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Introduction

I The model is

Yi = X ′iβ + ei, i = 1, ..., n

β =
(
E

(
X iX

′
i

))−1
E (X iYi) .

Assumption
1. The obervations (Yi, X i) , i = 1, . . . n, are independent and
identically distributed.
2.E

(
Y 2

)
< ∞.

3.E 


X
2


 < ∞.

4.QXX = E
(
XX ′

)
is positive definite.
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Consistency of Least-Squares Estimator
I “(Yi, X i) , i = 1, . . . n are iid” implies that any function of (Yi, X i)
is iid, including X iX

′
i and X iYi.

I The LS estimator:

β̂ = *
,

1
n

n∑
i=1

(
X iX

′
i

)+
-

−1
*
,

1
n

n∑
i=1

(X iYi)+
-
= Q̂

−1
XX Q̂XY

Q̂XX =
1
n

n∑
i=1

(
X iX

′
i

)
→p E

(
X iX

′
i

)
= QXX

Q̂XY =
1
n

n∑
i=1

(
X iY ′i

)
→p E (X iYi) = QXY .

I By Continuous Mapping Theorem,

β̂ = Q̂
−1
XX Q̂XY

→p Q−1
XXQXY

= β.
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I A different approach:

β̂ − β = Q̂
−1
XX Q̂Xe

Q̂Xe =
1
n

n∑
i=1

(X iei) .

I The WLLN:
Q̂Xe →p E (X iei) = 0.

I Therefore,

β̂ − β = Q̂
−1
XX Q̂Xe →p Q−1

XX0 = 0.

Theorem
Consistency of Least-Squares
Q̂XX →p QXX , Q̂XY →p QXY , Q̂

−1
XX →p Q−1

XX , Q̂Xe →p 0, and
β̂ →p β .
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Asymptotic Normality

√
n
(
β̂ − β

)
= *

,

1
n

n∑
i=1

(
X iX

′
i

)+
-

−1
*
,

1
√

n

n∑
i=1

(X iei)+
-

I X iei = X i

(
Yi − X ′iβ

)
, i = 1, ..., n are iid and mean zero

(EX iei = 0).
I The covariance matrix: Ω = E

(
e2
i X iX

′
i

)
:

‖Ω‖ ≤ E



X iX

′
ie

2
i




 = E
(
‖X i ‖

2 e2
i

)
≤ E

(
‖X i ‖

4
)1/2 (

E
(
e4
i

))1/2

< ∞.
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Theorem

1
√

n

n∑
i=1

(X iei)
d
→N (0,Ω) .

Slutsky’s theorem:

√
n
(
β̂ − β

) d
→ Q−1

XXN (0,Ω)

= N
(
0, Q−1

XXΩQ
−1
XX

)
.

Theorem

√
n
(
β̂ − β

) d
→ N

(
0,V β

)
V β = Q−1

XXΩQ
−1
XX,

QXX = E
(
X iX

′
i

)
, and Ω = E

(
X iX

′
ie

2
i

)
.
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I V β is often referred to as the asymptotic covariance matrix of
β̂.

I Distributional approximation: when n is large,

β̂
a
∼ N

(
β,

V β

n

)
.

I The finite-sample conditional variance

V β̂ = Var
(
β̂ | X

)
=

(
X ′X

)−1 (
X ′DX

) (
X ′X

)−1 .

V β̂ is the exact conditional variance of β̂.

I We should expect V β̂ ≈
V β

n .

nV β̂ =

(
1
n
X ′X

)−1 (
1
n
X ′DX

) (
1
n
X ′X

)−1

and nV β̂ →p V β .
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Asymptotic Normality

I Under homoskedasticity, E
(
e2
i | X i

)
= σ2 = constant,

Ω = EE
(
e2
i X iX

′
i | X i

)
= QXXσ

2

V β = Q−1
XXΩQ

−1
XX = Q−1

XXσ
2.

I We define V 0
β = Q−1

XXσ
2 no matter E

(
e2
i | X i

)
= σ2 is true or

false. When it is true, V β = V 0
β . V

0
β is called the homoskedastic

asymptotic covariance matrix.

8 / 51



Consistency of Error Variance Estimators
I Write the residual êi as the error ei plus a deviation term:

êi = Yi − X ′i β̂

= ei + X ′iβ − X ′i β̂

= ei − X ′i
(
β̂ − β

)
.

I Thus

ê2
i = e2

i − 2eiX ′i
(
β̂ − β

)
+

(
β̂ − β

) ′
X ′iX i

(
β̂ − β

)
.

I The estimator σ̂2 = n−1 ∑n
i=1 ê2

i of σ
2 = Ee2

i :

σ̂2 =
1
n

n∑
i=1

e2
i −2 *

,

1
n

n∑
i=1

eiX ′i+
-

(
β̂ − β

)
+

(
β̂ − β

) ′ *
,

1
n

n∑
i=1

X iX
′
i
+
-

(
β̂ − β

)
.
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I WLLN:

1
n

n∑
i=1

e2
i →p σ

2

1
n

n∑
i=1

eiX ′i →p E
(
e2
i X
′
i

)
= 0

1
n

n∑
i=1

X iX
′
i →p E

(
X iX

′
i

)
= QXX .

I Another estimator s2 = (n − k)−1 ∑n
i=1 ê2

i . Since n/ (n − k) → 1
as n → ∞,

s2 =
( n

n − k

)
σ̂2 →p σ

2.

Theorem
σ̂2 →p σ

2 and s2 →p σ
2.
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Homoskedastic Covariance Matrix Estimation

I For inference (confidence intervals and tests), we need a
consistent estimate of V β .

I Under homoskedasticity, V β simplifies to V 0
β = Q−1

XXσ
2.

I A natural estimator of V 0
β = Q−1

XXσ
2 is V̂ 0

β = Q̂
−1
XX s2.

I By CMT,
V̂

0
β = Q̂

−1
XX s2 →p Q−1

XXσ
2 = V 0

β .

I V̂
0
β is consistent for V 0

β regardless if the regression is
homoskedastic or heteroskedastic.

I However, V 0
β = V β , the asymptotic covariance matrix, only

under homoskedasticity.
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Heteroskedastic Covariance Matrix Estimation
I A method of moments estimator for Ω:

Ω̂ =
1
n

n∑
i=1

X iX
′
i ê

2
i .

I The White covariance matrix estimator

V̂
W
β = Q̂

−1
XX Ω̂Q̂

−1
XX .

I Observe

Ω̂ =
1
n

n∑
i=1

X iX
′
i ê

2
i

=
1
n

n∑
i=1

X iX
′
ie

2
i +

1
n

n∑
i=1

X iX
′
i

(
ê2
i − e2

i

)
.

I By WLLN,

1
n

n∑
i=1

X iX
′
ie

2
i →p E

(
X iX

′
ie

2
i

)
= Ω.

12 / 51



I It remains to show

1
n

n∑
i=1

X iX
′
i

(
ê2
i − e2

i

)
→p 0.

I Recall matrix norm: ‖A‖ = tr
(
A′A

)1/2 and therefore,




X iX
′
i



 = tr

(
X iX

′
i

)1/2
= tr

(
X ′iX i

)1/2
= ‖X i ‖ .

I Thus,









1
n

n∑
i=1

X iX
′
i

(
ê2
i − e2

i

)






≤

1
n

n∑
i=1




X iX
′
i

(
ê2
i − e2

i

)




=
1
n

n∑
i=1
‖X i ‖

2 ���ê
2
i − e2

i
��� .
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I By the triangle inequality and Cauchy-Schwarz inequality,

���ê
2
i − e2

i
��� ≤ 2 ���eiX

′
i

(
β̂ − β

) ��� +
(
β̂ − β

) ′
X ′iX i

(
β̂ − β

)
= 2 |ei | ���X

′
i

(
β̂ − β

) ��� +
���
(
β̂ − β

) ′
X i

���
2

≤ 2 |ei | ‖X i ‖



β̂ − β


 + ‖X i ‖

2 


β̂ − β



2
.

I Thus,









1
n

n∑
i=1

X iX
′
i

(
ê2
i − e2

i

)






≤ 2 *

,

1
n

n∑
i=1
‖X i ‖

3 |ei |+
-




β̂ − β




+ *
,

1
n

n∑
i=1
‖X i ‖

4+
-




β̂ − β



2
.
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Theorem
Ω̂→p Ω and V̂

W
β →p V β .
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Functions of Parameters

I The parameter of interest θ is a function of the coefficients,
θ = r (β) for some function r : Rk → Rq. The estimate of θ:

θ̂ = r
(
β̂
)
.

Theorem
If r (·) is continuous at the true value of β, then θ̂ →p θ.

I By the Delta Method, θ̂ is asymptotically normal.

Assumption
r : Rk → Rq is continuously differentiable at the true value of β and
R = ∂

∂β r (β)′ has rank q.

16 / 51



Theorem

√
n
(
θ̂ − θ

) d
→ N (0,Vθ )

where
Vθ = R′V βR

I r can be linear: r (β) = R′β, for some k × q matrix R.

I An even simpler case is when R is of the form R =

(
I
0

)
.

I Then we can partition β =
(
β′1, β

′
2

) ′
so that R′β = β1. Then

Vθ =
(
I 0

)
V β

(
I
0

)
= V 11,

where V β is partitioned: V β =

[
V 11 V 12
V 21 V 22

]
.
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I Take the example θ = β j/βl for j , l. Then

R =
∂

∂β
r (β) =

*................
,

∂
∂β1

(β j/βl )
...

∂
∂β j

(β j/βl )
...

∂
∂βl

(β j/βl )
...

∂
∂βk

(β j/βl )

+////////////////
-

=

*...............
,

0
...

1/βl
...

−β j/β2
l

...

0

+///////////////
-

.

I So
Vθ = V j j/β2

l
+ V llβ

2
j/β4

l
− 2V j lβ j/β3

l
.
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I For inference, we need an estimate of Vθ = R′V βR. The natural
estimator of R is

R̂ =
∂

∂β
r
(
β̂
) ′
.

I The estimate of Vθ is

V̂θ = R̂
′
V̂ β R̂.
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Asymptotic Standard Errors

I A standard error is an estimate of the standard deviation of the
distribution of an estimator.

I Since β̂ a
∼ N

(
β,

V β

n

)
and β̂ j

a
∼ N

(
β j,

[V β] j j
n

)
, the standard error

takes the form

s
(
β̂ j

)
=

√√√√ [
V̂

W
β

]

j j

n
.

I Suppose the parameter of interest is θ = r (β) ( r : Rk → R,
q = 1), the standard error for θ̂ = r

(
β̂
)
is

s
(
θ̂
)
=

√
R̂
′
V̂ β R̂

n
.
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t-statistic

I θ = r (β) is the parameter of interest. Consider

T (θ) =
θ̂ − θ

s(θ̂)
.

I Since
√

n
(
θ̂ − θ

)
→d N (0,Vθ ) and V̂θ →p Vθ ,

T (θ) =
θ̂ − θ

s(θ̂)

=

√
n(θ̂ − θ)√

V̂θ

→d
N (0,Vθ )
√

Vθ
= Z ∼ N (0, 1) .
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I Since T (θ) →d Z , CMT yields |T (θ) | →d |Z |.
I

Pr (| Z |≤ u) = Pr (−u ≤ Z ≤ u)

= Pr (Z ≤ u) − Pr (Z < −u)

= Φ (u) − Φ (−u)

= 2Φ (u) − 1.

Theorem
T (θ) →d Z ∼ N (0, 1) and |T (θ) | →d | Z | .
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Confidence Intervals
I A conventional confidence interval takes the form

Ĉ =
[
θ̂ − c · s(θ̂), θ̂ + c · s(θ̂)

]
,

where c = F−1
|Z |

(1 − α) or 2Φ (c) − 1 = 1 − α.
I Equivalently,

Ĉ = {θ : | T (θ) |≤ c} =
{
θ : − c ≤

θ̂ − θ

s(θ̂)
≤ c

}
.

I The coverage probability:

Pr
(
θ ∈ Ĉ

)
= Pr (| T (θ) |≤ c) → Pr (| Z |≤ c) = 1 − α.

Theorem
With c =Φ−1 (1 − α/2) , Pr

(
θ ∈ Ĉ

)
→ 1 − α. For c =1.96,

Pr
(
θ ∈ Ĉ

)
→ 0.95.
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I Under homoskedasticity,

√
n
(
β̂n − β

)
→d N

(
0, σ2

(
E

(
X1X

′
1

))−1)
.

I We estimate the asymptotic variance by s2
(
n−1 ∑n

i=1 X iX
′
i

)−1
.

I The confidence interval for β j is given by


β̂ j ± z1−α/2

√√√√√
s2 *

,
n−1

n∑
i=1

X iX
′
i
+
-

−1 j j

/n



=

[
β̂ j ± z1−α/2

√[
s2 (

X ′X
)−1]

j j

]

which is the same as the finite sample confidence interval.
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Wald Statistic
I The parameter of interest is θ = r (β). r : Rk → Rq. Consider
the Wald statistic

W (θ) = n
(
θ̂ − θ

) ′
V̂
−1
θ

(
θ̂ − θ

)
.

I Since

√
n
(
θ̂ − θ

)
→d Z ∼ N (0,Vθ )

and V̂θ →p Vθ ,

W (θ) = n
(
θ̂ − θ

) ′
V̂
−1
θ

(
θ̂ − θ

)
→d Z ′V−1

θ Z ∼ χ2
q .

Theorem

W (θ) →d χ2
q .
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Confidence Regions

I A confidence region Ĉ is a set estimator for θ ∈ Rq when q > 1.
Ideally, we hope Pr

(
θ ∈ Ĉ

)
= 1 − α.

I A natural confidence region is

Ĉ = {θ : W (θ) ≤ c1−α} ,

with c1−α being the 1 − α quantile of the χ2
q distribution:

Fχ2
q

(c1−α) = 1 − α.
I Thus,

Pr
(
θ ∈ Ĉ

)
→ Pr

(
χ2
q ≤ c1−α

)
= 1 − α.
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I Hypothesis tests attempt to assess whether there is evidence to
contradict a proposed parametric restriction.

I Let θ = r (β) be a q × 1 parameter of interest where
r : Rk → Θ ⊂ Rq is some transformation.

I A point hypothesis concerning θ is a proposed restriction such as
θ = θ0, where θ0 is a hypothesized (known) value.

I A hypothesis is a restriction β ∈ B0. In the case of the
hypothesis r (β) = θ0, B0 = {β : r (β) = θ0}.
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Definition
The null hypothesis, written H0, is the restriction θ = θ0 or β ∈ B0.

I We often write the null hypothesis as H0 : θ = θ0 or
H0 : r (β) = θ0.

Definition
The alternative hypothesis, written H1, is the set {θ ∈ Θ : θ , θ0} or
{β : β < B0}

I We often write the alternative hypothesis as H1 : θ , θ0 or
H1 :r (β) , θ0.

I The goal of hypothesis testing is to assess whether or not H0 is
true, by asking if H0 is consistent with the observed data.
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Acceptance and Rejection

I The decision is based on a function of the data. It is convenient
to express this function as a real-valued function called a test
statistic

T = T ((Y1, X1) , . . . , (Yn, Xn)) .

I The hypothesis test then consists of the decision rule:

Accept H0 if T ≤ c

Reject H0 if T > c.

I Small values of T are likely when H0 is true and large values are
likely when H1 is true.
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Acceptance and Rejection

I The most commonly used test statistic is the absolute value of the
t-statistic T = |T (θ0) | where

T (θ) =
θ̂ − θ

s
(
θ̂
) .

θ̂ is a point estimate and s
(
θ̂
)
is its standard error.
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Type I Error

I A false rejection of H0 (rejecting H0 when H0 is true) is called a
Type-I error. The probability of a Type I error is

Pr
(
Reject H0 | H0 is true

)
= Pr (T > c | H0 is true) .

I The first goal is to control the type-I error: it should not be large.
I In typical econometric models the exact sampling distributions of
estimators and test statistics are unknown.
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I Suppose that when H0 is true,

T →d ξ.

Let G (u) = Pr (ξ ≤ u) be the distribution of ξ. We call G the
asymptotic null distribution. In simple cases, G is known and
does not depend on unknown parameters.

I We define the asymptotic size of the test as the asymptotic
probability of a Type I error:

lim
n→∞

Pr (T > c | H0 is true) = Pr (ξ > c)

= 1 − G (c) .

I In the dominant approach to hypothesis testing, the researcher
pre-selects a significance level α ∈ (0, 1) and then selects c so
that the asymptotic size is no larger than α.
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t tests

I The most common test of “scalar” hypothesis:H0 : θ = θ0 against
H1 : θ , θ0.

Theorem
Under H0 : θ = θ0,

T (θ0) →d Z .

For c satisfying α = 2 (1 − Φ (c)),

Pr (|T (θ0) | > c | H0 is true) → α,

and the test “Reject H0 if |T (θ0) | > c” has asymptotic size α.

I The alternative θ , θ0 is called a two-sided alternative.
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I One-sided alternative could be H1 : θ > θ0.
I Tests of θ = θ0 against θ > θ0 are based on the signed t-statistic

T = T (θ0).
I We reject H0 if T > c where c satisfies α = 1 − Φ (c). Negative
values of are not taken as evidence against H0.

I We should use one-sided tests and critical values only when the
parameter space is known to satisfy a one-sided restriction such
as θ ≥ θ0.
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Type II Error and Power

I A false acceptance of the null hypothesis H0 (accepting H0 when
H1 is true) is called a Type II error.

I The rejection probability under the alternative hypothesis is
called the power of the test.

I Power = 1 - the probability of a Type II error:

π (θ) = Pr
(
Reject H0 | H1 is true

)
= Pr (T > c | H1 is true)

π (θ) is called power function. The power depends on the true
value of the parameter θ.

I A well behaved test the power is increasing both as θ moves away
from θ0 and as the sample size n increases.

35 / 51



I Four possibilities:

Truth

Decision
H0 H1

H0 X Type II error
H1 Type I error X

I When T ≤ c, we accept H0 (and risk making a Type II error).
I When T > c, we reject H0 (and risk making a Type I error).
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I Unfortunately, the probabilities of Type I and II errors are
inversely related.

I By decreasing the probability of Type I error, one makes c larger,
which increases the probability of the Type II error. Thus it is
impossible to make both errors arbitrary small.

I We want the probability of a type-II error to be as small as
possible for a given probability of a type-I error.

37 / 51



p-Values

I p-value is a measure of the strength of information against the
null hypothesis:

p = 1 − G (T ) .

G is the (asymptotic) distribution of T under H0.
I p-value is the marginal significant level: the largest value of α for
which the test rejects H0.

I T →d ξ under H0, then p = 1 − G (T ) →d 1 − G (ξ):

Pr (1 − G (ξ) ≤ u) = Pr (1 − u ≤ G (ξ))

= 1 − Pr
(
ξ ≤ G−1 (1 − u)

)
= 1 − G

(
G−1 (1 − u)

)
= 1 − (1 − u)

= u.
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Wald Tests

I The parameter of interest is θ = r (β). Estimator: θ̂ = r
(
β̂
)
. To

test H0 : θ = θ0 against H1 : θ , θ0, one approach is to measure
the discrepancy θ̂ − θ0:

W = n
(
r
(
β̂
)
− θ0

) ′ (
R̂
′
V̂

β̂
R̂
)−1 (

r
(
β̂
)
− θ0

)
.

I When r (β) = R′β,

W =
(
R′β̂ − θ0

) ′ (
R′V̂

β̂
R
)−1 (

R′β̂ − θ0
)
.
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Theorem
Under H0 : θ = θ0,
then

W →d χ2
q,

and for c satisfying α = 1 − Gq (c),

Pr (W > c | H0 is true) → α

so the test “Reject H0 if W > c” has asymptotic size α.
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Homoskedastic Wald Tests

I If the error is known to be homoskedastic,

W 0 =
(
θ̂ − θ0

) ′ (
V̂

0
θ̂

)−1 (
θ̂ − θ0

)
=

(
r
(
β̂
)
− θ0

) ′ (
R̂
′ (
X ′X

)−1 R̂
)−1 (

r
(
β̂
)
− θ0

)
/s2.

I In the case of linear hypotheses H0 : R′β = θ0,

W 0 =
(
R′β̂ − θ0

) ′ (
R′

(
X ′X

)−1 R
)−1 (

R′β̂ − θ0
)
/s2.

I In this case, the F testing statistic: F = W 0/q and F →d χ2
q/q.
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Power and Test Consistency
I The power of a test is the probability of rejecting H0 when H1 is
true.

I Random sample from N
(
θ, σ2

)
, with σ2 known: {Y1, ...,Yn}. For

testing H0 : θ = 0 against H1 : θ > 0,

T =
√

nY
σ

.

We reject H0 if T > c.

I Note T =
√
n
(
Y−θ

)
σ +

√
nθ
σ . The power of the test is

Pr (T > c) = Pr
(
Z +
√

nθ/σ > c
)
= 1 − Φ

(
c −
√

nθ/σ
)
.

I This power function is monotonically increasing in θ and n.
I If θ > 0, the power increases to 1 as n → ∞. This means
whenever H1 is true, the test will reject H0 with a high
probability if n is sufficiently large.

42 / 51



Definition
A test of H0 : θ ∈ Θ0 is consistent against fixed alternatives if for all
θ ∈ Θ1, Pr

(
Reject H0 | θ is the true parameter

)
→ 1 as n → ∞.

I In general, t test and Wald test are consistent. Take a t statistic for
testing H0 : θ = θ0,

T =
θ̂ − θ0

s
(
θ̂
) = θ̂ − θ

s
(
θ̂
) + √n (θ − θ0)√

V̂θ

.

I θ̂−θ

s
(
θ̂
) converges in distribution to N (0, 1) but

√
n(θ−θ0)
√
V̂θ

tends to be

large if n is large, since
√

V̂θ converges in probability to a
positive constant.

43 / 51



Effects of covariates
I In practical applications, we often have a long list of potential
explanatory variables.

I In addition, to capture the nonlinear effects and interaction
effects, we may expand the linear model by incorporating higher
order polynomials and interaction terms.

I While only few of the potential covariates may have non-zero
coefficients in the true model, unfortunately we do not know
which ones.

I Covariates with zero coefficients are called irrelevant.
I To avoid the omitted variables bias, the researcher may attempt to
include all potential covariates. Unfortunately, that results in
large variances and standard errors on the main parameters of
interest.

I Two wrong practices: (1) include only significant regressors; (2)
data snooping/p-hacking.

I Right way: consistent model selection.
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I If a subset of the coefficients in the linear model

Yi = β1Xi,1 + . . . + βkXi,k +Ui

are exactly zero, we wish to find the smallest sub-model
consisting of only explanatory variables with non-zero
coefficients.

I Estimate the full model with all variables. Let Tj denote the
t-statistic for testing H0 : β j = 0 versus H1 : β j , 0.

I What if we run a second regression with only statistically
significant coefficients in the first stage?

I Such a practice would typically result in exclusion of relevant
covariates and the omitted variables bias.
I Hypothesis testing controls for the probability of Type I error but
leaves the probability of Type II error uncontrolled.

I You find a coefficient to be non-significant, possibly due to a high
probability of Type II error.

I Failure to reject H0 : β j = 0 cannot be used as a reliable evidence
that the true coefficient is zero.
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Data snooping

I Data snooping or p-hacking occurs when the researcher uses the
same data in order to produce statistically significant estimates
with large t-statistics or small p-values.

I Data snooping destroys the validity of t-statistics and p-values
and makes the empirical results less convincing.

I You may try dropping different combinations of potential
explanatory variables from the regression to get a statistically
significant estimate for the main variable of interest.

I Suppose that the researcher can construct J independent
estimators for θ such that θ̂ j ∼ N

(
θ, σ2

j

)
, j = 1, 2, ..., J, where

σ2
j is known.

I The researcher conducts J tests with significance level 5% of
H0 : θ = 0 against H1 : θ , 0.
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I The researcher concludes that θ , 0 if one of the J tests rejects
θ = 0.

I Suppose that in fact θ = 0. The probability of concluding that
θ , 0 (known as false discovery) is given by

Pr *
,

max
1≤ j≤J

������

θ̂ j

σ j

������
> 1.96+

-
= 1 − Pr *

,
max

1≤ j≤J

������

θ̂ j

σ j

������
≤ 1.96+

-

= 1 −
J∏
i=1

Pr *
,

������

θ̂ j

σ j

������
≤ 1.96+

-
= 1 − (0.95)J .

I The false discovery probability quickly grows as J ↑ ∞. E.g.,
1 − (0.95)10 ≈ 40%.

I When the researcher performs many of tests, the Type I error
probability is not controlled and may be much larger than the
nominal significance level.
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I In practice, estimators are rarely independent, the same
relationship holds qualitatively.

I If the researcher searchers long enough, with a high probability
they would find a significant estimate.

I A procedure that automatically detects the smallest sub-model
consisting of only relevant explanatory variables guards against
data snooping and makes the empirical results more convincing
to readers.
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Consistent model selection

I Order T1, ...,Tk in absolute value:

��T(1) �� ≥ ��T(2) �� ≥ · · · ≥ ��T(k) �� .

I Let ĵ denote the value of j that minimizes RSS ( j) + j s2log (n),
where RSS ( j) is the residual sum of squares from the model
with j variables corresponding to the j largest absolute
t-statistics and s2 = (n − k)−1 ∑n

i=1 Û2
i .

I The selected model is the model with ĵ variables corresponding
to the ĵ largest absolute t-statistics.

I When n is large, with high probability, this selected model is the
same as the smallest sub-model with only nonzero coefficients.
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Bonferroni Corrections

I Under the joint hypothesis that a set of k hypotheses are all true,
what is the probability that the smallest p-value is smaller than α?

I Suppose our null hypothesis H0 is a joint hypothesis: “H1
0 is true,

H2
0 is true, ..., and H

k
0 is true” and for each hypothesis we have a

test (a testing statistic with an asymptotic p-value pj).
I Consider the following rule: reject H0 if any of the hypotheses is
rejected, or the smallest p-value is smaller than α.
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I But the test may not have “correct size” (the type-I error could be
very large):

Pr
(

min
1≤ j≤k

pj < α

)
≤

k∑
j=1

Pr
(
pj < α

)
→ kα.

I Bonferroni correction: use the adjusted significance level α/k,

Pr
(

min
1≤ j≤k

pj <
α

k

)
≤

k∑
j=1

Pr
(
pj <

α

k

)
→ α.

So the type-I error associated with the decision rule should not
be much larger than α.
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