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Regression discontinuity (sharp) design

I Very long history: Thistlethwaite and Campbell (1960).
I Triplet: score, threshold, treatment.
I Suppose D = 1 if X ≥ c and D = 0 if X < c, i.e., treatment

if triggered by some score X.
I X could have causal effect on the outcome.
I X satisfies the unconfounded assumption but fails the overlap

assumption.
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Identification
I Hahn, Todd and Van Der Klaauw (2008) showed that the

“conditional average treatment effect” (CATE)
E [Y (1)− Y (0) | X = c] is identified under very weak
assumptions.

I Note that E [Y | X = x] = E [Y (0) | X = x] for x < c and
E [Y | X = x] = E [Y (1) | X = x] for x ≥ c.

I Assume that E [Y (0) | X = x] and E [Y (1) | X = x] are
continuous in x. Then,

lim
ε>0,ε↓0

E [Y (0) | X = c− ε] = E [Y (0) | X = c]

lim
ε>0,ε↓0

E [Y (1) | X = c+ ε] = E [Y (1) | X = c]

and

lim
ε>0,ε↓0

E [Y | X = c+ ε]− lim
ε>0,ε↓0

E [Y | X = c− ε]

= lim
ε>0,ε↓0

E [Y (1) | X = c+ ε]− lim
ε>0,ε↓0

E [Y (0) | X = c− ε]

=E [Y (1)− Y (0) | X = c] .
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Nonparametric regression

I Let (Y,X) ∈ R2 be a random vector. We are interested in
estimating g (x) = E [Y | X = x].

I Let (Yi, Xi), i = 1, ..., n, be an i.i.d. sample.
I If X is finitely discrete, then

ĝ (x) =

∑n
i=1 1 (Xi = x)Yi∑n
i=1 1 (Xi = x)

is a nonparametric estimator. ĝ (x) is consistent and
asymptotically normal.

I As k-NN, for estimation of g (x) with continuous X, we take
average of observations that are “close” to x.

I k-NN: random distance, fixed number of observations.
I Alternative approach: fixed distance, random number of

observations.
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I Fix h and consider all observations with |Xi − x| ≤ h.
I For h > 0,

ĝ (x) =

∑n
i=1 1 (|Xi − x| ≤ h)Yi∑n
i=1 1 (|Xi − x| ≤ h)

.

I ĝ (x) is discontinuous. We use continuous weights instead to
get a continuous estimator.

I Let K : R→ R be a symmetric probability density function.
Then,

ĝ (x) =

∑n
i=1K

(
Xi−x
h

)
Yi∑n

i=1K
(
Xi−x
h

)
is the Nadaraya-Watson estimator.

I For consistency, we need nh ↑ ∞ and h ↓ 0 as n ↑ ∞.
I Large h: smaller variance, more bias.
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Local linear estimator
I The Nadaraya-Watson estimator is also called a local constant

estimator:

ĝ (x) = argmin
c

n∑
i=1

K

(
Xi − x
h

)
(Yi − c)2 .

I Without the weights K ((Xi − x) /h), the estimator reduces
to the sample mean.

I Instead of approximating g locally as a constant, the local
linear estimation approximates g locally by a linear function.

I The local linear estimator of g (x):

(
ĝ (x) , ĝ′ (x)

)
= argmin

g0,g1

n∑
i=1

K

(
Xi − x
h

)
(Yi − g0 − g1 (Xi − x))2 .

I The local linear estimator has better properties at the
boundary than the Nadaraya-Watson estimator.
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Local linear estimation for RD
I Fit linear regressions (Imbens and Lemieux, 2008) to the

observations within an h (h ↓ 0 as n ↑ ∞) distance:

min
α−,β−

n∑
i=1

K

(
Xi − c
h

)
1 (Xi < c) (Yi − α− − β− · (Xi − c))2

min
α+,β+

n∑
i=1

K

(
Xi − c
h

)
1 (Xi > c) (Yi − α+ − β+ · (Xi − c))2 .

I The local linear estimator of CATE is: τ̂ = α̂+ − α̂−.
I Alternatively, we can solve

min
α,β,τ,γ

n∑
i=1

K

(
Xi − c
h

)
× (Yi − α− β · (Xi − c)− τ ·Di − γ · (Xi − c)Di)

2

which will numerically yield the same estimate τ̂ .
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Bandwidth selection

I Bias and variance tradeoff in choice of h.
I Choice of h for estimation or inference (confidence interval)?
I Estimation: MSE-optimal choice, see Imbens and

Kalyanaraman (2012). Their method restricts bandwidths on
both sides to be equal. Arai and Ichimura (2018) investigates
choice of bandwidths that could be different.

I Choices of h that are optimal for estimation (minimize MSE)
lead to h that is too-large for bias of estimator to be
negligible, resulting in confidence intervals that are not
properly centered and with empirical coverage substantially
below nominal coverage.

I Inference: Calonico, Cattaneo and Titiunik (2014), estimating
the bias and using bias-corrected estimator, with new standard
errors accounting for such estimation error. Calonico,
Cattaneo and Farrell (2018), minimizing the coverage error.
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Covariates

I Often there are additional covariates (Z) in addition to the
score. These covariates can be used to improve estimation
precision.

I The argument is analogous to that supports inclusion of
covariates when analyzing experimental data.

I We solve

min
α,β,τ,γ,δ

n∑
i=1

K

(
Xi − c
h

)
×
(
Yi − α− β · (Xi − c)− τ ·Di − γ · (Xi − c)Di − Z>i δ

)2
.

I See Calonico, Cattaneo, Farrell and Titiunik (2018) for
asymptotic properties of this method, including biases,
asymptotic distributions and bandwidth selection...
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Extensions

I Classical identification and estimation results are valid under
the implicit assumption that the score is continuous.

I One may have a discrete score in applications:
I A continuous latent score, of which only a discretized or

rounded version is recorded in the data, e.g., age, weight... see
Dong (2015).

I Inherently only take on a limited number of values, e.g., the
enrollment number of a school, the number of employees of a
company ... see Kolesar and Rothe (2017).

I Discrete categorical outcome variable (e.g., Lee, 2008), see Xu
(2017) for local maximum likelihood method.

I Discrete duration outcomes (e.g., the duration until recovery
of a disease), see Xu (2018).
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Falsification tests
I The RD model imposes weak identification assumptions, i.e.,

continuity of E [Y (0) | X = x] and E [Y (1) | X = x] as
functions of x.

I This assumption is untestable. But in applications, we often
reports results from two tests:
I continuity of the density fX of the score (manipulation test,

McCrary, 2008);
I continuity in the covariates.

I Suppose that X is a test score and the treatment is a
scholarship. If the students know the policy and have the
option of retaking the test, one may do so if his/her test score
is just below the threshold. This leads to a discontinuity of the
density at the threshold and possible discontinuity of
E [Y (d) | X = x] (d ∈ {0, 1}), since

E [Y (d) | X = x] =

∫
yfY (d)|X (y | x) dy =

∫
yfY (d),X (y, x) dy

fX (x)
.
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I The potential outcomes may also be affected by the covariates
Z.

I If the distribution of Z is discontinuous at the threshold,
E [Y (d) | X = x] (d ∈ {0, 1}) may also be discontinuous at
the threshold.

I In applications, a common practice is to test

limx↓cE [Z | X = x] = limx↑cE [Z | X = x] .

I For such a test, we can simply do the standard procedure with
Y replaced by Z.
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Fuzzy RD
I The probability of receiving the treatment changes

discontinuously at the threshold, but not necessarily from 0 to
1. This is known as limited compliance in the literature.

I Suppose that incentive is assigned if X ≥ c. Let
I = 1 (X ≥ c) denote whether one receives the incentive.

I Potential treatments with or without incentives: (D+, D−).
The observed treatment status D = D+I +D− (1− I).

I In sharp RD, (D+, D−) = (1, 0).
I Under continuity of conditional expectations and “no defiers”

assumption Pr [D− ≤ D+ | X = c] = 1, an even narrower
causal parameter is identified in the fuzzy RD model:

E [Y (1)− Y (0) | D+ > D−, X = c]

=
limx↓cE [Y | X = x]− limx↑cE [Y | X = x]

limx↓cE [D | X = x]− limx↑cE [D | X = x]
.

I The complier group is defined to be individuals with
D+ > D−.
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