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I Abadie, A., Diamond, A., Hainmueller, J., 2010. Synthetic
control methods for comparative case studies: estimating the
effect of California’s tobacco control program. Journal of the
American Statistical Association (ADH10)

I Abadie, A., Diamond, A., Hainmueller, J., 2015. Comparative
politics and the synthetic control method. American Journal of
Political Science (ADH15)

I Matlab code for SCM:
https://web.stanford.edu/~jhain/synthpage.html
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Synthetic Control Method (SCM)

I “Arguably the most important innovation in the policy evaluation
literature in the last 15 years” by Athey and Imbens (2017,
Journal of Economic Literature)

I The SCM model framework and methodology were introduced in
ADH10 and ADH15. Both received more than 4000 citations.

I A vast recent literature on SCM (methodology and empirical
studies).

I Two views: 1. an extension of difference-in-differences for
aggregate-level data; 2. a data-driven method for quantitative
comparative case studies.
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Difference-in-Differences (D-i-D) Model

I To analyze the effect of a policy intervention on the outcome, the
D-i-D approach uses the data of the treated and controlled
groups, before and after the policy intervention.

I 𝑌
(𝑑)
𝑡 : potential outcomes for an arbitrary individual in the

population.
I 𝑡 = 0: pre-intervention period; 𝑡 = 1: post-intervention period;

𝑑 = 0: no intervention; 𝑑 = 1: intervention.
I In the SCM literature, treatment/intervention/event/policy are

often used interchangeably.
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I 𝐷𝑡 : a dummy variable, e.g., whether or not influenced by the
policy intervention. In the pre-intervention period, 𝐷0 = 0. In the
post-intervention period, some get influenced by the intervention.

I Observe: 𝑌𝑡 = 𝐷𝑡𝑌
(1)
𝑡 + (1 − 𝐷𝑡 )𝑌 (0)

𝑡 .
I Common trend assumption (CTA):

E
[
𝑌
(0)
1 − 𝑌

(0)
0 | 𝐷1 = 1

]
= E

[
𝑌
(0)
1 − 𝑌

(0)
0 | 𝐷1 = 0

]
. In the

absence of the treatment, the average outcome for the treated and
the average outcome for the non-treated would have experienced
the same variation over time.

I E
[
𝑌
(0)
1 | 𝐷1 = 1

]
is a counterfactual quantity.
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I Under the CTA,

ATT = E
[
𝑌
(1)
1 − 𝑌

(0)
1 | 𝐷1 = 1

]
= E

[
𝑌
(1)
1 | 𝐷1 = 1

]
−

{
E

[
𝑌
(0)
1 − 𝑌

(0)
0 | 𝐷1 = 0

]
+ E

[
𝑌
(0)
0 | 𝐷1 = 1

]}
= E

[
𝑌
(1)
1 − 𝑌

(0)
0 | 𝐷1 = 1

]
− E

[
𝑌
(0)
1 − 𝑌

(0)
0 | 𝐷1 = 0

]
= E [𝑌1 − 𝑌0 | 𝐷1 = 1] − E [𝑌1 − 𝑌0 | 𝐷1 = 0] .

The average treatment effect (at 𝑡 = 1) on the treated is identified.
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A Linear Structural Panel Model

I The D-i-D model is often related to the following (structural)
linear panel data model. The outcome for the 𝑖-th individual is
generated by

𝑌𝑖,𝑡 = 𝜏𝑖,𝑡𝐷𝑖,𝑡 + 𝜇𝑖 + 𝛿𝑡 + 𝜖𝑖,𝑡 ,

where 𝐷𝑖,0 = 0, ∀𝑖, 𝛿𝑡 is a non-random time fixed effect that is
common across individuals, 𝜇𝑖 is a time invariant individual
fixed effect (𝜇𝑖 and 𝐷𝑖,1 can be correlated) and 𝜖𝑖,𝑡 is a random
shock: E

[
𝜖𝑖,𝑡 | 𝐷𝑖,1

]
= E

[
𝜖𝑖,𝑡

]
= 0.

I The potential outcomes in are 𝑌 (0)
𝑖,𝑡

= 𝜇𝑖 + 𝛿𝑡 + 𝜖𝑖,𝑡 and
𝑌
(1)
𝑖,𝑡

= 𝜏𝑖,𝑡 + 𝜇𝑖 + 𝛿𝑡 + 𝜖𝑖,𝑡 . 𝜏𝑖,𝑡 = 𝑌
(1)
𝑖,𝑡

− 𝑌
(0)
𝑖,𝑡

is the individual
treatment effect.
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I The CTA is satisfied:

E
[
𝑌
(0)
𝑖,1 − 𝑌

(0)
𝑖,0 | 𝐷𝑖,1 = 0

]
= E

[
𝑌
(0)
𝑖,1 − 𝑌

(0)
𝑖,0 | 𝐷𝑖,1 = 1

]
= (𝛿1 − 𝛿0) .

I The ATT at 𝑡 = 1 (E
[
𝜏𝑖,1 | 𝐷𝑖,1 = 1

]
):

E
[
𝑌𝑖,1 | 𝐷𝑖,1 = 1

]
= E

[
𝜏𝑖,1 | 𝐷𝑖,1 = 1

]
+ E

[
𝜇𝑖 | 𝐷𝑖,1 = 1

]
+ 𝛿1

E
[
𝑌𝑖,0 | 𝐷𝑖,1 = 1

]
= E

[
𝜇𝑖 | 𝐷𝑖,1 = 1

]
+ 𝛿0

E
[
𝑌𝑖,1 | 𝐷𝑖,1 = 0

]
= E

[
𝜇𝑖 | 𝐷𝑖,1 = 0

]
+ 𝛿1

E
[
𝑌𝑖,0 | 𝐷𝑖,1 = 0

]
= E

[
𝜇𝑖 | 𝐷𝑖,1 = 0

]
+ 𝛿0

and

E
[
𝜏𝑖,1 | 𝐷𝑖,1 = 1

]
= E

[
𝑌𝑖,1 − 𝑌𝑖,0 | 𝐷𝑖,1 = 1

]
−E

[
𝑌𝑖,1 − 𝑌𝑖,0 | 𝐷𝑖,1 = 0

]
.
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A D-i-D Example: Card and Kruger (1994)

I Card and Kruger (1994) estimates the effect of a minimum wage
increase in New Jersey on employment using a D-i-D model.

I In April 1992 NJ increased the state minimum wage from $4.25
to $5.05. The neighboring state, Pennsylvania, had minimum
wage stayed at $4.25. Survey data on more than 400 fast food
stores both in NJ and PA, in February and November (before and
after intervention).

I The outcome: full-time-equivalent employment.
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SCM as an Extension of D-i-D
I Card and Kruger (1994) uses individual-level survey data (for

small businesses). What if we have only aggregate data (i.e.,
average number of employees in all small businesses in February
and November)?

I Policy interventions are often implemented at an aggregate level.
Aggregate administrative data are often available and easily
accessible than individual-level survey data.

I In the Card and Kruger (1994) example, standard errors reflect
and estimate the uncertainty from the sampling error. For this
example, it seems that the standard error should be taken as zero
if aggregate data are available (no sampling error), which means
we have zero uncertainty?

I There is still uncertainty about the treatment effect, even when
we use aggregate data. We do not have perfect information about
potential outcomes and are facing uncertainty about the ability of
the control group to reproduce the counterfactual for the treated
units.
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Quantitative Comparative Case Studies
I Quantitative comparative case studies use aggregate data from

one treated unit and a small set of control units (often aggregate
units, i.e., city/state/country), where a policy intervention affects
one unit, but not others.

I Compare the evolution of an outcome for the treated unit to the
evolution of the same outcome for some control units that are
deemed as being “similar” to the treated unit.

I E.g., in ADH15, the treated unit is the former West Germany.
You may think of USA or Austria as being similar to West
Germany. But selection of a control unit/group often incurs
subjectivity.

I SCM: a data-driven approach to “synthesize” a suitable control
unit.

I A “synthetic” convex combination (weighted average) of control
units may do a better job of reproducing the characteristics and
the evolution of the outcome of the treated unit than any one unit
alone.
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SCM Model Framework

I For units 𝑖 = 1, ..., 𝐽 + 1, Unit 1 is the treated unit. Units 2 to
𝐽 + 1 are the “donor pool” (potential comparison/control units).

I Time periods: 𝑡 = 1, ..., 𝑇 ; pre-treatment periods: 𝑡 = 1, ..., 𝑇0;
post-treatment periods: 𝑡 = 𝑇0 + 1, ..., 𝑇 .

I Unit 1 is treated or affected by the policy intervention starting in
period 𝑇0 + 1.

I Which units should be included in the donor pool?
I Units whose outcome is determined in the same way as the treated

unit.
I Control units should not become treated in any of the

post-treatment period.
I No spillover effect from treatment in any of the post-treatment

period.
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I In the potential outcome framework, we never observe both 𝑌
(0)
𝑖,𝑡

and 𝑌
(1)
𝑖,𝑡

.

I Let 𝑌𝑖,𝑡 = 𝐷𝑖,𝑡𝑌
(1)
𝑖,𝑡

+
(
1 − 𝐷𝑖,𝑡

)
𝑌
(0)
𝑖,𝑡

be the observed outcome.
I We observe:



𝑌1,𝑇 𝑌2,𝑇 · · · 𝑌𝐽+1,𝑇
...

...
. . .

...

𝑌1,𝑇0+1 𝑌2,𝑇0+1 · · · 𝑌𝐽+1,𝑇0+1
𝑌1,𝑇0 𝑌2,𝑇0 · · · 𝑌𝐽+1,𝑇0
...

...
. . .

...

𝑌1,1 𝑌2,1 · · · 𝑌𝐽+1,1


=



𝑌
(1)
1,𝑇 𝑌

(0)
2,𝑇 · · · 𝑌

(0)
𝐽+1,𝑇

...
...

. . .
...

𝑌
(1)
1,𝑇0+1 𝑌

(0)
2,𝑇0+1 · · · 𝑌

(0)
𝐽+1,𝑇0+1

𝑌
(0)
1,𝑇0

𝑌
(0)
2,𝑇0

· · · 𝑌
(0)
𝐽+1,𝑇0

...
...

. . .
...

𝑌
(0)
1,1 𝑌

(0)
2,1 · · · 𝑌

(0)
𝐽+1,1


.
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I The quantity of interest is the treatment effect on Unit 1 from
period 𝑇0 + 1 to 𝑇 :

𝜏1,𝑡 = 𝑌
(1)
1,𝑡 − 𝑌

(0)
1,𝑡 = 𝑌1,𝑡 − 𝑌

(0)
1,𝑡

for 𝑡 = 𝑇0 + 1, ..., 𝑇 , i.e., the treatment effect on the treated unit in
the post-treatment periods.

I The problem is that we do not observe 𝑌 (0)
1,𝑡 , for 𝑡 = 𝑇0 + 1, ..., 𝑇 ,

and we want to estimate it using observed outcomes in the donor
pool.

I Actually, we can do a D-i-D:

�̂�1,𝑡 =
(
𝑌1,𝑡 − 𝑌1,𝑇0

)
−

(
1
𝐽

𝐽+1∑︁
𝑖=2

𝑌𝑖,𝑡 −
1
𝐽

𝐽+1∑︁
𝑖=2

𝑌𝑖,𝑇0

)
= 𝑌1,𝑡 −

{
𝑌1,𝑇0 +

1
𝐽

𝐽+1∑︁
𝑖=2

(
𝑌𝑖,𝑡 − 𝑌𝑖,𝑇0

)}
.

Note that it gives equal weights (1/𝐽) to any unit in the donor
pool.
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I In contrast, SCM gives weights to a sub-group in the donor pool
in a data-driven manner.

I An SC is a vector of weights 𝒘 = (𝑤2, ..., 𝑤𝐽 ) associated with
each of the available 𝐽 donor units, which satisfy:

∑𝐽
𝑖=2 𝑤𝑖 = 1

and 𝑤𝑖 ≥ 0 ∀𝑖.
I The goal is to select 𝒘 such that the characteristics of the treated

unit are best resembled by the characteristics of the SC.
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I 𝑿𝑖 =
(
𝑋𝑖,1, ..., 𝑋𝑖,𝑘

)>: the 𝑘-dimensional pre-intervention
characteristics for the treated unit (𝑖 = 1) or the control unit
(𝑖 = 2, ..., 𝐽 + 1).

I The pre-intervention characteristics contain pre-intervention
outcomes

(
𝑌𝑖,1, ..., 𝑌𝑖,𝑇0

)> and possibly other predictors 𝒁𝑖 of the
post-intervention outcome:

𝑿𝑖 =

©­­­­­­«

𝑌𝑖,1
𝑌𝑖,2
...

𝑌𝑖,𝑇0

𝒁𝑖

ª®®®®®®¬
.

I X0 = [𝑿2, ..., 𝑿𝐽+1]: the 𝑘 × 𝐽 matrix containing the
characteristics of the control units.
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I We want to choose 𝒘 such that treatment/control units are similar
in terms of:
I Pre-treatment outcomes: 𝑌1,𝑡 ≈

∑𝐽+1
𝑗=2 𝑤 𝑗𝑌 𝑗 ,𝑡 .

I Covariates that are predictive of post-intervention outcomes:
𝑍1 ≈ ∑𝐽+1

𝑗=2 𝑤 𝑗𝑍 𝑗 .
I For some 𝑘 × 𝑘 diagonal matrix V = diag {𝑣1, ..., 𝑣𝑘 } (𝑣 𝑗 ≥ 0

∀ 𝑗), denote ‖𝒙‖V =
√
𝒙>V𝒙.

I Denote Δ𝐽 =
{
(𝑤2, ..., 𝑤𝐽+1) ∈ R𝐽 :

∑𝐽
𝑖=2 𝑤𝑖 = 1;𝑤𝑖 ≥ 0∀𝑖

}
.

I Given 𝑣1, ..., 𝑣𝑘 , ADH10 proposes to choose the SC
𝒘∗ =

(
𝑤∗

2, ..., 𝑤
∗
𝐽+1

)> to minimize ‖𝑿1 − X0𝒘‖2
V subject to the

constraint 𝒘 ∈ Δ𝐽 :

𝒘∗ = argmin
𝒘∈Δ𝐽

‖𝑿1 − X0𝒘‖2
V

= argmin
(𝑤2,...,𝑤𝐽+1)>∈Δ𝐽

𝑘∑︁
𝑚=1

𝑣𝑚
(
𝑋1,𝑚 − 𝑤2𝑋2,𝑚 − · · · − 𝑤𝐽+1𝑋𝐽+1,𝑚

)2
.

I 𝑣𝑚 is a weight that reflects the importance/predictive power of
the 𝑚-th variable that we use to measure the distance between
treated and control units.
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I The SC estimator:

�̂�1,𝑡 = 𝑌1,𝑡 −
𝐽+1∑︁
𝑖=2

𝑤∗
𝑖𝑌𝑖,𝑡

for 𝑡 = 𝑇0 + 1, ..., 𝑇 .
I Note that the constraints

(
𝑤∗

2, ..., 𝑤
∗
𝐽+1

)> ∈ Δ𝐽 prevent
interpolation outside of the support of the data, i.e., the
counterfactual

∑𝐽+1
𝑖=2 𝑤∗

𝑖
𝑌𝑖,𝑡 cannot take a value larger than the

maximum or smaller than the minimum of
{
𝑌2,𝑡 , ..., 𝑌𝐽+1,𝑡

}
,

observed for the control units.
I Note that the SC depends on the weights put on pre-intervention

characteristics V: 𝒘∗ = 𝒘∗ (V).
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How to Choose V?
I ADH10 proposes to set (𝑣1, ..., 𝑣𝑘) to minimize the mean square

prediction error (MSPE) over the pre-treatment periods:

MSPE (V) =
𝑇0∑︁
𝑡=1

{
𝑌1,𝑡 −

𝐽+1∑︁
𝑖=2

𝑤∗
𝑖 (V)𝑌𝑖,𝑡

}2

.

Over the pre-treatment periods, the computed treatment effect
must be zero, since the treatment has not been implemented yet.

I ADH15 proposes cross-validation.
I Split the pre-intervention 𝑇0 periods into initial training periods

𝑡 = 1, ..., 𝑡0 and subsequent validation periods 𝑡 = 𝑡0 + 1, ..., 𝑇0.
I Given any V, for each validation periods, 𝑡 = 𝑡0 + 1, ..., 𝑇0,

compute 𝑌1,𝑡 −
∑𝐽+1

𝑖=2 𝑤∗
𝑖
(V)𝑌𝑖,𝑡 , where

(
𝑤∗

2 (V) , ..., 𝑤∗
𝐽+1 (V)

)>
solves min

𝒘∈Δ𝐽

‖𝑿1 − X0𝒘‖2
V with 𝑿 ′𝑠 measured in the training

periods 𝑡 = 1, ..., 𝑡0.
I Choose V to minimize

∑𝑇0
𝑡=𝑡0+1

{
𝑌1,𝑡 −

∑𝐽+1
𝑖=2 𝑤∗

𝑖
(V)𝑌𝑖,𝑡

}2. Use
the resulting V and the predictors for the last 𝑡0 periods before the
intervention to calculate 𝒘∗ (V).
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ADH10: Background and Results

I Proposition 99: the first modern-time large-scale tobacco control
program in USA.

I In 1988, California passed comprehensive tobacco control
legislation. This was a package of measures that included a tax
increase, more spending to anti-smoking health initiatives and
anti-smoking media campaigns.

I ADH10 investigates the effect of this legislation on cigarette
consumption in California using SCM.

I Outcome variable: Per capita cigarette sales (packs).
I Time: 1970 to 2000, 𝑇0 = 1988.
I All states which passed similar legislation in 1989-2000 are

excluded from the donor pool.
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I Predictors of smoking prevalence are: average retail price of
cigarettes, per capita state personal income (logged), the
percentage of the population age 15–24, and per capita beer
consumption. These variables are averaged over the 1980–1988
period and augmented by adding three years of lagged smoking
consumption (1975, 1980, and 1988).

I To evaluate the effect of Proposition 99 on cigarette smoking in
California, the central question is how cigarette consumption
would have evolved in California after 1988 in the absence of
Proposition 99.
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I The rest of USA may not provide a suitable comparison group for
California to study the effects of Proposition 99 on per capita
smoking. Even before the passage of Proposition 99 the time
series of cigarette consumption in California and in the rest of
USA differed notably.
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I The average of states that did not implement a large-scale
tobacco-control program in 1989–2000 does not seem to provide
a suitable control group for California.
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I Sparse weights: Colorado 0.164; Conneticut 0.069; Montana
0.199; Nevada 0.234; Utah 0.334; Rest of states 0.

I Per capita sales in the synthetic California very closely track the
trajectory of this variable in California for the entire
pre-Proposition 99 period.
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Bias Bound
I ADH10 gives a result on the bias of the SC estimator.
I ADH10 assumes a factor model:

𝑌
(0)
𝑖,𝑡

= 𝛿𝑡 + 𝒁>
𝑖 𝜽 𝑡 + 𝝀>𝑡 𝝁𝑖 + 𝜖𝑖,𝑡 ,

where 𝛿𝑡 is a time fixed effect, 𝜽 𝑡 is a vector of time varying
parameters, 𝒁𝑖 are the observed covariates, 𝝀𝑡 ∈ R𝐹 are
unobserved common factors, 𝝁𝑖 ∈ R𝐹 are unobserved factor
loadings and 𝜖𝑖,𝑡 are unobserved transitory shocks.

I 𝝀𝑡 are macroeconomic factors that affect each unit differently
through 𝝁𝑖 .

Assumption
The transitory shocks

{
𝜖𝑖,𝑡

}
𝑖=1,...,𝐽+1;𝑡=1,...,𝑇 are i.i.d. across both 𝑖

and 𝑡, with mean zero and variance 𝜎2. For some even integer 𝑚,
𝜌𝑚 = E

[��𝜖𝑖,𝑡 ��𝑚]
< ∞.
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Assumption
Match is perfect: ‖𝑿1 − X0𝒘

∗‖2
V = 0. The SC perfectly reproduces

the treated unit. In most applications, this condition holds
approximately. I.e., ‖𝑿1 − X0𝒘

∗‖2
V is small.

Assumption
Let 𝜉 (𝑀) denote the smallest eigenvalue of 𝑀−1 ∑𝑇0

𝑡=𝑇0−𝑀+1 𝝀𝑡𝝀
>
𝑡 .

𝜉 (𝑀) ≥ 𝑐 𝜉 > 0, for any positive integer 𝑀 . |𝝀𝑡 |∞ ≤ 𝜆, ∀𝑡 = 1, ..., 𝑇
(for 𝒙 = (𝑥1, ..., 𝑥𝑛)>, |𝒙 |∞ = max {|𝑥1 | , ..., |𝑥𝑛 |}).

Theorem
The bias is bounded by:

E
[
�̂�1,𝑡 − 𝜏1,𝑡

]
≤ 𝐶 (𝑚)1/𝑚

(
𝐹𝜆

2

𝑐 𝜉

)
𝐽1/𝑚max

{
𝜌

1/𝑚
𝑚

𝑇
1−1/𝑚
0

,
𝜎
√
𝑇0

}
−→
𝑇0↑∞

0,

where 𝐶 (𝑚) = E [(𝑅 − 1)𝑚] with 𝑅 ∼ Poisson (1).
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I If there are many periods before the intervention, then matching
on the pre-intervention outcomes allows us to control for
heterogeneous response to unobservables (𝝁𝑖).

I It is easy to see that if the SC perfectly reproduces 𝝁1, i.e.,
𝝁1 =

∑𝐽+1
𝑖=2 𝑤∗

𝑖
𝝁𝑖 , then the bias of the SC estimator would be zero.

I 𝑌
(0)
𝑖,𝑡

is a function of 𝒁𝑖 and 𝝁𝑖 . So matching 𝑌
(0)
𝑖,𝑡

is equivalent to
matching 𝝁𝑖 . 𝝁1 =

∑𝐽+1
𝑖=2 𝑤∗

𝑖
𝝁𝑖 holds approximately. Only units

that are alike in both 𝒁 and unobserved 𝝁 could produce similar
patterns/trends of outcome over extended periods before the
intervention.

I The bias decays to zeros as 𝑇0 ↑ ∞. So in the research design, it
would be better to have data in more pre-intervention periods.
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Inference/Placebo Test

I Inference/hypothesis testing in the SC context is a bit tricky. In
most applications, 𝐽 is relatively small. So the usual asymptotic
framework is no longer appropriate.

I ADH10 uses aggregate data from 38 states. It makes little sense
to think of the data as being a sample of individuals from a large
population. In this case, the sample is the same as the population.

I ADH10 proposes to adopt a framework where the uncertainty
does not come from sampling but comes from assignment of
treatment.

I ADH10 and ADH 15 propose to use a modification of the
classical inference method called “permutation test”.
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Permutation Test in a Simple Framework
I 𝑛 observations on the outcome: 𝑌𝑖 = 𝐷𝑖𝑌

(1)
𝑖

+ (1 − 𝐷𝑖)𝑌 (0)
𝑖

,
𝐷𝑖 ∈ {0, 1}.

I Assume that
{(
𝑌
(1)
𝑖

, 𝑌
(0)
𝑖

)}𝑛
𝑖=1

are all fixed but unobserved. The
reason that the observed outcomes are random is that 𝐷𝑖 is
random and determines which of the two potential outcomes is
observed.

I Fisher’s sharp null hypothesis: H0 : 𝑌 (1)
𝑖

= 𝑌
(0)
𝑖

, ∀𝑖.
I Denote 𝑌 (1)

=
∑𝑛

𝑖=1 𝐷𝑖𝑌𝑖/
∑𝑛

𝑖=1 𝐷𝑖 ,
𝑌
(0)

=
∑𝑛

𝑖=1 (1 − 𝐷𝑖)𝑌𝑖/
∑𝑛

𝑖=1 (1 − 𝐷𝑖) and 𝑛1 =
∑𝑛

𝑖=1 𝐷𝑖 .
Calculate 𝑇 =

���𝑌 (1) − 𝑌
(0) ���. 𝑇 is likely to be large if H0 is false.

What is the critical value?
I Suppose 𝑛 = 6. Observed assignment vector is (1, 1, 0, 0, 0, 0). If

H0 is true and the assignment vector had been (1, 0, 0, 1, 0, 0),
the observed outcomes would not change since 𝑌𝑖 = 𝑌

(1)
𝑖

= 𝑌
(0)
𝑖

.
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I The collection of possible assignment vectors:
D =

{
𝒅 = (𝑑1, ..., 𝑑𝑛) ∈ {0, 1}𝑛 :

∑𝑛
𝑖=1 𝑑𝑖 = 𝑛1

}
which contains

𝐶
𝑛1
𝑛 vectors. For each assignment vector 𝒅 ∈ D, let 𝑇 (𝒅) be the

corresponding statistic (absolute difference between treatment
and control group means).

I Fisher’s exact 𝑝-value:

𝑝 − value =
1

𝐶
𝑛1
𝑛

∑︁
𝒅∈D

1 (𝑇 (𝒅) ≥ 𝑇) .

Reject H0 if 𝑝-value is less than significance level.
I This mode of inference is known as “permutation inference”.

I Calculate the “true” test-statistic under the actual treatment
assignment.

I Calculate the permutation distribution of the test-statistic under
alternative treatment assignments.

I Assess whether the “true” test-statistic is unlikely under the
permutation distribution.
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Permutation Test for SCM

I Only one treated unit. The null hypothesis is
H0 : 𝑌 (0)

𝑖,𝑡
= 𝑌

(1)
𝑖,𝑡

, 𝑡 = 𝑇0 + 1, ..., 𝑇,∀𝑖.
I Iteratively assign treatment to each unit (treated and donor pool),

𝑖 = 1, ..., 𝐽 + 1, calculate

𝑅
post
𝑖

=

√√√
1

𝑇 − 𝑇0

𝑇∑︁
𝑡=𝑇0+1

(
𝑌𝑖,𝑡 − 𝑌𝑖,𝑡

)2

𝑅
pre
𝑖

=

√√√
1
𝑇0

𝑇0∑︁
𝑡=1

(
𝑌𝑖,𝑡 − 𝑌𝑖,𝑡

)2

where 𝑌𝑖,𝑡 is the outcome on period 𝑡 produced by a synthetic
control when unit 𝑖 is coded as treated and using all other 𝐽 units
to construct the donor pool.
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I More confident that the treatment effect is different from zero
when the estimated post-intervention treatment effects (𝑅post1 )
are larger.

I Less confident when the estimated pre-intervention treatment
effects (𝑅pre1 ) are larger (a large 𝑅

post
1 could be due to inability of

the SC to reproduce counterfactuals).
I The treatment effect is deemed to be significantly different from

zero if 𝑅post1 is extreme relative to the permutation distribution of{
𝑅
post
𝑖

}𝐽+1
𝑖=1 . The 𝑝-value is (𝐽 + 1)−1 ∑𝐽+1

𝑖=1 1
(
𝑅
post
1 ≥ 𝑅

post
𝑖

)
.

I One potential complication with this procedure is that even if an
SC is able to closely fit the trajectory of the outcome before
intervention, the same may not be true for all units in the donor
pool.
I Discard the 𝑖-th donor unit if 𝑅pre

𝑖
is substantially larger than 𝑅

pre
1 .

I Use 𝑟𝑖 = 𝑅
post
𝑖

/𝑅pre
𝑖

. The 𝑝-value is (𝐽 + 1)−1 ∑𝐽+1
𝑖=1 1 (𝑟1 ≥ 𝑟𝑖).
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ADH15 Background and Results

I What were the economic effects of reunification on the West
German economy? Many economic historians argue that
reunification had large negative economic costs, but
identification is difficult because there is no obvious country with
which we can compare the growth trajectory of West Germany.

I ADH15 estimate the effects of reunification by comparing the
actual time series for West Germany with an SC.

I Outcome: GDP per capita (inflation adjusted).
I Time: 1960 to 2003. Reunification took place in 1990.
I Predictive variables: pre-intervention GDP per-capita,

Investment rate, Trade openness, Schooling, Inflation rate,
Industry share.

I Sparse SC weights: Austria 0.42; USA 0.22; Japan 0.16;
Switzerland 0.11; Netherlands 0.09; Rest 0.
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SC vs Regression
I Y0: (𝑇 − 𝑇0) × 𝐽 matrix of post-intervention outcomes of donor

units; X0: 𝑘 × 𝐽 matrix of predictive variables of donor units;
𝑿1: 𝑘 × 1 vector predictive variables of the treated unit; X0 and
𝑿1: augmented X0 and 𝑿1 with a row of ones.

I A regression estimator of the counterfactual{
𝑌
(0)
1,𝑡 : 𝑡 = 𝑇0 + 1, ..., 𝑇

}
is �̂�

>
𝑿1, where �̂� =

(
X0X>

0

)−1
X0Y>

0 .
I The regression estimator uses a linear combination:

�̂�
>
𝑿1 = Y0𝑾

reg, where 𝑾reg = X>
0

(
X0X>

0

)−1
𝑿1.

I Regression weights 𝑾reg sum to one but may be outside [0, 1].
The estimated counterfactual can be outside of the support of the
data. SC weights are non-negative and sum to one.

I Regression guarantees perfect fit: X0𝑾
reg = 𝑿1, even if the

donor units are completely dissimilar in their characteristics to
the treated unit.

I Cross-country regressions are often criticized because they put
side-by-side countries of very different characteristics.
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I Note that SC weights are sparse and regression weights are not.
I Sparsity plays an important role for the interpretability and

evaluation of reliability of the results.
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I SC makes transparent the actual discrepancy between the treated
unit and the convex combination of donor units that provide the
counterfactual of interest. In the case when it is not possible to
approximate the characteristics of the treated unit using a
weighted average of the donor units, ADH advise against using
SC.

I SC provides a data-driven procedure to select a comparison unit.
SC makes explicit the contribution of each donor unit to the
counterfactual of interest. Transparency of the counterfactual
allows the use of the expert knowledge or information that is not
incorporated in the research design to evaluate the validity of SC.

I For instance, Austria, Netherlands and Switzerland have large
weights. If economic growth in these countries was negatively
affected by the German reunification during the 1990-2003
period (perhaps because West Germany diverted demand and
investment from these countries to East Germany), this would
imply that SC estimates a lower bound on the magnitude
(absolute value) of the negative effect of the German
reunification on per capita GDP in West Germany.
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Augmented SCM
I ADH’s original proposal is to use SCM only when the fit on

pre-intervention outcomes is good.
I Ben-Michael, Feller and Rothstein (2020)’s augmented SCM

(ASCM) is an extension of SCM to setting when such
pre-intervention fit is infeasible.

I The ASCM estimator of 𝑌 (0)
1,𝑡 (𝑡 = 𝑇0 + 1, ..., 𝑇) is:

𝑌
(0)ASC
1,𝑡 =

𝐽+1∑︁
𝑖=2

𝑤SC𝑖 𝑌𝑖.𝑡 +
(
𝑚1,𝑡 −

𝐽+1∑︁
𝑖=2

𝑤SC𝑖 𝑚𝑖,𝑡

)
,

where 𝑤SC
𝑖

are the SC weights, 𝑚𝑖,𝑡 = 𝜂
ridge
0 + 𝑿>

𝑖 �̂�
ridge
1 ,(

𝜂
ridge
0 , �̂�ridge1

)
= argmin

(𝜂0,𝜼1)

𝐽+1∑︁
𝑖=2

(
𝑌𝑖,𝑡 − 𝜂0 − 𝑿>

𝑖 𝜼1
)2+𝜆ridge



𝜼1


2

.
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I The ASCM weights:𝑌 (0)ASC
1,𝑡 =

∑𝐽+1
𝑖=2 𝑤ASC

𝑖
𝑌𝑖.𝑡 , where

𝑤ASC𝑖 = 𝑤SC𝑖 +
(
𝑿1 − X0𝒘

SC)> (
X0X>

0 + 𝜆ridgeI𝑘
)−1

𝑿𝑖 .

𝑤ASC
𝑖

can be outside of [0, 1].
I The ASCM achieves strictly better pre-treatment fit than SCM:

𝑿1 − X0𝒘

ASC


 <



𝑿1 − X0𝒘
SC



.
I The ridge parameter 𝜆ridge is selected by using cross validation.
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