection probability under the alternative hypothesis is
called the power of the test.

» Power = 1 - the probability of a Type II error:
7 (0) = Pr (Reject Hy | H; is true) = Pr (T > ¢ | H; is true)

7 () is called power function. The power depends on the true
value of the parameter 6.

» A well behaved test the power is increasing both as § moves away
from 0y and as the sample size n increases.



» Four possibilities:

Truth
Hy H,
Decision  H) v Type II error
H, Typelerror v

» When T < ¢, we accept Hy (and risk making a Type II error).

» When T > ¢, we reject Hy (and risk making a Type I error).



» Unfortunately, the probabilities of Type I and II errors are
inversely related.

» By decreasing the probability of Type I error, one makes c larger,
which increases the probability of the Type II error. Thus it is
impossible to make both errors arbitrary small.

» We want the probability of a type-II error to be as small as
possible for a given probability of a type-I error.



p-Values

» p-value is a measure of the strength of information against the
null hypothesis:
p=1-G(T).
G is the (asymptotic) distribution of 7" under Hp.
» p-value is the marginal significant level: the largest value of @ for
which the test rejects Hy.
» T >4 underHy, thenp=1-G([T) —4 1 -G (&):

Pr(1-G (&) <u) Pr(l-u<G (&)
= 1-Pr(é<G7' (1-w)
= 1-G(G"(1-w)

= 1—(1-u)

= u.
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Wald Tests

» The parameter of interest is § = r (). Estimator: O=r (B) To
testHy : 6 = 6 Egainst H; : 6 # 89, one approach is to measure
the discrepancy 6 — 0:

W=n(r (B)-00) (VSR (r () -00)
» Whenr (B) = R’'B,

W= (R,B - 90), (R"?BR)_I (R'ﬂ - 00) .



Theorem
Under Hy : 0 = 0,
then
W —y )(fp

and for ¢ satisfying @ = 1 - G4 (¢),

Pr (W > ¢ | Hy is true) — «

so the test “Reject Hy if W > ¢” has asymptotic size a.
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Homoskedastic Wald Tests

» If the error is known to be homoskedastic,
Wo= (5-00) (V5)  (8-60)
= (v (B)-00) (R (xX’X)™'R)" (r (B) - 60) /5™
» In the case of linear hypotheses Hy : R’ = 6y,

wo=(R'B- 00)' (R (x'x)"! R)_l (R'B - 869) /5.

» In this case, the F testing statistic: F = W%/g and F —4 thl/q.

41/51



Power and Test Consistency

>

The power of a test is the probability of rejecting Hy when H; is
true.

Random sample from N (9, 0'2), with o2 known: {Y}, ..., Y, }. For
testing Hy : 8 = 0 against H; : 6 > O,

Y
r= Y2
o

We reject Hy if T > c.
Note T = M \Fg . The power of the test is

Pr(T>c):Pr(z+x/ﬁe/a>c):1—cb(c—\/ﬁe/a).

This power function is monotonically increasing in 6 and n.
If 6 > 0, the power increases to 1 as n — oco. This means
whenever Hj is true, the test will reject Hy with a high
probability if n is sufficiently large.
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Definition
A test of Hy : 8 € Qg is consistent against fixed alternatives if for all
0 € O, Pr (Reject Hy | 0 is the true parameter) — 1 as n — oo.

» In general, ¢ test and Wald test are consistent. Take a ¢ statistic for
testing Hy : 6 = 6,

9—0

> (9) converges in distribution to N (0, 1) but Vn(6—6y)
S

VVe
large if n is large, since 4/ Ve converges in probability to a
positive constant.

tends to be
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Effects of covariates

>

In practical applications, we often have a long list of potential
explanatory variables.

In addition, to capture the nonlinear effects and interaction
effects, we may expand the linear model by incorporating higher
order polynomials and interaction terms.

While only few of the potential covariates may have non-zero
coefficients in the true model, unfortunately we do not know
which ones.

Covariates with zero coefficients are called irrelevant.

To avoid the omitted variables bias, the researcher may attempt to
include all potential covariates. Unfortunately, that results in
large variances and standard errors on the main parameters of
interest.

Two wrong practices: (1) include only significant regressors; (2)
data snooping/p-hacking.

Right way: consistent model selection.
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If a subset of the coefficients in the linear model
Yi=p61Xi1+ ...+ BXix t Ui

are exactly zero, we wish to find the smallest sub-model
consisting of only explanatory variables with non-zero
coefficients.

Estimate the full model with all variables. Let T; denote the
t-statistic for testing Ho : 8; = 0 versus H; : g; # 0.

What if we run a second regression with only statistically
significant coefficients in the first stage?

Such a practice would typically result in exclusion of relevant
covariates and the omitted variables bias.

» Hypothesis testing controls for the probability of Type I error but
leaves the probability of Type II error uncontrolled.

> You find a coefficient to be non-significant, possibly due to a high
probability of Type II error.

> Failure to reject Hy : 8; = 0 cannot be used as a reliable evidence
that the true coefficient is zero.
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Data snooping

» Data snooping or p-hacking occurs when the researcher uses the
same data in order to produce statistically significant estimates
with large ¢-statistics or small p-values.

» Data snooping destroys the validity of ¢-statistics and p-values
and makes the empirical results less convincing.

» You may try dropping different combinations of potential
explanatory variables from the regression to get a statistically
significant estimate for the main variable of interest.

» Suppose that the researcher can construct J independent
estimators for 6 such that 6; ~ N (9, 0'12.), j=12..J, where
o-jz. is known.

» The researcher conducts J tests with significance level 5% of
Hp : 6 =0 against H; : 6 # 0.
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» The researcher concludes that € # O if one of the J tests rejects
6 =0.

» Suppose that in fact & = 0. The probability of concluding that
6 # 0 (known as false discovery) is given by

—

Pr(max — >1.96) = 1—Pr(max —| < 1.96)
1<j<J |0 l<j<t (O
J -
_ l_[ (_’ < 1. 96)
=1 J
= 1—(0.95)1.

» The false discovery probability quickly grows as J T o. E.g.,
1-(0.95)" ~ 40%.

» When the researcher performs many of tests, the Type I error
probability is not controlled and may be much larger than the
nominal significance level.
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» In practice, estimators are rarely independent, the same
relationship holds qualitatively.

» If the researcher searchers long enough, with a high probability
they would find a significant estimate.

» A procedure that automatically detects the smallest sub-model
consisting of only relevant explanatory variables guards against
data snooping and makes the empirical results more convincing
to readers.
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Consistent model selection

» Order 7T, ..., T} in absolute value:
Tyl = [Tl = -+ = [Ty -

» Let j denote the value of j that minimizes RSS (j) + js*log (n),
where RSS () is the residual sum of squares from the model
with j variables corresponding to the j largest absolute
t-statistics and s = (n — k)~! 1 ﬁl.z.

» The selected model is the model with j variables corresponding
to the  largest absolute z-statistics.

» When n is large, with high probability, this selected model is the
same as the smallest sub-model with only nonzero coefficients.
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Bonferroni Corrections

» Under the joint hypothesis that a set of k£ hypotheses are all true,
what is the probability that the smallest p-value is smaller than a?

» Suppose our null hypothesis Hy is a joint hypothesis: “H(l) is true,
H% is true, ..., and Hg is true” and for each hypothesis we have a
test (a testing statistic with an asymptotic p-value p;).

» Consider the following rule: reject Hy if any of the hypotheses is
rejected, or the smallest p-value is smaller than «.
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» But the test may not have “correct size” (the type-I error could be
very large):

k
Pr (lrgnji;lkpj < a/) < ]Z::‘Pr (pj < a/) - ka.

» Bonferroni correction: use the adjusted significance level a/k,

k
. a a
Pr (12_1/12kpj < E) < ;Pr (pj < E) - a.

So the type-I error associated with the decision rule should not
be much larger than a.
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