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Causal inference

I Stuart Mill (1843): If a person eats a particular dish, and dies
in consequence, that is, would not have died if he had not
eaten of it, people would be apt to say that eating of that dish
was the source of his death.

I Ronald Aylmer Fisher (1918): If we say, “ this boy has grown
tall because he has been well fed,”... we are suggesting that he
might probably have been worse fed, and that in this case he
would have been shorter.
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Examples

I Suppose that a selected set of individuals receive training or
education initiated by the government with a view to
enhancing their employment prospects. The government has
collected the earnings data for the individuals who received the
training and for the individuals who did not. We aim to
quantify and estimate the effect of the training program.

I Suppose that an education program required high schools to
agree to assign teachers and students to small (13 to 17
students) or large (22 to 26 students) classes. The government
is interested in the effect of class size on student achievement.
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Causality

I Causality is tied to any action (or manipulation, treatment, or
intervention) applied to a unit.

I The unit might be a village or city: What is the effect of a
measles vaccination campaign implemented at the village level
on village-level incidence of measles?

I The unit might be a firm: What is the effect of receipt of
management consulting on firm productivity?

I A medical experiment studies on the effects of new treatment
ask similar questions. One group of patients has received new
treatment, and the other group has not.

I The simplest scenario is that we consider two actions. Often
one of these actions corresponds to a more active treatment in
contrast to a more passive action. In such cases we sometimes
refer to the first action as the treatment as opposed to the
control.
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Fundamental problem of causal inference

“Fundamental Problem of Casual Inference” ’ (Holland, 1986)
I Among those who received treatment, we observe what

happened to them with treatment but we do not observe what
would have happened to them without treatment.

I Among those who did not receive treatment, we observe what
happened to them without treatment but we do not observe
what would have happened to them with treatment.

I Cannot observe same person simultaneously treated and not
treated.
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The treatment effect model
I We consider the problem of estimating the causal effect of a

binary explanatory variable, which is referred as the treatment
effect in the literature.

I The treatment effect model is built on the potential outcome
framework of Fisher (1935) and Rubin (1974).
I The outcome variable Yi (1) represents a potential outcome of

an individual i in the treatment state (e.g. training is received
or studying in a reduced-size class). The variable Yi (0)
represents a potential outcome of the same individual i in the
control state (e.g. training is received or studying in a
normal-size class). Each individual has a random vector
(Yi (1) , Yi (0)) that represents potential outcomes depending
on the state (treatment or control). Certainly, (Yi (1) , Yi (0))
are correlated.

I The econometrician cannot observe the random vector
(Yi (1) , Yi (0)) jointly, because for each individual, only one
potential outcome (Yi (1) or Yi (0)) is realized, depending on
whether the individual i has gone through the treatment or
not.
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I Potential outcome can be built on a structural model.
I Yi: outcome variable; Di ∈ {0, 1}: the binary explanatory

variable; X1,i, ..., Xp,i: other observed explanatory variables;
εi: unobserved explanatory factors.

I The variable Di is a binary variable taking 1 if the individual
has gone through the treatment and 0 otherwise. The
treatment here represents the actual treatment. The
econometrician usually observes the treatment status for each
individual Di.

I Xi = (X1,i, ..., Xp,i)
> represents a vector of various

demographic characteristics for individual i. E.g., the variables
can be annual income, age, gender, status of marriage, the
number of children, education, etc. These represent all the
observable characteristics of individual i.

I Suppose that Yi is generated by Yi = g (Di, Xi, εi).
I g is unknown and in the treatment effect model, we do not

assume g is linear.
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I The outcome variable Yi (1) = g (1, Xi, εi) represents a
potential outcome of an individual i in the treatment state
(e.g. training is received or studying in a reduced-size class).
The variable Yi (0) = g (0, Xi, εi) represents a potential
outcome of the same individual i in the control state (e.g.
training is received or studying in a normal-size class).

I Thus, each individual has a random vector (Yi (1) , Yi (0)) that
represents potential outcomes depending on the state
(treatment or control). Certainly, (Yi (1) , Yi (0)) are
correlated.

I The econometrician cannot observe the random vector
(Yi (1) , Yi (0)) jointly, because for each individual, only one
potential outcome (Yi (1) or Yi (0)) is realized, depending on
whether the individual i has gone through the treatment or
not.
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The relationship between Di and (Yi (1) , Yi (0))

I In a medical experiment, the individual is chosen to be in the
treatment group through some randomization device or a
lottery. In these cases, Di ⊥⊥ (Yi (1) , Yi (0)) (i.e., Di is
independent of (Yi (1) , Yi (0))).

I For evaluating social experiment/program with observational
data, it may not be convincing to assume
Di ⊥⊥ (Yi (1) , Yi (0)).
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Treatment effects
I The individual treatment effect (ITE) for each individual i is

defined as:
Yi (1)− Yi (0) .

I The ITE is the difference between the potential outcomes in
two different states for the same person.

I The ITE is a counterfactual quantity, in the sense that in the
actual world, we cannot observe the vector (Yi (1) , Yi (0)).

I There are mainly two quantities of interest: ATE (average
treatment effect)

ATE = E [Yi (1)− Yi (0)] ,

and ATT (average treatment effect on the treated)

ATT = E [Yi (1)− Yi (0) | Di = 1] .

I The average treatment effect on the treated is the treatment
effect of the people who have gone through the treatment.
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I Note that the expectation in the definition of ATE involves the
joint distribution of (Yi (1) , Yi (0)), and the expectation in the
definition of ATT involves the joint distribution of
(Yi (1) , Yi (0) , Di), which are both unobserved.

I ATE or ATT can not be estimated accurately merely by
collecting a large size of samples.
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The observed information

I The econometrician observes the treatment status Di and
covariates Xi. She also observes the outcome variable:

Yi = DiYi (1) + (1−Di)Yi (0) .

I The observed outcome variable Yi is not the same as the
potential outcomes Yi (1) or Yi (0). It is a realized outcome for
an individual i depending on whether she has received
treatment (Yi is realized to be Yi (1)) or not (Yi is realized to
be Yi (0)).

I Identification of these parameters is concerned with the
following question: can we uniquely determine the value of
these parameters once we know the joint distribution of the
observable random variables?
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Selection bias

I Yi (1)− Yi (0) may be correlated with Di, when Di is
determined by individuals. Yi (1)− Yi (0) and Di may be
determined by the same factors.

I E.g., sickest individuals are the ones who take the medicine.
I High ability students are the ones who attend college.
I The selection bias can be thought of as

(E [Yi | Di = 1]− E [Yi | Di = 0])−ATE, which is equal to
E [Yi (0) | Di = 1]−E [Yi (0) | Di = 0], when Yi (1)− Yi (0) is
constant.

I Solutions: 1. Covariates; 2. Randomized experiments; 3.
Instrumental variables.
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Randomized experiments
I In medical experiments, the treatment is performed using a

randomization device. More specifically, for patient i, a lottery
is run, and the patient is selected into the treated group with
the design probability p, and stays in the control group with
the design probability 1− p.

I In these cases, we have Di ⊥⊥ (Yi (1) , Yi (0) , Xi). Randomized
experiment assumption requires that knowing whether patient
i is treated or not gives one no informational advantage in
predicting the potential outcomes of i over another who does
not know whether patient i is treated or not.

I This assumption is still possibly violated in medical studies if
only those patients who have higher potential treatment effect
are selected into treatment among all the patients in the study
on purpose.

I In this case, observing Di will give information about the
treatment effect (Yi (1)− Yi (0)) for individual i.

14 / 52



I We use the following result from probability theory: if
V ⊥⊥W , then for any function f ,

E [f (V,W ) |W = w] = E [f (V,w)] . (1)

I By (1) and the randomized experiment assumption,
Di ⊥⊥ (Yi (1) , Yi (0)), we have

ATE = E [Yi (1)− Yi (0)]

= E [Yi (1)]− E [Yi (0)]

= E [DiYi (1) + (1−Di)Yi (0) | Di = 1]

−E [DiYi (1) + (1−Di)Yi (0) | Di = 0]

= E [Yi | Di = 1]− E [Yi | Di = 0] .
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I By LIE,

E [YiDi] = E [E [YiDi | Di]]

= Pr [Di = 1] E [YiDi | Di = 1]

+Pr [Di = 0] E [YiDi | Di = 0]

= E [Di] E [Yi | Di = 1] ,

where

E [YiDi | Di = 0] = E [(DiYi (1) + (1−Di)Yi (0))Di | Di = 0]

= 0

follows from (1).
I Similarly, we have

E [Yi | Di = 0] =
E [Yi (1−Di)]

E [1−Di]
.
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I We can write

ATE =
E [YiDi]

E [Di]
− E [Yi (1−Di)]

E [1−Di]
,

where the right hand side depends on the joint distribution of
the observed random variables.

I For estimation, we replace the population mean by the sample
mean (this is sometimes called the analogue principle):

ÂTE =
1
n

∑n
i=1 YiDi

1
n

∑n
i=1Di

−
1
n

∑n
i=1 Yi (1−Di)

1
n

∑n
i=1 (1−Di)

.

I We can check its consistency by using LLN and Slutsky’s
lemma.

I This randomization assumption is not convincing when the
individuals in the social experiments are people who may select
into the treatment or not.
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Comparison with the linear regression
I It seems that Di is nothing but a dummy variable. Can we run

a regression of Yi on Di and X1,i, ..., Xp,i to estimate the
ATE? Can the parameter of interest, the ATE, be formulated
as a coefficient in a regression model.

I One possible assumption is that

Yi = g (Di, X1,i, ..., Xp,i, εi) = γ0 + γ1Di +

p∑
j=1

βjXj,i + εi.

In this case, the ITE Yi (1)− Yi (0) = γ1 is constant. This is
very unrealistic. We investigate alternative model assumptions.

I We first consider the following model assumption

Yi (0) =µ0 + Ui (0)

Yi (1) =µ1 + Ui (1) ,

where µ0 and µ1 are constants common across individuals and
assumed to be nonstochastic and (Ui (0) , Ui (1)) are
stochastic components.
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I We denote Xi = (X1,i, ..., Xp,i)
> for the vector of observed

covariates.
I We assume E [Ui (0) | Xi] = E [Ui (1) | Xi], which implies

E [Yi (1)− Yi (0) | Xi] = µ1 − µ0,

i.e., the ITE is mean independent of Xi but it can be random.
And by LIE,

ATE = E [Yi (1)− Yi (0)] = µ1 − µ0.

I We assume E [Yi (1) | Di, Xi] = E [Yi (1) | Xi] and
E [Yi (0) | Di, Xi] = E [Yi (0) | Xi], i.e., the conditional mean
independence of potential outcomes with treatment status,
conditional on demographic status Xi.

I When we focus on a sub-population of indivdiuals with specific
demographic status Xi, Yi (1) and Yi (0) are both mean
independent of Di.
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I Let us write

E [Yi | Di, Xi] = DiE [Yi (1) | Di, Xi]+(1−Di) E [Yi (0) | Di, Xi]

= DiE [Yi (1)− Yi (0) | Di, Xi] + E [Yi (0) | Di, Xi]

= DiE [Yi (1)− Yi (0) | Xi] + E [Yi (0) | Xi] ,

where the last equality follows from the conditional mean
independence assumption.

I By the assumption E [Ui (0) | Xi] = E [Ui (1) | Xi], we have

DiE [Yi (1)− Yi (0) | Xi] + E [Yi (0) | Xi]

= Di (µ1 − µ0) + E [Yi (0) | Xi]

= µ0 +Di (µ1 − µ0) + h (X1,i, ..., Xp,i) ,

where we denote h (X1,i, ..., Xp,i) = E [Ui (0) | Xi].
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I Therefore, we have

E [Yi | Di, Xi] = µ0 + (µ1 − µ0)Di + h (X1,i, ..., Xp,i) .

I Define
Vi = Yi − E [Yi | Di, Xi]

and now we have the following regression model:

Yi = µ0 + (µ1 − µ0)Di + h (X1,i, ..., Xp,i) + Vi.

I We have E [Vi | Di, Xi] = 0 by definition.
I We assume h is linear in X1,i, ..., Xp,i:

h (X1,i, ..., Xp,i) =

p∑
j=1

βjXj,i,

and then

Yi = µ0 + (µ1 − µ0)Di +

p∑
j=1

βjXj,i + Vi.

I A multiple linear regression of Yi on Di and X1,i, ..., Xp,i

consistently estimates ATE = (µ1 − µ0).
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I We assume E [Ui (0) | Xi] = E [Ui (1) | Xi], which implies

E [Yi (1)− Yi (0) | Xi] = µ1 − µ0.

I This assumption implies that the conditional average
treatment effect given Xi does not depend on Xi, the
characteristics of individual i.

I This assumption can be unrealistic. E.g., Average treatment of
the class-size is the same between students from high-income
family and students from low-income family.
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Homogeneous and heterogeneous treatment effects
I The individual treatment effect ∆i = Yi (1)− Yi (0) is random,

in general.
I Four cases (Heckman, Vytlacil and Urzua, 2006): A.

Homogeneous; B. Homogeneous conditional on X; C1.
Heterogeneous without essential heterogeneity; C2.
Heterogeneous with essential heterogeneity.
I A: ∆i is constant. All individuals have the same treatment

effect. In the structural model framework, this is equivalent to
the restriction that Yi = g (Xi) + ∆ ·Di + εi.

I B: ∆i = ∆ (Xi), a function of Xi only. In the structural model
framework, this is equivalent to Yi = g (Xi, Di) + εi.

I C1: ∆i is random, conditional on Xi but ∆i ⊥⊥ Di | Xi. In the
structural model framework, this holds when εi ⊥⊥ (Di, Xi).
This assumption is known as the unconfoundedness condition.
Unconfoundedness can be thought of as an assumption that
the decision to take the treatment is purely random for
individuals with similar values of the covariates.

I C2: ∆i is correlated with Di conditional on Xi. Individuals
select into treatment based on ∆i. In this case, an instrument
is needed. 23 / 52



Unconfoundedness assumption

I Unconfoundedness is the key assumption of the basic
treatment effect model.

I Unconfoundedness assumption: (Yi (1) , Yi (0)) ⊥⊥ Di | Xi, i.e.,
(Yi (1) , Yi (0)) and Di are conditionally independent given Xi.

I Unconfoundedness can be thought of as an assumption that
the decision to take the treatment is purely random for
individuals with similar values of the covariates.

I Suppose that we have three random vectors V , W and X,
where (V,W ) is a continuous random vector. Then we say V
and W are conditionally independent given X, if for all
possible values of v, w and x,

f(V,W )|X (v, w | x) = fV |X (v | x) fW |X (w | x) .
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I Unconfoundedness is satisfied if (Yi, Di) are generated by the
model

Yi = g (Di, Xi, εi)

Di = m (Xi, ηi)

and εi ⊥⊥ ηi | Xi.
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More on conditional independence

I When V and W are conditionally independent given X, one
can easily see that for any function ϕ,

E [ϕ (V ) |W,X] = E [ϕ (V ) | X] .

I.e., once we observe X, knowledge of W does not give us any
further advantage in predicting the value of ϕ (V ).

I We notice that

f(V,W )|X (v, w | x) =
f(V,W,X) (v, w, x)

fX (x)

=
f(V,W,X) (v, w, x)

f(W,X) (w, x)

f(W,X) (w, x)

fX (x)

= fV |(W,X) (v | w, x) fW |X (w, x) .
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I Therefore, we have fV |X (v | x) = fV |(W,X) (v | w, x), if
(V,W ) are conditionally independent given X. Hence,

E [ϕ (V ) |W = w,X = x] =

∫
ϕ (v) fV |(W,X) (v | w, x) dv

=

∫
ϕ (v) fV |X (v | x) dv

= E [ϕ (V ) | X = x] .

I Therefore, the unconfoundedness assumption
(Yi (1) , Yi (0)) ⊥⊥ Di | Xi implies the conditional mean
independence assumption:

E [Yi (1) | Di, Xi] = E [Yi (1) | Xi]

E [Yi (0) | Di, Xi] = E [Yi (0) | Xi] .

I We can also show: if V ⊥⊥W | X,

E [η (V,W ) | X,W = w] = E [η (V,w) | X] . (2)
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The unconfoundedness and randomization assumptions

I It can be shown that the randomization assumption
(Yi (1) , Yi (0) , Xi) ⊥⊥ Di implies the unconfoundedness
assumption (Yi (1) , Yi (0)) ⊥⊥ Di | Xi.

I The randomized experiment assumption does not allow Xi to
be correlated with Di,

I The unconfounded condition allows Di to be affected by Xi,
while the randomized experiment assumption does not.
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Identification of ATE

I By LIE, we have

ATE = E [Yi (1)− Yi (0)]

= E [E [Yi (1) | Xi]]− E [E [Yi (0) | Xi]] , (3)

and

E [YiDi | Xi] = E [E [YiDi | Xi, Di] | Xi]

= Pr [Di = 1 | Xi] E [YiDi | Xi, Di = 1]

+Pr [Di = 0 | Xi] E [YiDi | Xi, Di = 0] .
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I By the unconfoundedness assumption:
(Yi (1) , Yi (0)) ⊥⊥ Di | Xi, the result (2) and the relation
Yi = DiYi (1) + (1−Di)Yi (0), we have

E [YiDi | Xi, Di = 1]

= E [(DiYi (1) + (1−Di)Yi (0))Di | Xi, Di = 1] = E [Yi (1) | Xi]

and
E [YiDi | Xi, Di = 0] = 0.

I Therefore, we have

E [YiDi | Xi] = Pr [Di = 1 | Xi] E [Yi (1) | Xi] (4)

and similarly,

E [Yi (1−Di) | Xi] = Pr [Di = 0 | Xi] E [Yi (0) | Xi] . (5)
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I Now (3), (4), (5) and LIE imply

ATE = E

[
E [YiDi | Xi]

Pr [Di = 1 | Xi]

]
− E

[
E [Yi (1−Di) | Xi]

Pr [Di = 0 | Xi]

]
= E

[
YiDi

Pr [Di = 1 | Xi]
− Yi (1−Di)

Pr [Di = 0 | Xi]

]
.

Now the right hand side depends only on the joint distribution
of observed random variables.

I Denote
p (x) = Pr [Di = 1 | Xi = x] .

This function is called propensity score. It is the probability of
the event that the individual belongs to the treatment group,
given that the observed characteristics are x ∈ Rp.
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Inverse probability weighting (IPW) estimator
I Let p̂ (x)be an estimator of the propensity score, then we can

estimate the ATE:

ÂTE =
1

n

n∑
i=1

{
YiDi

p̂ (Xi)
− Yi (1−Di)

1− p̂ (Xi)

}
.

This is known as the IPW estimator (Hirano, Imbens and
Ridder, 2003).

I It is straightforward to construct p̂ (x) if Xi is discrete:

p̂ (x) =

∑n
i=1 1 (Di = 1, Xi = x)∑n

i=1 1 (Xi = x)
.

I If Xi is continuous, we specify a parametric model for the
propensity score:

Pr [Di = 1 | Xi] = Φ (β0 + β1X1,i + · · ·+ βpXp,i)

as what we did for the Probit model. This gives a parametric
model for the propensity score. (β0, ..., βp) can be estimated

by MLE (denoted by
(
β̂0, ..., β̂p

)
). We bootstrap the standard
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I The estimated propensity score is

p̂ (Xi) = Φ
(
β̂0 + β̂1X1,i + · · ·+ β̂pXp,i

)
.

I This estimator is known to be consistent and asymptotically
normally distributed, if our propensity score model is correct.

I This approach has the drawback that if our model for the
propensity score is wrong, the ATE estimator is inconsistent.

I Actually, p (x) = E [Di | Xi = x] can be estimated without
specifying a parametric model for it.
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k-NN estimator
I The k-nearest neighbor (k-NN) estimator is the simplest

nonparametric estimator of p (x).
I Fix x0 and suppose that we want to estimate p (x0) at this

point. Assume that p is a smooth function, which means that
its graph does not change too much.

I p (x) should be close to p (x0) when x is close enough to x0.
p (Xi) would be close to p (x0) for observations Xi close to x0.

I We simply average these p (Xi) for observations Xi close to
x0. We do not observe p (Xi) but use Di instead.

I Let

di (x0) = ‖Xi − x0‖ =

√
(Xi − x0)> (Xi − x0)

denote the distance of Xi to x0.
I After computing the distance for all n observations in the

sample, we sort them in the increasing order

d(1) (x0) ≤ d(2) (x0) ≤ · · · ≤ d(n) (x0) .
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I Let Nk (x0) denote the identities of the k-nearest neighbors of
x0:

Nk (x0) =
{
i : di (x0) ≤ d(k) (x0)

}
.

I The k-NN nonparametric estimator of p (x0) is

p̂kNN (x0) =
1

k

∑
i∈Nk(x0)

Di.

I The k-NN estimator is simply an average of the values of Di

across the k closest observations in terms of Xi.
I There is a data-driven procedure to select k in practical

applications.
I The nonparametric ATE estimator using p̂kNN (Xi) is

consistent and asymptotically normal. It does not require a
parametric model for the propensity score.
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Overlap (common support) condition
I The overlap condition: for any value x in the support of Xi,

0 < Pr [Di = 1 | Xi = x] < 1.

I Rigorously, the overlap condition was assumed when
establishing identification of the parameter of interest.

I This implies that the conditional supports of Xi given Di = 1
and Di = 0 should overlap.

I The overlap condition can be a problem in empirical
researches.E.g., if suppose that all the high income individuals
are concentrated on the treated group and all the low income
individuals are concentrated on the control group, then the
overlap condition is violated.

I The reason this can be a problem in practice is because we
typically have many variables in Xi and the overlap condition
is violated if there exists a particular variable such that the
subjects are divided completely into two different groups.

I Note the potential tension between overlap and
unconfoundedness.
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I For “regular” estimation, we need a stronger overlap condition:
for some small ε > 0, for any value x in the support of Xi,

ε < Pr [Di = 1 | Xi = x] < 1− ε.
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Regression-based matching

I First step: parametric/nonparametric regression of Y on
(D,X) to recover Ê [Y | D,X] (estimator of E [Y | D,X]).

I Second step: Estimate ATT by

1

N1

n∑
i=1

Di

(
Yi − Ê [Yi | Xi, Di = 0]

)
where N1 =

∑n
i=1 1 (Di = 1).

I See for Heckman, Ichimura and Todd (1997, 1998) for
estimation theory.

38 / 52



Nearest-Neighbor matching

I Choose a positive integer M (often M = 1).
I Let d (·, ·) be a distance measure.
I For each i let jm (i) be an index satisfying Djm(i) = 1−Di

and ∑
l:Dl=1−Di

1
{
d (Xl, Xi) ≤ d

(
Xjm(i), Xi

)}
= m.

I Let JM (i) denote the indices of the M closest matches:

JM (i) = {j1 (i) , ..., jM (i)} .
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I Then

Ŷ0i =

{
Yi if Di = 0
1
M

∑
j∈JM (i) Yj if Di = 1

Ŷ1i =

{
1
M

∑
j∈JM (i) Yj if Di = 0

Yi if Di = 1

and the Nearest-Neighbor matching estimator for ATE is

1

n

n∑
i=1

(
Ŷ1i − Ŷ0i

)
.
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Issues with Nearest-Neighbor matching

I Advantages: 1. Very simple to implement; 2. Only need to
pick number of nearest neighbor (usually M = 1).

I Estimation theory developed by Abadie and Imbens (2006,
2008).

I Disadvantages: 1. Not an efficient estimator; 2. When number
of continuous covariates ≥ 2, the estimator is generally not√
n-consistent: bias term does not vanish at n−1/2 rate. 3.

Bootstrap is inconsistent.
I Remedies: 1. Bias correction (Abadie and Imbens, 2011); 2.

Weighted bootstrap (Otsu and Rai, 2016).
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Propensity score matching

I Propensity score: π (x) = Pr [D = 1 | X = x].
I Rosenbaum and Rubin (1983) showed the following properties:

1. (balancing) X⊥D ⊥⊥ π (X); 2. (unconfoundedness)
(Y0, Y1) ⊥⊥ D | π (X).

I Balancing: Conditional on the propensity score, the covariate
distributions are balanced between the treatment and the
control groups. Hence, they become comparable.

I Unconfoundedness: Instead of conditioning on the entire
covariate vector X, conditioning solely on π (X) suffices for
removing the selection biases.

I Propensity score can be used for dimension reduction.
Matching (regression or NN) on the propensity score.
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What if overlap condition fails?

I Heckman, Ichimura and Todd (1998) propose to trim to
common support.

I For a small q > 0, let
S =

{
x : fX|D=1 (x) > q, fX|D=0 (x) > q

}
and

Ŝ =
{
x : f̂X|D=1 (x) > q, f̂X|D=0 (x) > q

}
.

I Estimation of ATT conditional on X ∈ S:

1∑n
i=1Di1

(
X ∈ Ŝ

) n∑
i=1

Di

(
Yi − Ê [Yi | Xi, Di = 0]

)
1
(
X ∈ Ŝ

)
.

I The estimator is consistent for E [Y1 − Y0 | D = 1, X ∈ S].
Trimming changes definition of the parameter.
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Limited overlap

I Strong overlap: for some small ε > 0, for any value x in the
support of Xi,

ε < Pr [Di = 1 | Xi = x] < 1− ε.

I Limited overlap: ε is very small. In this case, it is found in
simulations that performances of standard estimators (inverse
probability weighting, matching...) are bad.
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I Solution 1: trimming (i.e., dropping observations with
estimated propensity scores that are close to 0 or 1). See
Crump, Hotz, Imbens and Mitnik (2009).

I Solution 2: Rothe (2014) modifies the standard IPW-based
confidence interval so that the modified confidence interval has
correct coverage probability for fixed n if the outcomes are
conditionally normally distributed, without assuming strong
overlap.

I Solution 3: Ma and Wang (2021) does not assume strong
overlap and applies asymptotic trimming: drop observations
with estimated propensity scores that are in
(0, bn) ∪ (1− bn, 1) with bn ↓ 0. In this case, the asymptotic
distributions are non-Gaussian. They work out optimal choice
of bn and show validity of “m-out-of-n” bootstrap inference.
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More issues

I How do they perform in finite samples? Busso, DiNardo and
McCrary (2014) compared IPW (Hirano, Imbens and Ridder,
2003) and propensity score matching. They find “matching
may be more effective when overlap is sufficiently poor”.

I It is known that IPW is efficient (i.e., smallest possible
asymptotic variance, see Hahn, 1998 and Hirano, Imbens and
Ridder, 2003). See Chan, Yam and Zhang (2016) for a new
efficient estimator called empirical balancing estimator, which
does not require estimating the propensity score.

46 / 52



Doubly robust estimation
I The two identification results for the ATE

ATE = E

[
YiDi

P [Di = 1 | Xi]
− Yi (1−Di)

P [Di = 0 | Xi]

]
ATE = E [E [Yi | Xi, Di = 1]− E [Yi | Xi, Di = 0]] .

I Two different approaches to estimation: regression adjustment
(RA), estimate E [Yi | Xi = x,Di = d]; inverse probability
weighting (IPW), estimate P [Di = 1 | Xi = x].

I We focus on parametric estimation now. We specify
parametric models:

E [Yi | Xi = x,Di = d] = m (x, d | α) ,

P [Di = 1 | Xi = x] = π (x | β) .

I Model misspecification leads to inconsistency. A doubly robust
estimator is consistent when at least one of the models is
correctly specified.
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Augmented IPW

I The augmented inverse probability weighting estimator
(AIPW) is the most popular doubly robust estimator.

I The AIPW estimator of µ1 = E [Yi1] is based on the following
moment condition:

µ1 = E

[
DY

π (X | β)
− D − π (X | β)

π (X | β)
m (X, 1 | α)

]
.

I The ATE can be identified by

E

[
DY

π (X | β)
− D − π (X | β)

π (X | β)
m (X, 1 | α)

]
−E

[
(1−D)Y

1− π (X | β)
− D − π (X | β)

1− π (X | β)
m (X, 0 | α)

]
.

I Note that the identification of the ATE requires one of the
models is correct.
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I The AIPW estimator is obtained by the following multiple step
procedure:
1. Estimate α, e.g., by OLS;
2. Estimate β, e.g., by MLE;
3. Estimate the sample analog of the doubly robust moment

condition:

1

n

n∑
i=1

 DiYi

π
(
Xi | β̂

) − Di − π
(
Xi | β̂

)
π
(
Xi | β̂

) m (Xi, 1 | α̂)


− 1

n

n∑
i=1

 (1−Di)Yi

1− π
(
Xi | β̂

) − Di − π
(
Xi | β̂

)
1− π

(
Xi | β̂

) m (Xi, 0 | α̂)

 .

49 / 52



Distributional treatment parameters

I Parameters of interest may depend on the joint distribution of
(Y (0) , Y (1)).

I Pr [Y (1) > Y (0)]: probability of benefiting from treatment;
Pr [Y (1) > c | Y (0) < c]: probability of being above the
poverty line with treatment among those who would be below
the poverty line without treatment.

I Median [Y (1)− Y (0)] 6= Median [Y (1)]−Median [Y (0)], in
comparison with ATE = E [Y (1)]− E [Y (0)], which depends
on only marginal distributions.

I It is possible to have Median [Y (1)− Y (0)] < 0 (most people
are hurt by the treatment) but E [Y (1)− Y (0)] > 0, if a
small fraction of people benefit a lot from the treatment.
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I Even with a randomized experiment, one cannot identify
distributional treatment parameters without more
assumptions/structure.

I Random experiments allow one to identify distribution of Y (0)
from those randomly denied treatment, and to identify the
distribution of Y (1) from those randomly assigned to
treatment, and thus to identify parameters that depend only
on the marginal distributions.

I One never observes Y (0) and Y (1) for the same individual,
and thus randomized experiments do not identify the
dependence between Y (0) and Y (1).
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Deconvolution

I The earliest method is to impose the assumption that
Y (1)− Y (0) is independent from Y (0). See Heckman, Smith
with Clements (1997) for details.

I But this assumption is hard to justify and there are certain
issues with the estimation method.
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