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Resampling Methods

Motivation

We have so many estimators with the property

√
n
(
θ̂n − θ

)
→d N

(
0, σ2

)
.

We can also write θ̂n
a∼ N

(
θ, σ2/n

)
, where a∼ means “approximately distributed as”. Once we have a

consistent estimator σ̂n of σ, the standard error is defined to be SE = σ̂/
√
n. A confidence interval

with approximate 95% coverage probability is
[
θ̂n ± 1.96× SE

]
. Our strategy for estimating σ2 was

based on the analogue/plug-in principle, i.e., replace population moments/unknown quantities by
their sample moments/estimates. We need knowledge of the expression (formula) of σ2. There are two
computation-intensive “resampling” approaches that do the estimation without requiring knowledge of
the expression of σ2.

Suppose we have some (testing) statistic Wn and we need to know its distribution (under the null
hypothesis) and calculate its quantile. The approach we took was to find the asymptotic distribution
of Wn, which was always standard normal or χ2. The quantile of the asymptotic distribution can be
found easily since it does not depend on any unknown quantity/parameter. We use it as approximation
to the true quantile of Wn. Later we will see that there is another approach to approximating the true
distribution of Wn.

Resampling methods are now core to modern econometrics. There are least three motivations
behind the popularity of the resampling methods.

• Standard errors are hard to get. Suppose X1, ..., Xn is an i.i.d. random sample with mean µ and
variance σ2. Then the standard error of the sample mean µ̂n = n−1

∑n
i=1Xi is SE = σ̂n/

√
n

where σ̂2n = n−1
∑n

i=1 (Xi − µ̂n)2. Suppose that Xi is continuous with density fX . Assume for
simplicity that its CDF FX is strictly increasing. The (population) median is m = F−1X (1/2),
i.e., Pr (Xi ≤ m) = 1/2. We order the data: X(1) ≤ X(2) ≤ · · · ≤ X(n). Define the sample
median:

m̂n = median {X1, ..., Xn} =


X(n2 )

+X(n2 +1)
2 if n is even

X(n+1
2 ) if n is odd.

It is known that
√
n (m̂n −m)→d N

(
0,
(

4fX (m)2
)−1)

. Constructing a “plug-in” estimator of

the asymptotic variance
(

4fX (m)2
)−1

requires knowledge of nonparametric econometrics since
we need to estimate the density function fX at a point m. There is also some subtle technical
issue with this approach. For this problem, resampling methods come to rescue.

• (Almost) nothing else we can do. Suppose X1, ..., Xn is an i.i.d. random sample. We want to test
H0 : X is normally distributed, i.e., for some µ and σ, Xi ∼ N

(
µ, σ2

)
. Remember that empirical
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distribution function F̂n (x) = n−1
∑n

i=1 1 (Xi ≤ x) is consistent for FX . Indeed, we have a much
stronger result: sup

x∈R

∣∣∣F̂n (x)− FX (x)
∣∣∣ →p 0 (Glivenko-Cantelli theorem). Let Φµ,σ be the CDF

of N
(
µ, σ2

)
. The Kolmogorov–Smirnov test uses the statistic KS = sup

x∈R

√
n
∣∣∣F̂n (x)− Φµ̂,σ̂ (x)

∣∣∣,
where µ̂ = n−1

∑n
i=1Xi and σ̂2 = n−1

∑n
i=1 (Xi − µ̂)2. If H0 is true, both F̂n and Φµ̂,σ̂ are

consistent for FX and the statistic KS should be small. So a large observed KS is regarded
as evidence against H0. We reject H0 if KS > c. We know that KS →d B, for some random
variable B with a very complicated distribution that depends on unknown parameters. So it
is not practically possible to choose c such that Pr (B ≤ c) = 1 − α. Again for this problem,
resampling methods come to rescue.

• For the “traditional” confidence interval θ̂n±1.96×SE, we know that Pr
(
θ ∈

[
θ̂n ± 1.96× SE

])
→

95% as n → ∞. Actually in many cases we can show that Pr
(
θ ∈

[
θ̂n ± 1.96× SE

])
=

95% + O
(
n−1

)
, i.e., the error Pr

(
θ ∈

[
θ̂n ± 1.96× SE

])
− 95% goes to zero at the rate n−1.

Some resampling-based confidence interval
[
θ̂n + t∗2.5% × SE, θ̂n + t∗97.5% × SE

]
with some “new”

critical values t∗2.5% and t∗97.5% has the property

Pr
(
θ ∈

[
θ̂n + t∗2.5% × SE, θ̂n + t∗97.5% × SE

])
= 95% +O

(
n−3/2

)
.

So the error is smaller and the coverage accuracy of the resampling-based confidence interval is
much better.

Jackknife

Probably “jackknife” is the first-generation resampling method. Suppose X1, ..., Xn is an i.i.d. random
sample. For simplicity, assume Xi is scalar. An estimator θ̂n can be written as θ̂n = ϕn (X1, ..., Xn),
e.g., ϕn (z1, ..., zn) = 1

n

∑n
i=1 zi. Suppose we know

√
n
(
θ̂n − θ

)
→d N

(
0, σ2

)
and we want to estimate

σ2. Now denote θ̂−jn = ϕn−1 (X1, ..., Xj−1, Xj+1, ..., Xn), i.e., θ̂−jn is an estimator obtained by removing
the j-th observation from the entire sample.

The variation in
{
θ̂−jn : j = 1, ..., n

}
should be informative about the population variance of θ̂n.

Actually it is informative about the population variance of θ̂n−1. Note that θ̂n−1
a∼ N

(
θ, σ2/ (n− 1)

)
.

Denote θn = n−1
∑n

j=1 θ̂
−j
n . Now it seems reasonable to think of n−1

∑n
j=1

(
θ̂−jn − θn

)2
as an estimate

of σ2/ (n− 1) and (n− 1) × n−1
∑n

j=1

(
θ̂−jn − θn

)2
as an estimate of σ2. Indeed in many cases one

can show

(n− 1)
n∑
j=1

(
θ̂−jn − θn

)2
→p σ

2. (1)

The Jackknife standard error is

SE =

√√√√(n− 1)
∑n

j=1

(
θ̂−jn − θn

)2
n

.

A jackknife 95% confidence interval is
[
θ̂n ± 1.96× SE

]
. If (1) is true, we say that jackknife is
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consistent.

Consider the following simple example: for i.i.d. random sample X1, ..., Xn, we use the sample
average Xn as an estimator of µ = EX1. It is known that

√
n
(
Xn − µ

)
→d N

(
0, σ2

)
, where σ2 =

Var (X1). For this case,

θ̂−jn =
1

n− 1

(
nXn −Xj

)
,

1

n

n∑
j=1

θ̂−jn =
1

n (n− 1)

n∑
j=1

(
nXn −Xj

)
= Xn,

and
θ̂−jn − θn =

1

n− 1

(
nXn −Xj

)
−Xn =

1

n− 1

(
Xn −Xj

)
.

We have

(n− 1)

n∑
j=1

(
θ̂−j − θ̂

)2
=

1

n− 1

n∑
j=1

(
Xj −Xn

)2
,

which is the sample variance that is a consistent and unbiased estimator for σ2.

Note that unlike the “plug-in” approach, the jackknife approach does not even require knowledge of
the expression of σ2. The limitation of jackknife is that (1) is not always true. For the case of median,
(1) fails and jackknife is inconsistent.

Bootstrap

The second-generation resampling method is the bootstrap. First, let us see how bootstrap gets the
standard error for estimating the population median and constructs the confidence interval. for i.i.d.
random sample X1, ..., Xn, let m̂n = median {X1, ..., Xn}. First we independently draw n observations
with replacement from X1, ..., Xn and get a set of new observations X∗(1)1 , ..., X

∗(1)
n . The computer

can handle this for us. We repeat this resampling procedure again and again, B times. B is a very
large integer. Ideally how B is depends solely on how powerful our computer is. What we have is B
bootstrap samples

X
∗(1)
1 · · · X

∗(1)
n =⇒ m̂

∗(1)
n = median

{
X
∗(1)
1 , ..., X

∗(1)
n

}
X
∗(2)
1 · · · X

∗(2)
n =⇒ m̂

∗(2)
n = median

{
X
∗(2)
1 , ..., X

∗(2)
n

}
...

. . .
...

...
...

X
∗(B)
1 · · · X

∗(B)
n =⇒ m̂

∗(B)
n = median

{
X
∗(B)
1 , ..., X

∗(B)
n

}
and for each bootstrap sample, we calculate its sample median.

We use the sample variance of m̂∗(1)n , m̂
∗(2)
n , ..., m̂

∗(B)
n as an estimate of the true variance of m̂n:

V̂arBS (m̂n) =
1

B

B∑
b=1

{
m̂∗(b)n − 1

B

B∑
b=1

m̂∗(b)n

}2

.

Then the bootstrap standard error is SE =

√
V̂arBS (m̂n) and an approximate 95% confidence interval

using the bootstrap standard error is [m̂n ± 1.96× SE]. In fact, there is another seemingly simpler
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way to construct the confidence interval. We order the bootstrap sample medians: m̂∗(1) ≤ m̂∗(2) ≤
· · · ≤ m̂∗(B). Suppose for simplicity B× 2.5% and B× 97.5% are both integers. A bootstrap percentile

confidence interval is simply
[
m̂∗(B×2.5%), m̂

∗
(B×97.5%)

]
.

The bootstrap procedure we just described is called nonparametric bootstrap or empirical bootstrap
invented by Professor Bradley Efron in 1979. The (nonparametric) bootstrap takes the sample as the
population. A bootstrap sample is obtained by independently drawing n observations from the observed
sample with replacement. The bootstrap sample has the same number of observations as the original
sample, however some observations appear several times and others never.

Now we summarize the two procedures we introduced. Suppose we have an estimator which is
asymptotically normal:

√
n
(
θ̂n − θ

)
→d N

(
0, σ2

)
.

• Bootstrap standard errors

– Step 1: Draw B independent bootstrap samples. B can be as large as possible. We can
take B = 1000.

– Step 2: Estimate θ with each of the bootstrap samples, θ̂∗(b)n for b = 1, ..., B.

– Step 3: Estimate the standard error by

SE =

√√√√ 1

B

B∑
b=1

(
θ̂
∗(b)
n − θ

∗
)2

where θ∗ = B−1
∑B

b=1 θ̂
∗(b)
n .

– Step 4: The bootstrap standard errors can be used to construct approximate confidence in-
tervals, e.g., if the coverage probability is 95%, a 95% confidence interval is

[
θ̂n ± 1.96× SE

]
.

• Bootstrap percentile

– Step 1: Draw B independent bootstrap samples. B can be as large as possible. We can
take B = 1000.

– Step 2: Estimate θ with each of the bootstrap samples, θ̂∗(b)n for b = 1, ..., B.

– Step 3: Order the bootstrap replications such that

θ̂∗(1) ≤ · · · ≤ θ̂
∗
(B).

– Step 4: The lower and upper confidence bounds are B (α/2)-th and B (1− α/2)-th ordered
elements. For B = 1000 and α = 5%, these are the 25th and 975th ordered elements. The
estimated 1− α confidence interval is

[
θ̂∗(B×(α/2)), θ̂

∗
(B×(1−α/2))

]
.

What we did not discuss is whether the bootstrap is “correct”. We need to show that for bootstrap
standard errors,

SE

σ/
√
n
→p 1 (2)

and for the bootstrap percentile confidence interval,

Pr
(
θ ∈

[
θ̂∗(B×(α/2)), θ̂

∗
(B×(1−α/2))

])
→ 1− α (3)

4



as n → ∞. This is a very difficult problem. Below we provide some discussion about why bootstrap
“works”. Bootstrap percentile confidence intervals often have more accurate coverage probabilities (i.e.
closer to the nominal coverage probability 1−α) than the usual confidence intervals based on standard
normal quantiles and estimated variance. The bootstrap percentile method is simple but it should
not be abused. Loosely, it works in the sense that (3) is true, only if the estimator is asymptotically
normal. Suppose we observe a random sample X1, ..., Xn from a uniform distribution on [0, θ], where
θ > 0 is unknown. θ̂n = max {X1, ..., Xn} is a consistent estimator for θ and n

(
θ − θ̂n

)
converges in

distribution to the exponential distribution. For this case, (3) fails. The bootstrap percentile method
fails to give an asymptotically valid confidence interval.

How/Why Bootstrap Works?

Suppose we have an i.i.d. random sample X1, ..., Xn with CDF FX . Suppose Sn = ϕn (X1, ..., Xn) is
a statistic. Its distribution should depend on FX :

FSn (x) = H (x | FX) = Pr (ϕn (X1, ..., Xn) ≤ x) .

We know that the empirical CDF F̂X is a step function that jumps at each of X1, ..., Xn with size 1/n.
So F̂X is the CDF of a discrete random variable Z with X1, ..., Xn being its possible realizations and
1/n being the probability of any of X1, ..., Xn being selected:

Pr (Z = Xk) =
1

n
, for each k = 1, 2, ..., n.

A random observation from X1, ..., Xn is just a random variable that has the same distribution as
Z. n observations randomly drawn with replacement from X1, ..., Xn are just a random sample from
the distribution F̂X . So each bootstrap sample is an i.i.d. random sample from F̂X . Note that the
“distribution” here should be interpreted as the conditional distribution given X1, ..., Xn.

Let X∗1 , ..., X∗n be an i.i.d. random sample from F̂X . Let S∗n = ϕn (X∗1 , ..., X
∗
n). The conditional

CDF given X1, ..., Xn of S∗n is

H
(
x | F̂X

)
= Pr (ϕn (X∗1 , ..., X

∗
n) ≤ x | X1, ..., Xn) .

It seems reasonable to estimateH (x | FX) byH
(
x | F̂X

)
since F̂X is a very good estimate of FX . Sim-

ilar the variance Var (Sn) should depend on FX as well and it can be estimated by Var (S∗n | X1, ..., Xn).
The true (conditional) distribution of X∗1 , ..., X∗n is known. We can use computer simulations (known
as Monte Carlo simulations) to compute Var (S∗n | X1, ..., Xn). The computer draws B (very large)
i.i.d. random samples from F̂X for us:

X
∗(1)
1 · · · X

∗(1)
n i.i.d. ∼ F̂X

X
∗(2)
1 · · · X

∗(2)
n i.i.d. ∼ F̂X

...
. . .

...
...

X
∗(B)
1 · · · X

∗(B)
n i.i.d. ∼ F̂X .
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These are just B independent bootstrap samples. Then,

Var (S∗n | X1, ..., Xn) ≈ 1

B

B∑
b=1

(
ϕn

(
X
∗(b)
1 , ..., X∗(b)n

)
− ϕn

)2
, (4)

where ϕn = B−1
∑B

b=1 ϕn

(
X
∗(b)
1 , ..., X

∗(b)
n

)
is the (bootstrap) sample mean. Since B can be arbitrarily

large, by WLLN, the right hand side of (4) should be very close to the left hand side.

What we put forward is just the intuition about how/why bootstrap works. The theoretical proof
and also proof of the key results (2) and (3) are very difficult. Here is some further intuition.

Let G (x) = Pr
(√

n
(
θ̂n − θ

)
≤ x

)
be the distribution function of

√
n
(
θ̂n − θ

)
. If we knew G,

we could easily construct a confidence interval
[
θ̂n −

t1−α/2√
n
, θ̂n −

tα/2√
n

]
,where tα is the α-quantile of G:

tα = G−1 (α). In reality, we do not know G and we can often show that G can be approximated by
the distribution function of N

(
0, σ2

)
. The normal approximation with N

(
0, σ2

)
requires that σ2 can

be estimated consistently. What bootstrap does is “alternative approximation”. It suggests that the
conditional distribution

Ĝ (x) = Pr
(√

n
(
θ̂∗n − θ̂

)
≤ x | X1, ..., Xn

)
,

where θ̂∗n is the “bootstrap analogue” of θ̂n. θ̂∗n is computed using the bootstrap random sample
X∗1 , ..., X

∗
n but the same formula as θ̂n. The bootstrap random sample X∗1 , ..., X∗n are i.i.d. with CDF

F̂X . We can use the computer to generate as many samples as we want. Ĝ is known to us since
the distribution of the bootstrap sample is known. Ĝ can be approximated by computer simulations.
Indeed in many cases especially when

√
n
(
θ̂n − θ

)
is asymptotically normal, we have

sup
x∈R

∣∣∣Ĝ (x)−G (x)
∣∣∣→p 0.

So the estimation is consistent. But there are exceptions.

Bootstrap Refinement

If we have a plug-in estimator for σ and the estimator σ̂n is consistent, we have

T =

√
n
(
θ̂n − θ

)
σ̂n

−→d N (0, 1) .

Note that here σ̂n can be written as a function of the data and we know its function form. For each
bootstrap sample b = 1, ..., B, we can calculate σ̂∗n using the bootstrap sample. For example, suppose
X1, ..., Xn is an i.i.d. random sample with mean µ and variance σ2. Let µ̂n = n−1

∑n
i=1Xi and

σ̂2n = n−1
∑n

i=1 (Xi − µ̂n)2. We know

T =

√
n (µ̂n − µ)

σ̂n
−→d N (0, 1) .

We can compute σ̂∗n as σ̂∗2n = n−1
∑n

i=1 (X∗i − µ̂∗n)2, with µ̂∗n = n−1
∑n

i=1X
∗
i .

• Bootstrap-t

6



– Step 1: Draw B independent bootstrap samples. B can be as large as possible. We can
take B = 1000.

– Step 2: Estimate θ and σ with each of the bootstrap samples, θ̂∗(b)n , σ̂∗(b)n for b = 1, ..., B

and the t-value for each bootstrap sample:

t∗b =

√
n
(
θ̂
∗(b)
n − θ̂n

)
σ̂
∗(b)
n

– Step 3: Order the bootstrap replications of t such that t∗(1) ≤ · · · ≤ t
∗
(B).

– Step 4: The lower critical value t∗α/2 and the upper critical value t∗1−α/2 are then the B×(α/2)-
th and B × (1− α/2)-th ordered elements. For B = 1000 and α = 5%, these are the 25th
and 975th ordered elements. The bootstrap lower and upper critical values generally differ
in absolute values.

The bootstrap-t confidence interval is[
θ̂n + t∗2.5% ×

σ̂n√
n
, θ̂n + t∗97.5% ×

σ̂n√
n

]
.

A striking result is

Pr

(
θ ∈

[
θ̂n + t∗2.5% ×

σ̂n√
n
, θ̂n + t∗97.5% ×

σ̂n√
n

])
= 95% +O

(
n−3/2

)
compared with the confidence interval using the standard normal critical values

Pr

(
θ ∈

[
θ̂n − 1.96× σ̂n√

n
, θ̂n + 1.96× σ̂n√

n

])
= 95% +O

(
n−1

)
.

This is known as asymptotic “refinement” of bootstrap.

Residual Bootstrap and Wild Bootstrap

Consider the context of linear regression. Our observed data is (X1, Y1) , (X2, Y2) , ..., (Xn, Yn) and we
are interested in the regression coefficients:

Yi = α+ βXi + ei.

In this case the nonparametric/empirical bootstrap we introduced works well, in the sense that the
bootstrap standard errors are consistent and the bootstrap percentile confidence intervals have asymp-
totically correct coverage probabilities. Empirical bootstrap treats the pair (X,Y ) as one object and
each bootstrap sample consists of n independent observations drawn with replacement from the n ob-
servations (X1, Y1) , (X2, Y2) , ..., (Xn, Yn). There are popular alternatives to the empirical bootstrap.
Bootstrap standard errors, percentile confidence intervals and bootstrap-t are carried out by following
the same steps. The only thing that changes is how we resample to get the bootstrap samples.

Let êi = Yi− α̂− β̂Xi, where
(
α̂, β̂

)
is the LS estimator. We draw n fitted residuals independently

with replacement from ê1, ..., ên. In other words, the bootstrap sample is an i.i.d. random sample
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ê∗1, ..., ê
∗
n, where for each i = 1, ..., n,

Pr (ê∗i = êk) =
1

n
, for each k = 1, 2, ..., n.

Now for each i = 1, 2, ..., n, let X∗i = Xi and Y ∗i = α̂+ β̂X∗i + ê∗i . Note that the independent variables
are the same in all bootstrap samples. This is known as the residual bootstrap.

For wild bootstrap, let V1, ..., Vn be n computer-generated independent random variables with mean
zero that are also independent of the data. Now for each i = 1, 2, ..., n, let ê∗i = Vi × êi, X∗i = Xi and
Y ∗i = α̂ + β̂X∗i + ê∗i . The most popular distribution for V ’s is the following two-point “golden rule”
distribution:

Vi =

−
(√

5− 1
)
/2 with probability

(√
5 + 1

)
/
(
2
√

5
)(√

5 + 1
)
/2 with probability

(√
5− 1

)
/
(
2
√

5
)
.

Its theoretical motivation was provided by Professor Enno Mammen in 1993.

Bootstrap Hypothesis Test

We now consider testing H0 : θ = θ0. We can use any of the bootstrap-based confidence intervals
and check if θ0 is in the confidence interval. We simply reject H0 if θ0 fails to be an element of the
bootstrap percentile confidence interval.

Since the t-statistic T =
√
n(θ̂n−θ0)
σ̂n

−→d N (0, 1) under H0. We use the standard normal distribution
as approximation to the true distribution of T and define critical values based on standard normal
quantile. Alternatively, we can do the following bootstrap-t test.

• Bootstrap-t test

– Step 1: Draw B independent bootstrap samples. B can be as large as possible. We can
take B = 1000.

– Step 2: Estimate θ and σ with each of the bootstrap samples, θ̂∗(b)n , σ̂∗(b)n for b = 1, ..., B

and the t-value for each bootstrap sample:

t∗b =

√
n
(
θ̂
∗(b)
n − θ̂n

)
σ̂
∗(b)
n

– Step 3: Order the bootstrap replications of t such that t∗(1) ≤ · · · ≤ t
∗
(B).

– Step 4: The lower critical value t∗α/2 and the upper critical value t∗1−α/2 are then the B×(α/2)-
th and B × (1− α/2)-th ordered elements. Reject H0 if T < t∗α/2 or T > t∗1−α/2.

Caution: a common mistake is that in Step 2, one mistakenly computes

√
n
(
θ̂
∗(b)
n − θ0

)
σ̂
∗(b)
n

.

The test will have no power if we made this mistake. The distribution of the t-statistic T =
√
n(θ̂n−θ0)
σ̂n
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under H1 is different from that under H0. Under H1, T is not centered:

T =

√
n
(
θ̂n − θ0

)
σ̂n

=

√
n
(
θ̂n − θ

)
σ̂n

+

√
n (θ − θ0)
σ̂n

.

An important guideline is that we should always approximate the distribution of T under H0, i.e., the

distribution of
√
n(θ̂n−θ)
σ̂n

.
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