Topics in Econometrics Regression Discontinuity Designs

Instructor: Ma, Jun

Renmin University of China

May 26, 2022

Regression discontinuity (sharp) design

- ▶ Very long history: Thistlethwaite and Campbell (1960).
- ► Triplet: score, threshold, treatment.
- ▶ Suppose D=1 if $X \ge c$ and D=0 if X < c, i.e., treatment if triggered by some score X.
- ► X could have causal effect on the outcome.
- X satisfies the unconfounded assumption but fails the overlap assumption.

Identification

- ▶ Hahn, Todd and Van Der Klaauw (2008) showed that the "conditional average treatment effect" (CATE) $\mathrm{E}\left[Y\left(1\right)-Y\left(0\right)\mid X=c\right]$ is identified under very weak assumptions.
- Note that $E[Y \mid X = x] = E[Y(0) \mid X = x]$ for x < c and $E[Y \mid X = x] = E[Y(1) \mid X = x]$ for $x \ge c$.
- Assume that $\mathrm{E}\left[Y\left(0\right)\mid X=x\right]$ and $\mathrm{E}\left[Y\left(1\right)\mid X=x\right]$ are continuous in x. Then,

$$\lim_{\epsilon > 0, \epsilon \downarrow 0} \mathbb{E}\left[Y\left(0\right) \mid X = c - \epsilon\right] = \mathbb{E}\left[Y\left(0\right) \mid X = c\right]$$
$$\lim_{\epsilon > 0, \epsilon \downarrow 0} \mathbb{E}\left[Y\left(1\right) \mid X = c + \epsilon\right] = \mathbb{E}\left[Y\left(1\right) \mid X = c\right]$$

and

$$\begin{split} &\lim_{\epsilon > 0, \epsilon \downarrow 0} \mathbf{E}\left[Y \mid X = c + \epsilon\right] - \lim_{\epsilon > 0, \epsilon \downarrow 0} \mathbf{E}\left[Y \mid X = c - \epsilon\right] \\ &= \lim_{\epsilon > 0, \epsilon \downarrow 0} \mathbf{E}\left[Y\left(1\right) \mid X = c + \epsilon\right] - \lim_{\epsilon > 0, \epsilon \downarrow 0} \mathbf{E}\left[Y\left(0\right) \mid X = c - \epsilon\right] \\ &= \mathbf{E}\left[Y\left(1\right) - Y\left(0\right) \mid X = c\right]. \end{split}$$

Nonparametric regression

- ▶ Let $(Y,X) \in \mathbb{R}^2$ be a random vector. We are interested in estimating $g(x) = \mathrm{E} [Y \mid X = x]$.
- ▶ Let (Y_i, X_i) , i = 1, ..., n, be an i.i.d. sample.
- ightharpoonup If X is finitely discrete, then

$$\widehat{g}(x) = \frac{\sum_{i=1}^{n} 1(X_i = x) Y_i}{\sum_{i=1}^{n} 1(X_i = x)}$$

is a nonparametric estimator. $\widehat{g}\left(x\right)$ is consistent and asymptotically normal.

- As k-NN, for estimation of g(x) with continuous X, we take average of observations that are "close" to x.
- ▶ k-NN: random distance, fixed number of observations.
- Alternative approach: fixed distance, random number of observations.

- ▶ Fix h and consider all observations with $|X_i x| \le h$.
- ightharpoonup For h > 0,

$$\widehat{g}(x) = \frac{\sum_{i=1}^{n} 1(|X_i - x| \le h) Y_i}{\sum_{i=1}^{n} 1(|X_i - x| \le h)}.$$

- $ightharpoonup \widehat{g}\left(x
 ight)$ is discontinuous. We use continuous weights instead to get a continuous estimator.
- Let $K:\mathbb{R}\to\mathbb{R}$ be a symmetric probability density function. Then,

$$\widehat{g}(x) = \frac{\sum_{i=1}^{n} K\left(\frac{X_{i}-x}{h}\right) Y_{i}}{\sum_{i=1}^{n} K\left(\frac{X_{i}-x}{h}\right)}$$

is the Nadaraya-Watson estimator.

- ▶ For consistency, we need $nh \uparrow \infty$ and $h \downarrow 0$ as $n \uparrow \infty$.
- ► Large h: smaller variance, more bias.

Local linear estimator

► The Nadaraya-Watson estimator is also called a local constant estimator:

$$\widehat{g}(x) = \underset{c}{\operatorname{argmin}} \sum_{i=1}^{n} K\left(\frac{X_i - x}{h}\right) (Y_i - c)^2.$$

- ▶ Without the weights $K((X_i x)/h)$, the estimator reduces to the sample mean.
- ▶ Instead of approximating g locally as a constant, the local linear estimation approximates g locally by a linear function.
- ▶ The local linear estimator of g(x):

$$\left(\widehat{g}\left(x\right),\widehat{g}'\left(x\right)\right) = \underset{g_{0},g_{1}}{\operatorname{argmin}} \sum_{i=1}^{n} K\left(\frac{X_{i}-x}{h}\right) \left(Y_{i}-g_{0}-g_{1}\left(X_{i}-x\right)\right)^{2}.$$

► The local linear estimator has better properties at the boundary than the Nadaraya-Watson estimator.

Local linear estimation for RD

▶ Fit linear regressions (Imbens and Lemieux, 2008) to the observations within an h ($h \downarrow 0$ as $n \uparrow \infty$) distance:

$$\min_{\alpha_{-},\beta_{-}} \sum_{i=1}^{n} K\left(\frac{X_{i}-c}{h}\right) 1 \left(X_{i} < c\right) \left(Y_{i}-\alpha_{-}-\beta_{-}\cdot(X_{i}-c)\right)^{2}$$

$$\min_{\alpha_{+},\beta_{+}} \sum_{i=1}^{n} K\left(\frac{X_{i}-c}{h}\right) 1 \left(X_{i} > c\right) \left(Y_{i}-\alpha_{+}-\beta_{+}\cdot(X_{i}-c)\right)^{2}.$$

- ▶ The local linear estimator of CATE is: $\hat{\tau} = \hat{\alpha}_+ \hat{\alpha}_-$.
- ► Alternatively, we can solve

$$\min_{\alpha,\beta,\tau,\gamma} \sum_{i=1}^{n} K\left(\frac{X_i - c}{h}\right) \times (Y_i - \alpha - \beta \cdot (X_i - c) - \tau \cdot D_i - \gamma \cdot (X_i - c) D_i)^2$$

which will numerically yield the same estimate $\hat{\tau}$.

Bandwidth selection

- ▶ Bias and variance tradeoff in choice of *h*.
- ► Choice of *h* for estimation or inference (confidence interval)?
- ► Estimation: MSE-optimal choice, see Imbens and Kalyanaraman (2012). Their method restricts bandwidths on both sides to be equal. Arai and Ichimura (2018) investigates choice of bandwidths that could be different.
- ► Choices of *h* that are optimal for estimation (minimize MSE) lead to *h* that is too-large for bias of estimator to be negligible, resulting in confidence intervals that are not properly centered and with empirical coverage substantially below nominal coverage.
- ▶ Inference: Calonico, Cattaneo and Titiunik (2014), estimating the bias and using bias-corrected estimator, with new standard errors accounting for such estimation error. Calonico, Cattaneo and Farrell (2018), minimizing the coverage error.

Covariates

- ▶ Often there are additional covariates (Z) in addition to the score. These covariates can be used to improve estimation precision.
- ► The argument is analogous to that supports inclusion of covariates when analyzing experimental data.
- ► We solve

$$\min_{\alpha,\beta,\tau,\gamma,\delta} \sum_{i=1}^{n} K\left(\frac{X_i - c}{h}\right) \times \left(Y_i - \alpha - \beta \cdot (X_i - c) - \tau \cdot D_i - \gamma \cdot (X_i - c) D_i - Z_i^{\top} \delta\right)^2$$

► See Calonico, Cattaneo, Farrell and Titiunik (2018) for asymptotic properties of this method, including biases, asymptotic distributions and bandwidth selection...

Extensions

- Classical identification and estimation results are valid under the implicit assumption that the score is continuous.
- ▶ One may have a discrete score in applications:
 - ► A continuous latent score, of which only a discretized or rounded version is recorded in the data, e.g., age, weight... see Dong (2015).
 - ► Inherently only take on a limited number of values, e.g., the enrollment number of a school, the number of employees of a company ... see Kolesar and Rothe (2017).
- ▶ Discrete categorical outcome variable (e.g., Lee, 2008), see Xu (2017) for local maximum likelihood method.
- ▶ Discrete duration outcomes (e.g., the duration until recovery of a disease), see Xu (2018).

Falsification tests

- ▶ The RD model imposes weak identification assumptions, i.e., continuity of $\mathrm{E}\left[Y\left(0\right)\mid X=x\right]$ and $\mathrm{E}\left[Y\left(1\right)\mid X=x\right]$ as functions of x.
- ► This assumption is untestable. But in applications, we often reports results from two tests:
 - ightharpoonup continuity of the density f_X of the score (manipulation test, McCrary, 2008);
 - continuity in the covariates.
- ▶ Suppose that X is a test score and the treatment is a scholarship. If the students know the policy and have the option of retaking the test, one may do so if his/her test score is just below the threshold. This leads to a discontinuity of the density at the threshold and possible discontinuity of $E\left[Y\left(d\right)\mid X=x\right]$ $\left(d\in\{0,1\}\right)$, since

$$\mathrm{E}\left[Y\left(d\right)\mid X=x\right]=\int yf_{Y\left(d\right)\mid X}\left(y\mid x\right)\mathrm{d}y=\frac{\int yf_{Y\left(d\right),X}\left(y,x\right)\mathrm{d}y}{f_{X}\left(x\right)}.$$

- ► The potential outcomes may also be affected by the covariates Z.
- ▶ If the distribution of Z is discontinuous at the threshold, $\mathrm{E}\left[Y\left(d\right)\mid X=x\right]$ $\left(d\in\{0,1\}\right)$ may also be discontinuous at the threshold.
- ▶ In applications, a common practice is to test

$$\lim_{x\downarrow c} \mathbf{E}\left[Z\mid X=x\right] = \lim_{x\uparrow c} \mathbf{E}\left[Z\mid X=x\right].$$

lackbox For such a test, we can simply do the standard procedure with Y replaced by Z.

Fuzzy RD

- ► The probability of receiving the treatment changes discontinuously at the threshold, but not necessarily from 0 to 1. This is known as limited compliance in the literature.
- ▶ Suppose that incentive is assigned if $X \ge c$. Let I = 1 $(X \ge c)$ denote whether one receives the incentive.
- Potential treatments with or without incentives: (D_+, D_-) . The observed treatment status $D = D_+I + D_- (1 I)$.
- ▶ In sharp RD, $(D_+, D_-) = (1, 0)$.
- ▶ Under continuity of conditional expectations and "no defiers" assumption $\Pr[D_- \leq D_+ \mid X = c] = 1$, an even narrower causal parameter is identified in the fuzzy RD model:

$$E[Y(1) - Y(0) | D_{+} > D_{-}, X = c]$$

$$= \frac{\lim_{x \downarrow c} E[Y | X = x] - \lim_{x \uparrow c} E[Y | X = x]}{\lim_{x \downarrow c} E[D | X = x] - \lim_{x \uparrow c} E[D | X = x]}.$$

► The complier group is defined to be individuals with $D_+ > D_-$.