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Large Sample Theory

Limits and convergence concepts: in probability and in mean

Let {an : n = 1, 2, . . .} be a sequence of non-random real numbers. We say that a is the limit of {an}
if for all real δ > 0 we can find an integer Nδ such that for all n ≥ Nδ we have that |an − a| < δ.

When the limit exists, we say that {an} converges to a, and write an → a or limn→∞ an = a. In this
case, we can make the elements of {an : n ≥ N} arbitrary close to a by choosing N sufficiently large.
Naturally, if an → a, we have that an − a→ 0.

The concept can be extended to vectors or matrices as well. Let {An : n = 1, 2, . . .} be a m × k
matrix. Then An → A if for all i = 1, . . . ,m and j = 1, . . . , k we have that the (i, j)-th element of An

converges to the (i, j)-th element of A.
The concept of convergence cannot be applied in a straightforward way to sequences of random

variables. This is so because a random variable is a function from the sample space Ω to the real
line. The solution is to consider convergence of a non-random sequence derived from the random one.
Since there are many ways to derive non-random sequences, there exist several stochastic convergence
concepts. Let {Xn : n = 1, 2, . . .} be a sequence of random variables. Let X be random or non-random
(i.e. it is possible that X(ω) is the same for all ω ∈ Ω). We will consider non-random sequences with
the following typical elements: (i) E |Xn −X|r , and (ii) Pr (|Xn −X| > ε) for some ε > 0. These are
sequences of non-random real numbers, and, consequently, the usual definition of convergence applies
to each of them leading to a corresponding definition of stochastic convergence:

(i) Convergence in r-th mean. Xn converges to X in r-th mean if E |Xn −X|r → 0 as n→∞.

(ii) Convergence in probability. Xn converges in probability toX if for all ε > 0, Pr (|Xn −X| ≥ ε)→
0 as n→∞. It is denoted as Xn →p X or p limXn = X. Alternatively, convergence in probability
can be defined as Pr (|Xn −X| < ε)→ 1 for all ε > 0. The two definitions are equivalent.

Next, we show that convergence in r-th mean implies convergence in probability. The proof requires
the following Lemma.

Lemma 1. (Markov’s Inequality) Let X be a random variable. For ε > 0 and r > 0,

Pr (|X| ≥ ε) ≤ E |X|r /εr.

Proof. Let fX be the PDF of X (the proof is similar for the discrete case). Let 1 (·) be an indicator
function, i.e. it is equal one if the condition inside the parenthesis is satisfied, and zero otherwise. For
example,

1 (|x| ≥ ε) =

{
1, |x| ≥ ε,
0, |x| < ε.
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Note that 1 (|x| ≥ ε) + 1 (|x| < ε) = 1. Next,

E |X|r = E (|X|r 1 (|X| ≥ ε)) + E (|X|r 1 (|X| < ε))

≥ E (|X|r 1 (|X| ≥ ε))

≥ εrE (1 (|X| ≥ ε))

= εr
∫ ∞
−∞

2 (|x| ≥ ε) fX(x)dx

= εr
(∫ −ε
−∞

1 · fX(x)dx+

∫ ε

−ε
0 · fX(x)dx+

∫ ∞
ε

1 · fX(x)dx

)
= εr

(∫ −ε
−∞

fX(x)dx+

∫ ∞
ε

fX(x)dx

)
= εrPr (|X| ≥ ε) .

Now, suppose that Xn converges to X in r-th mean, E |Xn −X|r → 0. Then,

Pr (|Xn −X| ≥ ε) ≤ E |Xn −X|r /εr

→ 0.

The following are some rules for manipulation of probability limits. Suppose that Xn →p a and
Yn →p b, where a and b are some finite constants. Let c be another constant. Then,

(i) cXn →p ca.

(ii) Xn + Yn →p a+ b.

(iii) XnYn →p ab.

(iv) Xn/Yn →p a/b, provided that b 6= 0.

Proof of (ii):

Pr (|(Xn + Yn)− (a+ b)| ≥ ε) = Pr (|(Xn − a) + (Yn − b)| ≥ ε)

≤ Pr (|Xn − a|+ |Yn − b| ≥ ε)

≤ Pr (|Xn − a| ≥ ε/2 or |Yn − b| ≥ ε/2)

≤ Pr (|Xn − a| ≥ ε/2) + Pr (|Yn − b| ≥ ε/2)

→ 0.

It is easy to show the following “Squeeze Rule”: If 0 ≤ Xn ≤ Yn and Yn →p 0, then Xn →p 0. It is
also clear that Xn →p 0 if and only if |Xn| →p 0.

The following result shows that if a sequence of random variables converges in probability to a
constant, then their continuous functions converge in probability as well.

Theorem 2. (Continuous Mapping Theorem (CMT) or Slutsky’s Lemma) Suppose that
Xn →p c, a constant, and let h(·) be a continuous function at c. Then, h (Xn)→p h(c).
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Proof: By continuity of h(·), given ε > 0, there exists δε > 0 such that |u− c| < δε implies that
|h (u)− h(c)| < ε. Consequently, we have the following relation between the two events:

{ω : |h (Xn(ω))− h(c)| < ε} ⊃ {ω : |Xn(ω)− c| < δε} ,

and, therefore,

Pr (|h (Xn)− h(c)| < ε) ≥ Pr (|Xn − c| < δε)

→ 1.

For example, suppose that β̂n →p β. Then β̂2n →p β
2, and 1/β̂n →p 1/β, provided β 6= 0.

The random vectors/matrices converge in probability if their elements converge in probability.
Alternatively, one may consider convergence in probability of norms. Consider the vector case. Let
{Xn : n = 1, 2, . . .} be a sequence of random k-vectors. We will show that Xn −X →p 0 element-by-
element, where X is a possibly random k-vector, if and only if ‖Xn −X‖ →p 0, where ‖·‖ denotes
the Euclidean norm. First, suppose that for all i = 1, . . . k we have that Xn,i −Xi →p 0. Then,

‖Xn −X‖ =

√√√√ k∑
j=1

(Xn,j −Xj)
2

→p 0,

due to the CMT and property (ii) above. Next, suppose that ‖Xn −X‖ →p 0. By CMT, ‖Xn −X‖2 →p

0. Since ‖Xn −X‖2 =
∑k

j=1 (Xn,j −Xj)
2 , and (Xn,j −Xj)

2 ≥ 0 for all n and j = 1, . . . , k, by Squeeze
Rule, (Xn,j −Xj)

2 →p 0. By CMT, |Xn,j −Xj | →p 0.
The rules for manipulation of probability limits in the vector/matrix case are similar to those in

the scalar case, (i) - (iv) above with corresponding definitions of multiplication and division. The CMT
is valid in vector/matrix case as well.

Weak Law of Large Numbers (WLLN)

The WLLN is one of the most important examples of convergence in probability.

Theorem 3. (WLLN) Let X1, . . . Xn be a sample of iid random variables such that E |X1| < ∞.
Then, n−1

∑n
i=1Xi →p EX1 as n→∞.

Note that due to iid assumption, we have that EXi = EX1 for all i = 1, . . . , n. We will prove the
result assuming instead that EX2

1 <∞, which implies that E |X1| <∞, and Var (X1) <∞.

Theorem 4. Let X1, . . . Xn be a sample of iid random variables such that Var (X1) < ∞. Then,
n−1

∑n
i=1Xi →p EX1 as n→∞.

Proof:

Pr

(∣∣∣∣∣n−1
n∑
i=1

Xi − EX1

∣∣∣∣∣ ≥ ε
)

= Pr

(∣∣∣∣∣n−1
n∑
i=1

(Xi − EX1)

∣∣∣∣∣ ≥ ε
)
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≤
E |
∑n

i=1 (Xi − EX1)|2

n2ε2

=

∑n
i=1

∑n
j=1 E (Xi − EX1) (Xj − EX1)

n2ε2

=

∑n
i=1 E (Xi − EX1)

2

n2ε2

=
nVar (X1)

n2ε2

→ 0 as n→∞.

Convergence in distribution

Convergence in distribution is another stochastic convergence concept used to approximate the distri-
bution of a random variable Xn in large samples. Let {Xn : n = 1, 2, . . .} be a sequence of random
variables. Let Fn(x) denote the marginal CDF of Xn, i.e. Fn(x) = Pr (Xn ≤ x) . Let F (x) be another
CDF. We say that Xn converges in distribution if Fn(x) → F (x) for all x where F (x) is continuous.
In this case, we write Xn →d X, where X is any random variable with the distribution function F (x).

Note that while we say that Xn converges to X, the convergence in distribution is not convergence of
random variables, but of the distribution functions.

The extension to the vector case is straightforward. Let Xn and X be two random k-vectors. We
say that Xn →d X if the joint CDF of Xn converges to that of X at all continuity points, i.e.

Fn (x1, . . . , xk) = Pr (Xn,1 ≤ x1, . . . , Xn,k ≤ xk)

→ Pr (X1 ≤ x1, . . . , Xk ≤ xk)

= F (x1, . . . , xk) ,

for all points (x1, . . . , xk) where F is continuous. In this case, we say that the elements of Xn,

Xn,1, . . . Xn,k, jointly converge in distribution to X1, . . . Xk, the elements of X.

The rules for manipulation of convergence in distribution results are as follows.

(i) Cramer Convergence Theorem (Slutsky’s Theorem): Suppose thatXn →d X, and Yn →p c.

Then,

(a) Xn + Yn →d X + c.

(b) YnXn →d cX,

(c) Xn/Yn →d X/c, provided that c 6= 0.

Similar results hold in the vector/matrix case with proper definitions of multiplication and divi-
sion.

(ii) If Xn →p X, then Xn →d X. Converse is not true with one exception:

(iii) If Xn →d c, a constant, then Xn →p c.

(iv) If Xn − Yn →p 0, and Yn →d Y, then Xn →d Y.

The following theorem extends convergence in distribution of random variables/vectors to convergence
of their continuous functions.
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Theorem 5. (Continuous Mapping Theorem (CMT)) Suppose that Xn →d X, and let h (·) be
a function continuous on a set X such that Pr (X ∈ X ) = 1. Then, h (Xn)→d h(X).

Examples:

• Suppose that Xn →d X. Then X2
n →d X

2. For example, if Xn →d N (0, 1) , then X2
n →d χ

2
1.

• Suppose that (Xn, Yn)→d (X,Y ) (joint convergence in distribution), and set h(x, y) = x. Then
Xn →d X. Set h(x, y) = x2+y2. ThenX2

n+Y 2
n →d X

2+Y 2. For example, if (Xn, Yn)→d N (0, I2)

(bivariate standard normal distribution), then X2
n + Y 2

n →d χ
2
2.

Note that contrary to convergence in probability, Xn →d X and Yn →d Y does not imply that, for
example, Xn + Yn →d X + Y, unless a joint convergence result holds. This is due to the fact that the
individual convergence in distribution is convergence of the marginal CDFs. In order to characterize
the limiting distribution of Xn + Yn one has to consider the limiting behavior of the joint CDF of Xn

and Yn.

The Central Limit Theorem (CLT)

Various versions of the CLT are used to establish convergence in distribution of re-scaled sums of
random variables.

Theorem 6. (CLT) Let X1, . . . , Xn be a sample of iid random variables such that EX1 = 0 and
0 < EX2

1 <∞. Then, as n→∞, n−1/2
∑n

i=1Xi →d N(0,EX2
1 ).

For example, the CLT can be used to approximate the distribution of the average in large samples
as follows. Let X1, . . . Xn be a sample of iid random variables with EX1 = µ and Var (X1) = σ2 <∞.
Define

Xn = n−1
n∑
i=1

Xi.

Consider n−1/2
∑n

i=1 (Xi − µ) .We have that (X1 − µ) , . . . , (Xn − µ) are iid with the mean E (X1 − µ) =

0, and the variance E (X1 − µ)2 = σ2 <∞. Therefore, by the CLT,

n1/2
(
Xn − µ

)
= n−1/2

n∑
i=1

(Xi − µ)

→d N
(
0, σ2

)
.

In practice, we use convergence in distribution as an approximation. Let a∼ denote "approximately in
large samples". Informally, one can say that n1/2

(
Xn − µ

) a∼ N
(
0, σ2

)
or

Xn
a∼ N

(
µ, σ2/n

)
,

Note that under the normality assumption for Xi’s, the above result is obtained exactly for any sample
size n.

The CLT can be extended to the vector case by the means of the following result.

Lemma 7. (Cramer-Wold device) Let Xn be a random k-vector. Then, Xn →d X if and only if
λ′Xn →d λ

′X for all non-zero λ ∈ Rk.
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Corollary 8. (Multivariate CLT) Let X1, . . . ,Xn be a sample of iid random k-vectors such that
EX1 = 0 (denote Xi = (Xi,1, ..., Xi,k)

′) and EX2
1,j <∞ for all j = 1, . . . , k, and E (X1X

′
1) is positive

definite. Then, n−1/2
∑n

i=1Xi →d N(0,E (X1X
′
1)).

Proof: Let λ be a k-vector of constants. Consider Yi = λ′Xi. We have that Y1, . . . , Yn are iid.
Further,

EY1 = λ′EX1

= 0,

Var (Y1) = EY 2
1

= λ′E
(
X1X

′
1

)
λ.

The variance of Y1 is finite provided that all the elements of the variance-covariance matrix E (X1X
′
1)

are finite. In order to show that, note that the (r, s)-th element of E (X1X
′
1) is given by E (X1,rX1,s).

By the Cauchy-Schwartz inequality,

E |X1,rX1,s| ≤
√
EX2

1,rEX2
1,s,

which is finite for all r = 1, . . . , k, s = 1, . . . , k due to the assumption that EX2
1,j < ∞ for all

j = 1, . . . , k. Consequently, EY 2
1 <∞, and it follows from the univariate CLT that

n−1/2
n∑
i=1

Yi →d N
(
0,λ′E

(
X1X

′
1

)
λ
)
.

Let W be any N (0,E (X1X
′
1)) random vector. Since λ′W ∼ N

(
0,λ′E (X1X

′
1)λ

)
, we have that

λ′

(
n−1/2

n∑
i=1

Xi

)
= n−1/2

n∑
i=1

Yi

→d λ′W .

Therefore, by the Cramer-Wold device we have that

n−1/2
n∑
i=1

Xi →d W ∼ N
(
0,E

(
X1X

′
1

))
.

Delta method

The delta method is used to derive the asymptotic distribution of the nonlinear functions of estimators.
For example, in the case of iid random sample, we have that by the WLLN the average converges in
probability to the expected value of an observation: Xn →p EX1 = µ. Further, it follows from the
CMT that h

(
Xn

)
→p h(µ). However, this does not allow us to approximate the distribution of h

(
Xn

)
,

since h(µ) is a constant (non-random). Note, that the CMT cannot be applied to general nonlinear
h
(
Xn

)
, since we have only a convergence in distribution result for n1/2

(
Xn − µ

)
.

Theorem 9. (Delta method) Let θ̂n be a random k-vector, and suppose that n1/2
(
θ̂n − θ

)
→d Y

as n → ∞, where θ is a k-vector of constants (θ = (θ1, ..., θk)
′), and Y is a random k-vector. Let
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h : Rk → Rm be a function continuously differentiable on some open neighborhood of θ. Equivalently,
we can denote h = (h1, ..., hm)′, where hj : Rk → R, j = 1, ...,m. Then, n1/2

(
h
(
θ̂n

)
− h(θ)

)
→d

∂h(θ)
∂θ′

Y, where

∂h(θ)

∂θ′
=


∂h1(θ)
∂θ′

...
∂hm(θ)
∂θ′

 =


∂h1(θ)
∂θ1

· · · ∂h1(θ)
∂θk

...
. . .

...
∂hm(θ)
∂θ1

· · · ∂hm(θ)
∂θk

 .

Proof: First, note that n1/2
(
θ̂n − θ

)
→d Y implies that θ̂n − θ →p 0 or θ̂n →p θ. Indeed, define

τn = n−1/2. We have that τn → 0, and, consequently, τn →p 0. By the Cramer Convergence Theorem
(b), (

θ̂n − θ
)

= τnn
1/2
(
θ̂n − θ

)
→d ( p lim τn)Y

= 0.

Therefore, by property (iii) of convergence in distribution, θ̂n →p θ.

Apply the mean value theorem to the function h
(
θ̂n

)
element-by-element (see the Appendix) to

obtain
h
(
θ̂n

)
= h(θ) +

∂h(θ∗n)

∂θ′

(
θ̂n − θ

)
, (1)

where θ∗n is a random variable that lies between θ̂n and θ (element-by-element), i.e. ‖θ∗n − θ‖ ≤∥∥∥θ̂n − θ∥∥∥ . Note that “θ∗n” on different rows of the matrix ∂h(θ∗n)
∂θ′

could be different. Since θ̂n →p θ, it
has to be that θ∗n →p θ as well:

Pr (‖θ∗n − θ‖ ≥ ε) ≤ Pr
(∥∥∥θ̂n − θ∥∥∥ ≥ ε)

→ 0.

Furthermore, by the CMT,
∂h(θ∗n)

∂θ′
→p

∂h(θ)

∂θ′
. (2)

Next, re-write (1) as follows:

n1/2
(
h
(
θ̂n

)
− h(θ)

)
=
∂h(θ∗n)

∂θ′
n1/2

(
θ̂n − θ

)
.

Then, it follows from the result in (2), assumption n1/2
(
θ̂n − θ

)
→d Y and Cramer Convergence

Theorem (b) that

n1/2
(
h
(
θ̂n

)
− h(θ)

)
→d

∂h(θ)

∂θ′
Y .

Consider again the example of the average of iid random variables with finite variance. We have
that n1/2

(
Xn − µ

)
→d N

(
0, σ2

)
. Suppose that µ 6= 0. Then, by the delta method,

n1/2
(

1

Xn

− 1

µ

)
→d −

1

µ2
N
(
0, σ2

)
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= N

(
0,
σ2

µ4

)
.

Appendix A: Mean value theorem

Theorem 10. (One-Dimensional Mean-Value Theorem) Let f : [a, b] → R be continuous on
[a, b] and differentiable on (a, b). Then there is c ∈ (a, b) such that

f (b)− f (a) =
df (c)

dx
(b− a) .

Now, suppose we have h : Θ → R, where Θ ⊂ Rk. Suppose further that h is continuously
differentiable on some open neighborhood of θ0, say N0, and let u be such that θ0 + tu ∈ N0 for all
t ∈ [0, 1]. Define f (t) = h (θ0 + tu). The function f is continuous and differentiable on [0, 1] interval,
and by the one-dimensional mean-value theorem,

h (θ0 + u)− h (θ0) = f (1)− f (0)

=
df (t∗)

dt
for some t∗ ∈ (0, 1)

=
∂h (θ0 + t∗u)

∂θ′
u

=
∂h (θ∗)

∂θ′
u,

where
θ∗ = θ0 + t∗u,

and

‖θ∗ − θ0‖ = t∗ ‖u‖

< ‖u‖ .

(The argument follows closely that of Theorem 10 on page 106 of Magnus and Neudecker (2007):
Matrix Differential Calculus with Applications in Statistics and Econometrics, 3rd Edition.) We have
established a mean-value theorem for real-valued functions of several variables:

Theorem 11. Let h : Θ→ R, where Θ ⊂ Rk, be continuously differentiable on some open neighborhood
Nθ of θ. If θ̂ ∈ Nθ, then there is θ∗ ∈ Nθ such that

h(θ̂)− h (θ) =
∂h (θ∗)

∂θ′

(
θ̂ − θ

)
,

where ‖θ∗ − θ‖ ≤
∥∥∥θ̂ − θ∥∥∥.

If h (θ) = (h1 (θ) , . . . , hm (θ))′ is a vector valued function with hj : Θ → R for all j = 1, . . . ,m,
the above theorem can be applied element-by-element:

h(θ̂)− h (θ) =


h1(θ̂)− h1 (θ)

...
hm(θ̂)− hm (θ)
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=


∂h(θ∗,1)
∂θ′

(
θ̂ − θ

)
...

∂h(θ∗,m)
∂θ′

(
θ̂ − θ

)


=


∂h(θ∗,1)
∂θ′

...
∂h(θ∗,m)

∂θ′

(θ̂ − θ) ,
where ∥∥θ∗,j − θ∥∥ ≤ ‖θ̂ − θ‖, (3)

for all j = 1, . . . ,m. To simplify the notation, we can write
∂h(θ∗,1)
∂θ′

...
∂h(θ∗,m)

∂θ′

 =
∂h (θ∗)

∂θ′
,

indicating that θ∗ may be different across the rows of the matrix ∂h (θ∗) /∂θ′, and that, in each row,
θ∗ satisfies (3).

Appendix B: Proof of the CLT

The material discussed here is adopted from Hogg, McKean, and Craig (2005): Introduction to Math-
ematical Statistics. Let Xn = n−1

∑n
i=1Xi, where Xi’s are iid with mean µ and variance σ2. The

moment generating function (MGF) of a N(0, σ2) distribution is given by exp(t2σ2/2). It suffices to
show that the MGF of n1/2(Xn − µ) converges to exp(t2σ2/2).1

Let m(t) denote the MGF of X1 − µ:

m(t) = E exp (t (X1 − µ)) .

The MGF has the following properties:

m(0) = 1,

m(1)(0) = E(X1 − µ) = 0,

m(2)(0) = E(X1 − µ)2 = σ2,

where
m(s)(0) =

dsm(t)

dts

∣∣∣∣
t=0

.

We have the following expansion of m(t):

m(t) = m(0) +m(1)(0)t+
m(2)(s)t2

2

1If the MGF does not exist, one can replace it with the characteristic function of X1 − µ, which is defined as
ϕ(t) = E exp(it(X1 − µ)), where i =

√
−1. Note that the characteristic function always exists, and the proof with the

characteristic function is essentially the same as the proof that uses the MGF.
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= 1 +
m(2)(s)t2

2
. (4)

where s is a mean value that lies between 0 and t.

Let Mn(t) denote the MGF of n1/2(Xn − µ). We have:

Mn(t) = E exp

(
t

1

n1/2

n∑
i=1

(Xi − µ)

)

= E
n∏
i=1

exp

(
t

n1/2
(Xi − µ)

)

=

n∏
i=1

E exp

(
t

n1/2
(Xi − µ)

)
(by independence)

=

(
E exp

(
t

n1/2
(X1 − µ)

))n
(because of "identical distributed")

=

(
m

(
t

n1/2

))n
(by definition of m(t))

=

1 +
m(2) (s)

(
t

n1/2

)2
2


n

(by (4))

=

(
1 +

m(2) (s) t2

2n

)n
=
(

1 +
an
n

)n
,

where s lies between 0 and t/n1/2 and therefore converges to zero as n→∞, and

an =
m(2) (s) t2

2

→ m(2)(0)t2

2
(as n→∞)

=
σ2t2

2
.

We will show next that

logMn(t) = n log
(

1 +
an
n

)
→ lim

n→∞
an =

σ2t2

2
. (5)

Note that the result in (5) implies that

Mn(t) = exp (logMn(t))→ exp
(

lim
n→∞

logMn(t)
)

= exp

(
σ2t2

2

)
.

To show (5), write

lim
n→∞

n log
(

1 +
an
n

)
= lim

n→∞

log (1 + an/n)

1/n

= lim
n→∞

an
log (1 + an/n)

an/n
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= lim
n→∞

an lim
δ→0

log (1 + δ)

δ
(by change of variable δ = an/n)

=
σ2t2

2
lim
δ→0

log (1 + δ)

δ
.

Lastly, by l’Hôpital’s rule,

lim
δ→0

log (1 + δ)

δ
= lim

δ→0

1/(1 + δ)

1
= 1.
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