Advanced Econometrics

Instrumental Variables (Hansen Chapter 11)

Instructor: Ma, Jun

Renmin University of China

December 6, 2021

Introduction

► Endogeneity in the linear model:

$$Y_i = X_i' \boldsymbol{\beta} + e_i$$
$$\mathbb{E}(X_i e_i) \neq \mathbf{0}.$$

Note that the above model is not the linear projection model, since otherwise, if $\beta^* = \mathbb{E}(X_i X_i)^{-1} \mathbb{E}(X_i Y_i)$, and the linear projection model is

$$Y_i = X_i' \boldsymbol{\beta}^* + e_i^*$$

$$\mathbb{E}(X_i e_i^*) = \mathbf{0}.$$

▶ We always assume that $\mathbb{E}(e_i) = 0$ and the first coordinate of X_i is 1 so that its coefficient is the intercept. Under this assumption, $\mathbb{E}(X_i e_i) \neq \mathbf{0}$ if and only if e_i is correlated with one of the regressors.

• Under endogeneity, the projection coefficients β^* does not equal the structural parameter β :

$$\beta^* = (\mathbb{E}(X_i X_i'))^{-1} \mathbb{E}(X_i Y_i)$$

$$= (\mathbb{E}(X_i X_i'))^{-1} \mathbb{E}(X_i (X_i' \beta + e_i))$$

$$= \beta + (\mathbb{E}(X_i X_i'))^{-1} \mathbb{E}(X_i e_i)$$

$$\neq \beta.$$

► Endogeneity implies that the LS estimator is inconsistent for the structural parameter β . The LS estimator is consistent for the projection coefficient β^* :

$$\widehat{\boldsymbol{\beta}} \to_p \left(\mathbb{E} \left(X_i X_i' \right) \right)^{-1} \mathbb{E} \left(X_i Y_i \right) = \boldsymbol{\beta}^* \neq \boldsymbol{\beta}.$$

The simple case of one regressor (k = 1)

Consider

$$Y_i = \beta_0 + \beta_1 X_i + e_i,$$

$$E[e_i] = 0$$

$$Cov[X_i, e_i] \neq 0.$$

- ▶ An instrument is an variable Z_i which satisfies the following conditions:
 - 1. The IV is exogenous: $Cov[Z_i, e_i] = 0$.
 - 2. The IV determines the endogenous regressor: Cov $[Z_i, X_i] \neq 0$.
- ► When an IV variable satisfying those conditions is available, it allows us to estimate the effect of *X* on *Y* consistently.

Sources of endogeneity

There are several possible sources of endogeneity:

- 1. Omitted explanatory variables.
- 2. Simultaneity.
- 3. Errors in variables.

All result in regressors correlated with the errors.

Omitted explanatory variables

► Suppose that the true model is

$$\ln Wage_i = \beta_0 + \beta_1 Education_i + \beta_2 Ability_i + V_i,$$

where V_i is uncorrelated with *Education* and *Ability*.

► Since *Ability* is unobservable, the econometrician regresses $\ln Wage$ against *Education*, and $\beta_2 Ability$ goes into the error part:

$$\ln Wage_i = \beta_0 + \beta_1 E ducation_i + U_i,$$

$$U_i = \beta_2 A bility_i + V_i.$$

► *Education* is correlated with *Ability*: we can expect that Cov (*Education_i*, *Ability_i*) > 0, β_2 > 0, and therefore Cov (*Education_i*, U_i) > 0.

Simultaneity

► Consider the following demand-supply system:

Demand:
$$Q^d = \beta_0^d + \beta_1^d P + U^d$$
,
Supply: $Q^s = \beta_0^s + \beta_1^s P + U^s$,

where: Q^d =quantity demanded, Q^s =quantity supplied, P=price.

► The quantity and price are determined simultaneously in the equilibrium:

$$Q^d = Q^s = Q.$$

Note that Q^d and Q^s are not observed separately, we observe only the equilibrium values Q.

$$\begin{split} Q^d &= \beta_0^d + \beta_1^d P + U^d, \\ Q^s &= \beta_0^s + \beta_1^s P + U^s, \\ Q^d &= Q^s = Q. \end{split}$$

 \triangleright Solving for P, we obtain

$$0 = \left(\beta_0^d - \beta_0^s\right) + \left(\beta_1^d - \beta_1^s\right)P + \left(U^d - U^s\right),$$

or

$$P = -\frac{\beta_0^d - \beta_0^s}{\beta_1^d - \beta_1^s} - \frac{U^d - U^s}{\beta_1^d - \beta_1^s}.$$

► Thus,

$$\operatorname{Cov}\left(P,U^{d}\right)\neq0$$
 and $\operatorname{Cov}\left(P,U^{s}\right)\neq0$.

The demand-supply equations cannot be estimated by OLS.

► Consider the following labour supply model for married women:

$$Hours_i = \beta_0 + \beta_1 Children_i + Other Factors + U_i$$

where *Hours*=hours of work, *Children*=number of children.

- ► It is reasonable to assume that women decide simultaneously how much time to devote to career and family.
- ► Thus, while we may be mainly interested in the effect of family size on labour supply, there is another equation:

Children_i =
$$\gamma_0 + \gamma_1 Hours_i + \text{Other Factors} + V_i$$
,

and *Children* and *Hours* are determined simultaneously in an equilibrium.

► As a result, Cov $(Children_i, U_i) \neq 0$, and the effect of family size cannot be estimated by OLS.

Errors in variables

► Consider the following model:

$$Y_i = \beta_0 + \beta_1 X_i^* + V_i,$$

where X_i^* is the true regressor.

▶ Suppose that X_i^* is not directly observable. Instead, we observe X_i that measures X_i^* with an error ε_i :

$$X_i = X_i^* + \varepsilon_i.$$

Since X_i^* is unobservable, the econometrician has to regress Y_i against X_i .

$$X_i = X_i^* + \varepsilon_i,$$

$$Y_i = \beta_0 + \beta_1 X_i^* + V_i.$$

▶ The model for Y_i as a function of X_i can be written as

$$Y_i = \beta_0 + \beta_1 (X_i - \varepsilon_i) + V_i$$

= \beta_0 + \beta_1 X_i + V_i - \beta_1 \varepsilon_i,

or

$$Y_i = \beta_0 + \beta_1 X_i + e_i,$$

$$e_i = V_i - \beta_1 \varepsilon_i.$$

$$Y_i = \beta_0 + \beta_1 X_i + e_i,$$

$$e_i = V_i - \beta_1 \varepsilon_i,$$

$$X_i = X_i^* + \varepsilon_i.$$

▶ We can assume that

$$\operatorname{Cov}\left[X_{i}^{*}, V_{i}\right] = \operatorname{Cov}\left[X_{i}^{*}, \varepsilon_{i}\right] = \operatorname{Cov}\left[\varepsilon_{i}, V_{i}\right] = 0.$$

► However,

$$Cov [X_i, e_i] = Cov [X_i^* + \varepsilon_i, V_i - \beta_1 \varepsilon_i]$$

$$= Cov [X_i^*, V_i] - \beta_1 Cov [X_i^*, \varepsilon_i]$$

$$+Cov [\varepsilon_i, V_i] - \beta_1 Cov [\varepsilon_i, \varepsilon_i]$$

▶ Thus, X_i is enodgenous and β_1 cannot be estimated by OLS.

- ► Theoretically, the causal effect can be estimated from controlled experiments:
 - ► To estimate the return to education, select a random sample of children, randomly assign how many years of education they should have, and measure their income several years after the graduation.
 - ► To estimate the effect of family size on labor supply, select a random sample of parents and randomly assign how many children they should have, and measure their labor market outcomes.
 - Such an approach is infeasible due to a high cost and/or ethical reasons.
- ► Natural experiments: Use the random variation in the variable of interest to estimate the causal effect.

Example: Compulsory schooling laws and return to education

- ► Angrist and Krueger, 1991, *QJE*, suggested using school start age policy to estimate β_1 in $\ln Wage_i = \beta_0 + \beta_1 Education_i + \beta_2 Ability_i + V_i$.
- ▶ We need to find an IV variable Z such that $Cov(Ability_i, Z_i) = 0$ and $Cov(Education_i, Z_i) \neq 0$.
- ► They argue that due to compulsory schooling laws, the season of birth variable satisfies the IV conditions:
 - A child has to attend the school until he reaches a certain drop-out age.
 - Students born in the first quarter of the year, reach the legal drop-out age before their classmates who were born later in the year.
 - ► The quarter of birth dummy variable is correlated with education.
 - ► The quarter of birth is uncorrelated with ability.

Example: Sibling-sex composition and labor supply

- ► Angrist and Evans, 1998, *AER*, argue that the parents' preferences for a mixed sibling-sex composition can be used to estimate β_1 in $Hours_i = \beta_0 + \beta_1 Children_i + ... + U_i$.
- ▶ We need to find an IV Z such that $Cov[U_i, Z_i] = 0$ and $Cov(Children_i, Z_i) \neq 0$.
- ► Consider a dummy variable that takes on the value one if the sex of the second child matches the sex of the first child.
 - ► If the parents prefer a mixed sibling-sex composition, they are more likely to have another child if their first two children are of the same sex.
 - ► The same-sex dummy is correlated with the number of children.
 - Since sex mix is randomly determined, the same sex dummy is exogenous.

Instrumental Variables

► Partition:

$$\boldsymbol{X}_i = \left(\begin{array}{c} \boldsymbol{X}_{1i} \\ \boldsymbol{X}_{2i} \end{array}\right) \begin{array}{c} k_1 \\ k_2 \end{array}$$

and

$$\boldsymbol{\beta} = \left(\begin{array}{c} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \end{array}\right) \begin{array}{c} k_1 \\ k_2 \end{array}.$$

► So the model is:

$$Y_i = X_i'\beta + e_i$$

= $X_{1i}'\beta_1 + X_{2i}'\beta_2 + e_i$.

In matrix notation:

$$Y = X\beta + e$$
$$= X_1\beta_1 + X_2\beta_2 + e.$$

► Assume

$$\mathbb{E}(X_{1i}e_i) = \mathbf{0}$$

$$\mathbb{E}(X_{2i}e_i) \neq \mathbf{0}$$

Definition

The $l \times 1$ random vector \mathbf{Z}_i is an instrumental variable if

$$\begin{split} \mathbb{E}\left(\boldsymbol{Z}_{i}\boldsymbol{e}_{i}\right) &= \boldsymbol{0} \\ \mathbb{E}\left(\boldsymbol{Z}_{i}\boldsymbol{Z}_{i}'\right) &> 0 \\ \text{rank}\left(\mathbb{E}\left(\boldsymbol{Z}_{i}\boldsymbol{X}_{i}'\right)\right) &= k \end{split}$$

► X_{1i} satisfies $\mathbb{E}(X_{1i}e_i) = \mathbf{0}$. So it should be included as instrumental variables.

$$\mathbf{Z}_{i} = \begin{pmatrix} \mathbf{Z}_{1i} \\ \mathbf{Z}_{2i} \end{pmatrix} = \begin{pmatrix} \mathbf{X}_{1i} \\ \mathbf{Z}_{2i} \end{pmatrix} \begin{array}{c} k_{1} \\ l_{2} \end{array}$$

▶ We say the model is just-identified if $\ell = k$ ($\ell_2 = k_2$) and over-identified if $\ell > k$ ($\ell_2 > k_2$).

Instrumental Variables Estimator

▶ The assumption that Z_i is an IV implies

$$\mathbb{E}(\boldsymbol{Z}_{i}e_{i}) = \boldsymbol{0}$$

$$\mathbb{E}(\boldsymbol{Z}_{i}(Y_{i} - X_{i}'\boldsymbol{\beta})) = \boldsymbol{0}$$

$$\mathbb{E}(\boldsymbol{Z}_{i}Y_{i}) - \mathbb{E}(\boldsymbol{Z}_{i}X_{i}')\boldsymbol{\beta} = \boldsymbol{0}.$$

▶ If $\ell = k$, solve for β :

$$\boldsymbol{\beta} = (\mathbb{E}(\mathbf{Z}_i \mathbf{X}_i'))^{-1} \mathbb{E}(\mathbf{Z}_i Y_i).$$

► The IV estimator:

$$\widehat{\boldsymbol{\beta}}_{iv} = \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{Z}_{i} X_{i}^{\prime}\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{Z}_{i} Y_{i}\right)$$

$$= \left(\sum_{i=1}^{n} \mathbf{Z}_{i} X_{i}^{\prime}\right)^{-1} \left(\sum_{i=1}^{n} \mathbf{Z}_{i} Y_{i}\right)$$

$$= (\mathbf{Z}^{\prime} \mathbf{X})^{-1} (\mathbf{Z}^{\prime} \mathbf{Y}).$$

► The residual satisfies:

$$\widehat{e} = Y - X\widehat{\beta}_{iv}$$

$$Z'\widehat{e} = Z'Y - Z'X(Z'X)^{-1}(Z'Y) = 0.$$

Two-Stage Least Squares

• We denote $\widehat{\Gamma} = (\mathbf{Z}'\mathbf{Z})^{-1} (\mathbf{Z}'X)$.

$$\widehat{\boldsymbol{\beta}}_{2\text{sls}} = \left(\widehat{\boldsymbol{\Gamma}}' \mathbf{Z}' \mathbf{Z} \widehat{\boldsymbol{\Gamma}}\right)^{-1} \left(\widehat{\boldsymbol{\Gamma}}' \mathbf{Z}' Y\right)$$

$$= \left(X' \mathbf{Z} \left(\mathbf{Z}' \mathbf{Z}\right)^{-1} \mathbf{Z}' \mathbf{Z} \left(\mathbf{Z}' \mathbf{Z}\right)^{-1} \mathbf{Z}' X\right)^{-1}$$

$$\cdot X' \mathbf{Z} \left(\mathbf{Z}' \mathbf{Z}\right)^{-1} \mathbf{Z}' Y$$

$$= \left(X' \mathbf{Z} \left(\mathbf{Z}' \mathbf{Z}\right)^{-1} \mathbf{Z}' X\right)^{-1} X' \mathbf{Z} \left(\mathbf{Z}' \mathbf{Z}\right)^{-1} \mathbf{Z}' Y.$$

▶ When $k = \ell$, the 2SLS simplifies to IV:

$$\left(X' \mathbf{Z} \left(\mathbf{Z}' \mathbf{Z} \right)^{-1} \mathbf{Z}' \mathbf{X} \right)^{-1} = \left(\mathbf{Z}' \mathbf{X} \right)^{-1} \left(\left(\mathbf{Z}' \mathbf{Z} \right)^{-1} \right)^{-1} \left(\mathbf{X}' \mathbf{Z} \right)^{-1}$$

$$= \left(\mathbf{Z}' \mathbf{X} \right)^{-1} \left(\mathbf{Z}' \mathbf{Z} \right) \left(\mathbf{X}' \mathbf{Z} \right)^{-1}$$

► So

$$\widehat{\boldsymbol{\beta}}_{2\text{sls}} = \left(\boldsymbol{X}' \boldsymbol{Z} (\boldsymbol{Z}' \boldsymbol{Z})^{-1} \boldsymbol{Z}' \boldsymbol{X} \right)^{-1} \boldsymbol{X}' \boldsymbol{Z} (\boldsymbol{Z}' \boldsymbol{Z})^{-1} \boldsymbol{Z}' \boldsymbol{Y}$$

$$= (\boldsymbol{Z}' \boldsymbol{X})^{-1} (\boldsymbol{Z}' \boldsymbol{Z}) (\boldsymbol{X}' \boldsymbol{Z})^{-1} \boldsymbol{X}' \boldsymbol{Z} (\boldsymbol{Z}' \boldsymbol{Z})^{-1} \boldsymbol{Z}' \boldsymbol{Y}$$

$$= (\boldsymbol{Z}' \boldsymbol{X})^{-1} (\boldsymbol{Z}' \boldsymbol{Z}) (\boldsymbol{Z}' \boldsymbol{Z})^{-1} \boldsymbol{Z}' \boldsymbol{Y}$$

$$= (\boldsymbol{Z}' \boldsymbol{X})^{-1} \boldsymbol{Z}' \boldsymbol{Y}$$

$$= \widehat{\boldsymbol{\beta}}_{\text{iv}}.$$

► Define the projection matrix:

$$P_{\mathbf{Z}} = \mathbf{Z} (\mathbf{Z}'\mathbf{Z})^{-1} \mathbf{Z}'.$$

► We can write

$$\widehat{\boldsymbol{\beta}}_{2\text{sls}} = \left(\boldsymbol{X}' \boldsymbol{P}_{\boldsymbol{Z}} \boldsymbol{X} \right)^{-1} \boldsymbol{X}' \boldsymbol{P}_{\boldsymbol{Z}} \boldsymbol{Y}.$$

► And the fitted values:

$$\widehat{X} = P_Z X = Z \widehat{\Gamma}$$

$$\widehat{\boldsymbol{\beta}}_{2\text{sls}} = (\boldsymbol{X}' \boldsymbol{P}_{\mathbf{Z}} \boldsymbol{P}_{\mathbf{Z}} \boldsymbol{X})^{-1} \boldsymbol{X}' \boldsymbol{P}_{\mathbf{Z}} \boldsymbol{Y}$$
$$= (\widehat{\boldsymbol{X}}' \widehat{\boldsymbol{X}})^{-1} \widehat{\boldsymbol{X}}' \boldsymbol{Y}.$$

- First regress X on Z. Obtain the LS coefficients $\widehat{\Gamma} = (Z'Z)^{-1}(Z'X)$ and the fitted values $\widehat{X} = P_Z X = Z\widehat{\Gamma}$.
- ► Second regress Y on \widehat{X} . Get $\widehat{\boldsymbol{\beta}}_{2\text{sls}} = \left(\widehat{X}'\widehat{X}\right)^{-1}\widehat{X}'Y$.

Recall $X = [X_1 X_2]$ and $Z = [X_1 Z_2]$. Note $\widehat{X}_1 = P_Z X_1 = X_1$. Then

$$\widehat{\boldsymbol{X}} = \left[\widehat{\boldsymbol{X}}_1, \widehat{\boldsymbol{X}}_2\right] = \left[\boldsymbol{X}_1, \widehat{\boldsymbol{X}}_2\right].$$

► The 2SLS residuals:

$$\widehat{e} = Y - X\widehat{\beta}_{2sls}.$$

▶ When the model is overidentified, $Z'\hat{e} \neq 0$ but

$$\widehat{X}'\widehat{e} = \widehat{\Gamma}' \mathbf{Z}' \widehat{e}$$

$$= X' \mathbf{Z} (\mathbf{Z}' \mathbf{Z})^{-1} \mathbf{Z}' \widehat{e}$$

$$= X' \mathbf{Z} (\mathbf{Z}' \mathbf{Z})^{-1} \mathbf{Z}' \mathbf{Y} - X' \mathbf{Z} (\mathbf{Z}' \mathbf{Z})^{-1} \mathbf{Z}' \mathbf{X} \widehat{\boldsymbol{\beta}}_{2\text{sls}}$$

$$= \mathbf{0}.$$

Consistency of 2SLS

Assumption

- 1. The observations (Y_i, X_i, Z_i) , i = 1, ..., n, are independent and identically distributed.
- $2. \mathbb{E}(Y^2) < \infty.$
- 3. $\mathbb{E} \parallel X \parallel^2 < \infty$.
- 4. $\mathbb{E} \parallel \mathbf{Z} \parallel^2 < \infty$.
- 5. $\mathbb{E}(\mathbf{Z}')$ is positive definite.
- 6. $\mathbb{E}(\mathbf{Z}\mathbf{X}')$ has full rank k.
- 7. $\mathbb{E}(\boldsymbol{Z}\boldsymbol{e}) = 0$.

► Proof of consistency:

$$\hat{\boldsymbol{\beta}}_{2\text{sls}} = \left(\boldsymbol{X}' \boldsymbol{Z} (\boldsymbol{Z}' \boldsymbol{Z})^{-1} \boldsymbol{Z}' \boldsymbol{X} \right)^{-1} \boldsymbol{X}' \boldsymbol{Z} (\boldsymbol{Z}' \boldsymbol{Z})^{-1} \boldsymbol{Z}' (\boldsymbol{X} \boldsymbol{\beta} + \boldsymbol{e})$$

$$= \boldsymbol{\beta} + \left(\boldsymbol{X}' \boldsymbol{Z} (\boldsymbol{Z}' \boldsymbol{Z})^{-1} \boldsymbol{Z}' \boldsymbol{X} \right)^{-1} \boldsymbol{X}' \boldsymbol{Z} (\boldsymbol{Z}' \boldsymbol{Z})^{-1} \boldsymbol{Z}' \boldsymbol{e}.$$

► Then

$$\hat{\boldsymbol{\beta}}_{2\text{sls}} - \boldsymbol{\beta} = \left(\left(\frac{1}{n} \boldsymbol{X}' \boldsymbol{Z} \right) \left(\frac{1}{n} \boldsymbol{Z}' \boldsymbol{Z} \right)^{-1} \left(\frac{1}{n} \boldsymbol{Z}' \boldsymbol{X} \right) \right)^{-1} \cdot \left(\frac{1}{n} \boldsymbol{X}' \boldsymbol{Z} \right) \left(\frac{1}{n} \boldsymbol{Z}' \boldsymbol{Z} \right)^{-1} \left(\frac{1}{n} \boldsymbol{Z}' \boldsymbol{e} \right).$$

► Then,

$$\hat{\boldsymbol{\beta}}_{2\text{sls}} - \boldsymbol{\beta} \to_p \left(\boldsymbol{Q}_{\boldsymbol{X}\boldsymbol{Z}} \boldsymbol{Q}_{\boldsymbol{Z}\boldsymbol{Z}}^{-1} \boldsymbol{Q}_{\boldsymbol{Z}\boldsymbol{X}} \right)^{-1} \boldsymbol{Q}_{\boldsymbol{X}\boldsymbol{Z}} \boldsymbol{Q}_{\boldsymbol{Z}\boldsymbol{Z}}^{-1} \mathbb{E} \left(\boldsymbol{Z}_i e_i \right) = 0,$$

where

$$Q_{XZ} = \mathbb{E}(X_i Z_i')$$

 $Q_{ZZ} = \mathbb{E}(Z_i Z_i')$
 $Q_{ZX} = \mathbb{E}(Z_i X_i')$.

Asymptotic Distribution of 2SLS

Assumption

- 1. $\mathbb{E}(Y^4) < \infty$.
- 2. $\mathbb{E} \parallel \mathbf{Z} \parallel^4 < \infty$.
 - ► Write

$$\sqrt{n}(\hat{\boldsymbol{\beta}}_{2\text{sls}} - \boldsymbol{\beta}) = \left(\left(\frac{1}{n} \boldsymbol{X}' \boldsymbol{Z} \right) \left(\frac{1}{n} \boldsymbol{Z}' \boldsymbol{Z} \right)^{-1} \left(\frac{1}{n} \boldsymbol{Z}' \boldsymbol{X} \right) \right)^{-1} \cdot \left(\frac{1}{n} \boldsymbol{X}' \boldsymbol{Z} \right) \left(\frac{1}{n} \boldsymbol{Z}' \boldsymbol{Z} \right)^{-1} \left(\frac{1}{\sqrt{n}} \boldsymbol{Z}' \boldsymbol{e} \right).$$

► By CLT,

$$\frac{1}{\sqrt{n}}\mathbf{Z}'\mathbf{e} = \frac{1}{\sqrt{n}}\sum_{i=1}^{n}\mathbf{Z}_{i}e_{i} \rightarrow_{d} \mathbf{N}(\mathbf{0}, \mathbf{\Omega}),$$

where $\Omega = \mathbb{E}\left(e_i^2 \mathbf{Z}_i \mathbf{Z}_i'\right)$.

► Slutsky's theorem:

$$\sqrt{n}(\hat{\boldsymbol{\beta}}_{2\mathrm{sls}} - \boldsymbol{\beta}) \rightarrow_d \left(\boldsymbol{Q}_{XZ} \boldsymbol{Q}_{ZZ}^{-1} \boldsymbol{Q}_{ZX} \right)^{-1} \boldsymbol{Q}_{XZ} \boldsymbol{Q}_{ZZ}^{-1} \mathrm{N}\left(\boldsymbol{0}, \boldsymbol{\Omega} \right) = \mathrm{N}\left(\boldsymbol{0}, \boldsymbol{V}_{\boldsymbol{\beta}} \right).$$

► We can verify:

$$\left(\mathbb{E}\left(e^{4}\right)\right)^{1/4} = \left(\mathbb{E}\left(\left(Y - X'\boldsymbol{\beta}\right)^{4}\right)\right)^{1/4} \\
\leq \left(\mathbb{E}\left(Y^{4}\right)\right)^{1/4} + \|\boldsymbol{\beta}\| \left(\mathbb{E}\|\boldsymbol{X}\|^{4}\right)^{1/4} < \infty$$

$$\mathbb{E}\|\boldsymbol{Z}e\|^{2} \leq \left(\mathbb{E}\|\boldsymbol{Z}\|^{4}\right)^{1/2} \left(\mathbb{E}\left(e^{4}\right)\right)^{1/2} < \infty.$$

So the CLT and Slutsky's theorem do apply.

Theorem

$$\sqrt{n}\left(\hat{\boldsymbol{\beta}}_{2\mathrm{sls}}-\boldsymbol{\beta}\right) \rightarrow_d \mathrm{N}\left(\mathbf{0},\mathbf{V}_{\boldsymbol{\beta}}\right)$$

where

$$\mathbf{V}_{\beta} = \left(Q_{XZ} Q_{ZZ}^{-1} Q_{ZX} \right)^{-1} \left(Q_{XZ} Q_{ZZ}^{-1} \Omega Q_{ZZ}^{-1} Q_{ZX} \right)$$
$$\cdot \left(Q_{XZ} Q_{ZZ}^{-1} Q_{ZX} \right)^{-1}$$

and

$$\mathbf{\Omega} = \mathbb{E}\left(\mathbf{Z}_i \mathbf{Z}_i' e_i^2\right).$$

- ► The asymptotic variance simplifies under a conditional homoskedasticity condition: $\mathbb{E}\left(e_i^2|\mathbf{Z}_i\right) = \sigma^2$.
- $V_{\beta} = V_{\beta}^{0} = (Q_{XZ}Q_{ZZ}^{-1}Q_{ZX})^{-1}\sigma^{2}.$

Covariance Matrix Estimation

• Estimator of the asymptotic variance matrix V_{β} :

$$\hat{\mathbf{V}}_{\beta} = \left(\hat{Q}_{XZ}\hat{Q}_{ZZ}^{-1}\hat{Q}_{ZX}\right)^{-1} \left(\hat{Q}_{XZ}\hat{Q}_{ZZ}^{-1}\hat{\Omega}\hat{Q}_{ZZ}^{-1}\hat{Q}_{ZX}\right)$$
$$\cdot \left(\hat{Q}_{XZ}\hat{Q}_{ZZ}^{-1}\hat{Q}_{ZX}\right)^{-1}$$

where

$$\hat{Q}_{ZZ} = \frac{1}{n} \sum_{i=1}^{n} Z_i Z_i' = \frac{1}{n} Z' Z$$

$$\hat{Q}_{XZ} = \frac{1}{n} \sum_{i=1}^{n} X_i Z_i' = \frac{1}{n} X' Z$$

$$\hat{\Omega} = \frac{1}{n} \sum_{i=1}^{n} Z_i Z_i' \hat{e}_i^2$$

$$\hat{e}_i = Y_i - X_i' \hat{\beta}_{2sls}.$$

► The homoskedastic variance matrix can be estimated by

$$\hat{\mathbf{V}}_{\beta}^{0} = \left(\hat{\mathbf{Q}}_{XZ}\hat{\mathbf{Q}}_{ZZ}^{-1}\hat{\mathbf{Q}}_{ZX}\right)^{-1}\hat{\sigma}^{2}$$

$$\hat{\sigma}^{2} = \frac{1}{n}\sum_{i=1}^{n}\hat{e}_{i}^{2}.$$

Theorem

$$\hat{\mathbf{V}}_{\beta}^{0} \to_{p} \mathbf{V}_{\beta}^{0}
\hat{\mathbf{V}}_{\beta} \to_{p} \mathbf{V}_{\beta}.$$

- ► The covariance matrix estimator should be constructed using the correct residual formula: $\hat{e}_i = Y_i X_i' \hat{\beta}_{2\text{sls}}$.
- ► In the second stage, regress Y_i on \widehat{X}_i , $\widehat{X}_i = \widehat{\Gamma}' \mathbf{Z}_i$.
- ► Residuals from the second stage: $Y_i = \widehat{X}_i' \widehat{\beta}_{2\text{sls}} + \hat{v}_i$.
- ► The standard errors reported by STATA for the second-stage regression use the residual \hat{v}_i . The (homoskedastic) formula it uses is

$$\hat{\mathbf{V}}_{\beta} = \left(\frac{1}{n}\widehat{\mathbf{X}}'\widehat{\mathbf{X}}\right)^{-1}\hat{\sigma}_{v}^{2} = \left(\hat{\mathbf{Q}}_{XZ}\hat{\mathbf{Q}}_{ZZ}^{-1}\hat{\mathbf{Q}}_{ZX}\right)^{-1}\hat{\sigma}_{v}^{2}$$

$$\hat{\sigma}_{v}^{2} = \frac{1}{n}\sum_{i=1}^{n}\hat{v}_{i}^{2}.$$

► However.

$$\hat{v}_i = Y_i - X_i' \hat{\boldsymbol{\beta}}_{2\text{sls}} + \left(X_i - \hat{X}_i \right)' \hat{\boldsymbol{\beta}}_{2\text{sls}}
\neq \hat{e}_i.$$

Functions of Parameters

- ▶ Given $\mathbf{r} : \mathbb{R}^k \to \Theta \subset \mathbb{R}^q$, the parameter of interest is $\mathbf{\theta} = \mathbf{r}(\boldsymbol{\beta})$.
- ► A natural estimator is $\widehat{\boldsymbol{\theta}}_{2\text{sls}} = \boldsymbol{r} \left(\widehat{\boldsymbol{\beta}}_{2\text{sls}} \right)$.

Theorem

r is continuous at β *, then* $\hat{\theta}_{2sls} \rightarrow_p \theta$ *as* $n \longrightarrow \infty$.

► Estimator of the asymptotic variance matrix:

$$\hat{\mathbf{V}}_{\theta} = \hat{\mathbf{R}}' \hat{\mathbf{V}}_{\beta} \hat{\mathbf{R}}
\hat{\mathbf{R}} = \frac{\partial}{\partial \beta} r \left(\hat{\boldsymbol{\beta}}_{2\text{sls}} \right)'$$

Theorem

If r is continuously differentiable at β ,

$$\sqrt{n}\left(\hat{\boldsymbol{\theta}}_{2\mathrm{sls}}-\boldsymbol{\theta}\right) \rightarrow_d \mathrm{N}\left(\mathbf{0},\mathbf{V}_{\boldsymbol{\theta}}\right)$$

where

$$\mathbf{V}_{\theta} = \mathbf{R}' \mathbf{V}_{\beta} \mathbf{R}$$
$$\mathbf{R} = \frac{\partial}{\partial \beta} r(\beta)'$$

and $\hat{\mathbf{V}}_{\theta} \rightarrow_{p} \mathbf{V}_{\theta}$.

Hypothesis Tests

► We are interested in testing

$$\mathbb{H}_0 : \boldsymbol{\theta} = \boldsymbol{\theta}_0$$

$$\mathbb{H}_1 : \boldsymbol{\theta} \neq \boldsymbol{\theta}_0.$$

► The Wald statistic:

$$W = n \left(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0 \right)' \hat{\mathbf{V}}_{\hat{\boldsymbol{\theta}}}^{-1} \left(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0 \right).$$

Theorem

$$W \to_d \chi_a^2$$
.

For c satisfying $\alpha = 1 - G_q(c)$,

$$\Pr(W > c \mid \mathbb{H}_0) \longrightarrow \alpha$$

so the test "Reject \mathbb{H}_0 if W > c" has asymptotic size α .