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Introduction

I Endogeneity in the linear model:

Yi = X ′iβ + ei
E (X iei) , 0.

I Note that the above model is not the linear projection model,
since otherwise, if β∗ = E (X iX i)

−1 E (X iYi), and the linear
projection model is

Yi = X ′iβ
∗ + e∗i

E
(
X ie∗i

)
= 0.

I We always assume that E (ei) = 0 and the first coordinate of X i is
1 so that its coefficient is the intercept. Under this assumption,
E (X iei) , 0 if and only if ei is correlated with one of the
regressors.
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I Under endogeneity, the projection coefficients β∗ does not equal
the structural parameter β:

β∗ =
(
E

(
X iX

′
i

) )−1
E (X iYi)

=
(
E

(
X iX

′
i

) )−1
E

(
X i

(
X ′iβ + ei

) )
= β +

(
E

(
X iX

′
i

) )−1
E (X iei)

, β.

I Endogeneity implies that the LS estimator is inconsistent for the
structural parameter β. The LS estimator is consistent for the
projection coefficient β∗:

β̂ →p

(
E

(
X iX

′
i

) )−1
E (X iYi) = β∗ , β.
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The simple case of one regressor (k = 1)

I Consider

Yi = β0 + β1Xi + ei,

E [ei] = 0
Cov [Xi, ei] , 0.

I An instrument is an variable Zi which satisfies the following
conditions:
1. The IV is exogenous: Cov [Zi, ei] = 0.
2. The IV determines the endogenous regressor: Cov [Zi,Xi] , 0.

I When an IV variable satisfying those conditions is available, it
allows us to estimate the effect of X on Y consistently.
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Sources of endogeneity

There are several possible sources of endogeneity:
1. Omitted explanatory variables.
2. Simultaneity.
3. Errors in variables.

All result in regressors correlated with the errors.

5 / 36



Omitted explanatory variables

I Suppose that the true model is

ln Wagei = β0 + β1Educationi + β2 Abilityi + Vi,

where Vi is uncorrelated with Education and Ability.
I Since Ability is unobservable, the econometrician regresses

ln Wage against Education, and β2 Ability goes into the error
part:

ln Wagei = β0 + β1Educationi +Ui,

Ui = β2 Abilityi + Vi .

I Education is correlated with Ability: we can expect that
Cov (Educationi, Abilityi) > 0, β2 > 0, and therefore
Cov (Educationi,Ui) > 0.
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Simultaneity

I Consider the following demand-supply system:

Demand: Qd = βd0 + β
d
1 P +Ud,

Supply: Qs = βs0 + β
s
1P +Us,

where: Qd =quantity demanded, Qs =quantity supplied,
P=price.

I The quantity and price are determined simultaneously in the
equilibrium:

Qd = Qs = Q.

I Note that Qd and Qs are not observed separately, we observe
only the equilibrium values Q.

7 / 36



Qd = βd0 + β
d
1 P +Ud,

Qs = βs0 + β
s
1P +Us,

Qd = Qs = Q.

I Solving for P,we obtain

0 =
(
βd0 − β

s
0

)
+

(
βd1 − β

s
1

)
P +

(
Ud −Us

)
,

or

P = −
βd0 − β

s
0

βd1 − β
s
1
−

Ud −Us

βd1 − β
s
1
.

I Thus,
Cov

(
P,Ud

)
, 0 and Cov (P,Us) , 0.

The demand-supply equations cannot be estimated by OLS.
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I Consider the following labour supply model for married women:

Hoursi = β0 + β1Childreni + Other Factors +Ui,

where Hours=hours of work, Children=number of children.
I It is reasonable to assume that women decide simultaneously

how much time to devote to career and family.
I Thus, while we may be mainly interested in the effect of family

size on labour supply, there is another equation:

Childreni = γ0 + γ1Hoursi + Other Factors + Vi,

and Children and Hours are determined simultaneously in an
equilibrium.

I As a result, Cov (Childreni,Ui) , 0, and the effect of family size
cannot be estimated by OLS.
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Errors in variables

I Consider the following model:

Yi = β0 + β1X∗i + Vi,

where X∗i is the true regressor.
I Suppose that X∗i is not directly observable. Instead, we observe

Xi that measures X∗i with an error εi:
Xi = X∗i + εi .

I Since X∗i is unobservable, the econometrician has to regress Yi
against Xi .
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Xi = X∗i + εi,

Yi = β0 + β1X∗i + Vi .

I The model for Yi as a function of Xi can be written as

Yi = β0 + β1 (Xi − εi) + Vi

= β0 + β1Xi + Vi − β1εi,

or

Yi = β0 + β1Xi + ei,

ei = Vi − β1εi .
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Yi = β0 + β1Xi + ei,

ei = Vi − β1εi,

Xi = X∗i + εi .

I We can assume that

Cov
[
X∗i ,Vi

]
= Cov

[
X∗i , εi

]
= Cov [εi,Vi] = 0.

I However,

Cov [Xi, ei] = Cov
[
X∗i + εi,Vi − β1εi

]
= Cov

[
X∗i ,Vi

]
− β1Cov

[
X∗i , εi

]
+Cov [εi,Vi] − β1Cov [εi, εi]

I Thus, Xi is enodgenous and β1 cannot be estimated by OLS.
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I Theoretically, the causal effect can be estimated from controlled
experiments:
I To estimate the return to education, select a random sample of

children, randomly assign how many years of education they
should have, and measure their income several years after the
graduation.

I To estimate the effect of family size on labor supply, select a
random sample of parents and randomly assign how many
children they should have, and measure their labor market
outcomes.

I Such an approach is infeasible due to a high cost and/or ethical
reasons.

I Natural experiments: Use the random variation in the variable of
interest to estimate the causal effect.
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Example: Compulsory schooling laws and return to
education

I Angrist and Krueger, 1991, QJE, suggested using school start
age policy to estimate β1 in
ln Wagei = β0 + β1Educationi + β2 Abilityi + Vi.

I We need to find an IV variable Z such that Cov (Abilityi, Zi) = 0
and Cov (Educationi, Zi) , 0.

I They argue that due to compulsory schooling laws, the season of
birth variable satisfies the IV conditions:
I A child has to attend the school until he reaches a certain drop-out

age.
I Students born in the first quarter of the year, reach the legal

drop-out age before their classmates who were born later in the
year.

I The quarter of birth dummy variable is correlated with education.
I The quarter of birth is uncorrelated with ability.
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Example: Sibling-sex composition and labor supply

I Angrist and Evans, 1998, AER, argue that the parents’
preferences for a mixed sibling-sex composition can be used to
estimate β1 in Hoursi = β0 + β1Childreni + . . . +Ui.

I We need to find an IV Z such that Cov [Ui, Zi] = 0 and
Cov (Childreni, Zi) , 0.

I Consider a dummy variable that takes on the value one if the sex
of the second child matches the sex of the first child.
I If the parents prefer a mixed sibling-sex composition, they are

more likely to have another child if their first two children are of
the same sex.

I The same-sex dummy is correlated with the number of children.
I Since sex mix is randomly determined, the same sex dummy is

exogenous.
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Instrumental Variables
I Partition:

X i =

(
X1i
X2i

)
k1
k2

and
β =

(
β1
β2

)
k1
k2

.

I So the model is:

Yi = X ′iβ + ei
= X ′1iβ1 + X ′2iβ2 + ei .

In matrix notation:

Y = Xβ + e

= X1β1 + X2β2 + e.
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I Assume

E (X1iei) = 0
E (X2iei) , 0

Definition
The l × 1 random vector Z i is an instrumental variable if

E (Z iei) = 0
E

(
Z iZ

′
i

)
> 0

rank
(
E

(
Z iX

′
i

) )
= k
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I X1i satisfies E (X1iei) = 0. So it should be included as
instrumental variables.

Z i =

(
Z1i
Z2i

)
=

(
X1i
Z2i

)
k1
l2

I We say the model is just-identified if ` = k (`2 = k2) and
over-identified if ` > k (`2 > k2).
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Instrumental Variables Estimator

I The assumption that Z i is an IV implies

E (Z iei) = 0
E

(
Z i

(
Yi − X ′iβ

) )
= 0

E (Z iYi) − E
(
Z iX

′
i

)
β = 0.

I If ` = k, solve for β:

β =
(
E

(
Z iX

′
i

) )−1
E (Z iYi) .
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I The IV estimator:

β̂iv =

(
1
n

n∑
i=1

Z iX
′
i

)−1 (
1
n

n∑
i=1

Z iYi

)
=

(
n∑
i=1

Z iX
′
i

)−1 (
n∑
i=1

Z iYi

)
= (Z ′X)−1

(Z ′Y ) .

I The residual satisfies:

ê = Y − X β̂iv

Z ′ ê = Z ′Y − Z ′X (Z ′X)−1
(Z ′Y ) = 0.
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Two-Stage Least Squares

I We denote Γ̂ = (Z ′Z)−1
(Z ′X).

β̂2sls =
(
Γ̂
′
Z ′Z Γ̂

)−1 (
Γ̂
′
Z ′Y

)
=

(
X ′Z (Z ′Z)−1 Z ′Z (Z ′Z)−1 Z ′X

)−1

·X ′Z (Z ′Z)−1 Z ′Y

=
(
X ′Z (Z ′Z)−1 Z ′X

)−1
X ′Z (Z ′Z)−1 Z ′Y .

I When k = `, the 2SLS simplifies to IV:(
X ′Z (Z ′Z)−1 Z ′X

)−1
= (Z ′X)−1

(
(Z ′Z)−1

)−1
(X ′Z)−1

= (Z ′X)−1
(Z ′Z) (X ′Z)−1
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I So

β̂2sls =
(
X ′Z (Z ′Z)−1 Z ′X

)−1
X ′Z (Z ′Z)−1 Z ′Y

= (Z ′X)−1
(Z ′Z) (X ′Z)−1 X ′Z (Z ′Z)−1 Z ′Y

= (Z ′X)−1
(Z ′Z) (Z ′Z)−1 Z ′Y

= (Z ′X)−1 Z ′Y

= β̂iv.

I Define the projection matrix:

PZ = Z (Z ′Z)−1 Z ′.

I We can write
β̂2sls = (X

′PZX)
−1 X ′PZY .
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I And the fitted values:

X̂ = PZX = Z Γ̂

β̂2sls = (X ′PZPZX)
−1 X ′PZY

=
(
X̂
′
X̂

)−1
X̂
′
Y .

I First regress X on Z . Obtain the LS coefficients
Γ̂ = (Z ′Z)−1

(Z ′X) and the fitted values X̂ = PZX = Z Γ̂.

I Second regress Y on X̂ . Get β̂2sls =
(
X̂
′
X̂

)−1
X̂
′
Y .
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I Recall X = [X1 X2] and Z = [X1 Z2]. Note X̂1 = PZX1 = X1.
Then

X̂ =
[
X̂1, X̂2

]
=

[
X1, X̂2

]
.

I The 2SLS residuals:

ê = Y − X β̂2sls.

I When the model is overidentified, Z ′ ê , 0 but

X̂
′
ê = Γ̂

′
Z ′ ê

= X ′Z (Z ′Z)−1 Z ′ ê

= X ′Z (Z ′Z)−1 Z ′Y − X ′Z (Z ′Z)−1 Z ′X β̂2sls

= 0.
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Consistency of 2SLS

Assumption
1. The observations (Yi,Xi,Zi), i =1, . . . ,n, are independent and
identically distributed.
2. E

(
Y2) < ∞.

3. E ‖ X ‖2< ∞.
4. E ‖ Z ‖2< ∞.
5. E (Z ′) is positive definite.
6. E (ZX ′) has full rank k.
7. E (Ze) = 0.
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I Proof of consistency:

β̂2sls =
(
X ′Z (Z ′Z)−1 Z ′X

)−1
X ′Z (Z ′Z)−1 Z ′ (Xβ + e)

= β +
(
X ′Z (Z ′Z)−1 Z ′X

)−1
X ′Z (Z ′Z)−1 Z ′e.

I Then

β̂2sls − β =

((
1
n
X ′Z

) (
1
n
Z ′Z

)−1 (
1
n
Z ′X

))−1

·

(
1
n
X ′Z

) (
1
n
Z ′Z

)−1 (
1
n
Z ′e

)
.
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I Then,

β̂2sls − β →p

(
QXZQ

−1
ZZQZX

)−1
QXZQ

−1
ZZE (Z iei) = 0,

where

QXZ = E
(
X iZ

′
i

)
QZZ = E

(
Z iZ

′
i

)
QZX = E

(
Z iX

′
i

)
.
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Asymptotic Distribution of 2SLS

Assumption
1. E

(
Y4) < ∞.

2. E ‖ Z ‖4< ∞.

I Write

√
n(β̂2sls − β) =

((
1
n
X ′Z

) (
1
n
Z ′Z

)−1 (
1
n
Z ′X

))−1

·

(
1
n
X ′Z

) (
1
n
Z ′Z

)−1 (
1
√

n
Z ′e

)
.

I By CLT,

1
√

n
Z ′e =

1
√

n

n∑
i=1

Z iei →d N (0,Ω) ,

where Ω = E
(
e2
i Z iZ

′
i

)
.

28 / 36



I Slutsky’s theorem:
√

n(β̂2sls − β) →d

(
QXZQ

−1
ZZQZX

)−1
QXZQ

−1
ZZN (0,Ω) = N

(
0,Vβ

)
.

I We can verify:(
E

(
e4

))1/4
=

(
E

(
(Y − X ′β)4

))1/4

≤

(
E

(
Y4

))1/4
+ ‖ β ‖

(
E ‖ X ‖4

)1/4
< ∞

E ‖ Ze ‖2≤
(
E ‖ Z ‖4

)1/2 (
E

(
e4

))1/2
< ∞.

So the CLT and Slutsky’s theorem do apply.
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Theorem
√

n
(
β̂2sls − β

)
→d N

(
0,Vβ

)
where

Vβ =
(
QXZQ

−1
ZZQZX

)−1 (
QXZQ

−1
ZZΩQ

−1
ZZQZX

)
·

(
QXZQ

−1
ZZQZX

)−1

and
Ω = E

(
Z iZ

′
ie

2
i

)
.

I The asymptotic variance simplifies under a conditional
homoskedasticity condition: E

(
e2
i |Z i

)
= σ2.

I V β = V 0
β =

(
QXZQ

−1
ZZQZX

)−1
σ2.
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Covariance Matrix Estimation
I Estimator of the asymptotic variance matrix V β:

V̂β =
(
Q̂XZ Q̂

−1
ZZ Q̂ZX

)−1 (
Q̂XZ Q̂

−1
ZZΩ̂Q̂

−1
ZZ Q̂ZX

)
·

(
Q̂XZ Q̂

−1
ZZ Q̂ZX

)−1

where

Q̂ZZ =
1
n

n∑
i=1

Z iZ
′
i =

1
n
Z ′Z

Q̂XZ =
1
n

n∑
i=1

X iZ
′
i =

1
n
X ′Z

Ω̂ =
1
n

n∑
i=1

Z iZ
′
i ê

2
i

êi = Yi − X ′i β̂2sls.
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I The homoskedastic variance matrix can be estimated by

V̂0
β =

(
Q̂XZ Q̂

−1
ZZ Q̂ZX

)−1
σ̂2

σ̂2 =
1
n

n∑
i=1

ê2
i .

Theorem

V̂0
β →p V0

β

V̂β →p Vβ .
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I The covariance matrix estimator should be constructed using the
correct residual formula: êi = Yi − X ′i β̂2sls.

I In the second stage, regress Yi on X̂ i, X̂ i = Γ̂
′
Z i.

I Residuals from the second stage: Yi = X̂
′

i β̂2sls + v̂i.
I The standard errors reported by STATA for the second-stage

regression use the residual v̂i. The (homoskedastic) formula it
uses is

V̂β =

(
1
n
X̂
′
X̂

)−1
σ̂2
v =

(
Q̂XZ Q̂

−1
ZZ Q̂ZX

)−1
σ̂2
v

σ̂2
v =

1
n

n∑
i=1

v̂2
i .

I However,

v̂i = Yi − X ′i β̂2sls +
(
X i − X̂ i

) ′
β̂2sls

, êi .
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Functions of Parameters

I Given r : Rk → Θ ⊂ Rq, the parameter of interest is θ = r (β).
I A natural estimator is θ̂2sls = r

(
β̂2sls

)
.

Theorem
r is continuous at β, then θ̂2sls →p θ as n→∞.

I Estimator of the asymptotic variance matrix:

V̂θ = R̂
′V̂β R̂

R̂ =
∂

∂b
r (b)′

����
b=β̂2sls
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Theorem
If r is continuously differentiable at β,

√
n
(
θ̂2sls − θ

)
→d N (0,Vθ)

where

Vθ = R′VβR

R =
∂

∂b
r (b)′

����
b=β

and V̂θ →p Vθ .
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Hypothesis Tests
I We are interested in testing

H0 :θ = θ0

H1 :θ , θ0.

I The Wald statistic:

W = n
(
θ̂ − θ0

) ′
V̂−1

θ̂

(
θ̂ − θ0

)
.

Theorem

W →d χ2
q .

For c satisfying α =1 − Gq (c) ,

Pr (W > c | H0) → α

so the test “Reject H0 if W > c” has asymptotic size α.
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