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Regression Model and Least Squares

Regression model

A common question in econometrics is to study the effect of one group of variables Xi, usually called
the regressors, on another Yi, the dependent variable. An econometrician observes the random data:

(Y1,X1) , (Y2,X2) , . . . (Yn,Xn) , (1)

where for i = 1, . . . , n, Yi is a random variable and Xi is a random k-vector:

Xi =


Xi,1

Xi,2

...
Xi,k

 .

A pair (Yi,Xi) is called the observation, and the collection of observations in (1) is called the sample.
The vector Xi collects the values of k variables for observation i.

The joint distribution of (1) is called the population. The population does not correspond to any
physical population, but to a probability space. In a cross-sectional framework (each observation is a
different individual or a firm etc.), it is often natural to assume that all observations are independently
drawn from the same distribution. In this case, the population is described by the distribution of a
single observation (Y1,X1) , which can be stated as well as (Yi,Xi), since (1) are iid for i = 1, . . . , n.
Note that the iid assumption does not imply that Yi and Xi are independent, but rather that the
random vector (Yi,Xi) is independent from (Yj ,Xj) for i 6= j. At the same time, Yi and Xi are still
can be related.

In cross-sections, the relationship between the regressors and the dependent variable is modelled
through the conditional expectation E (Yi|Xi) . The deviation of Yi from its conditional expectation is
called the error or residual :

ei = Yi − E (Yi|Xi) . (2)

Contrary to Xi and Yi, the residual ei is not observable, since the conditional expectation function is
unknown to the econometrician.

In the parametric framework, it is assumed that the conditional expectation function depends on
a number of unknown constants or parameters, and that the functional form of E (Yi|Xi) is known. In
the linear regression model, it is assumed that E (Yi|Xi) is linear in the parameters:

E (Yi|Xi) = β1Xi,1 + β2Xi,2 + . . .+ βkXi,k

= X ′iβ, (3)
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where

β =


β1

β2
...
βk


is a k-vector of unknown constants. The linearity of E (Yi|Xi) can be justified, for example, by saying
that (Yi,Xi) jointly has a multivariate normal distribution. Since βj = ∂E(Yi|Xi)

∂Xi,j
, the vector β is a

vector of marginal effects of Xi, i.e. βj gives the change in the conditional mean of Yi per unit change
in Xi,j , while holding the values of other variables (Xi,l for l 6= j) fixed. One of the objectives is
estimation of unknown β from the sample (1).

Note that combining together equations (2) and (3), one can write:

Yi =X
′
iβ + ei. (4)

By definition (2),
E (ei|Xi) = 0.

This implies, that the regressors contain no information on the deviation of Yi from its conditional
expectation. Further, the Law of Iterated Expectation (LIE) implies that the residuals have zero mean:
Eei = 0. If (Yi,Xi) are iid, then the residuals {ei : i = 1, . . . , n} are iid as well.

In the classical regression model, it is assumed that the variance of the errors ei is independent of
the regressors and the same for all observations:

Var (ei|Xi) = σ2,

for some constant σ2 > 0. This property is called homoskedasticity.

Estimation by the method of moments

One of the objectives of econometric analysis is estimation of unknown parameters β and σ2. An
estimator is any function of the sample {(Yi,Xi) : i = 1, . . . , n}. An estimator can depend on the
unknown residuals ei or unknown parameters like β only through the observed variables Y and X.
An estimator usually is not unique, i.e. there exists a number of alternative estimators for the same
parameter.

One of the oldest methods of finding estimators is called the method of moments (MM). The MM
says to replace population moments (expectations) with the corresponding sample moments (averages).
The condition E (ei|Xi) = 0 imply that at the true value of β,

0 = E (eiXi)

= E
((
Yi −X ′iβ

)
Xi

)
. (5)

Let β̂ be an estimator of β. According to the MM, we replace expectation in (5) with the sample
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average:

0 = n−1
n∑

i=1

(
Yi −X ′iβ̂

)
Xi

= n−1
n∑

i=1

XiYi − n−1
n∑

i=1

XiX
′
iβ̂.

(Note that Yi −X ′iβ̂ is a scalar). Denote

X =


X

′
1

X ′2
...
X ′n

 =


X1,1 X1,2 · · · X1,k

X2,1 X2,2 · · · X2,k

...
...

. . .
...

Xn,1 Xn,k · · · Xn,k


n×k

and Y =


Y1

Y2
...
Yn


n×1

.

Solving for β̂, one obtains:

β̂ =

(
n−1

n∑
i=1

XiX
′
i

)−1
n−1

n∑
i=1

XiYi

=

(
n∑

i=1

XiX
′
i

)−1 n∑
i=1

XiYi

=
(
X ′X

)−1
X ′Y . (6)

To show that X ′X =
∑n

i=1XiX
′
i, note that

X ′X =


X

′
1

X ′2
...
X ′n


′

X
′
1

X ′2
...
X ′n



=
(
X1 X2 . . . Xn

)

X

′
1

X ′2
...
X ′n


= X1X

′
1 +X2X

′
2 + . . .+XnX

′
n

=

n∑
i=1

XiX
′
i.

The expressionX ′iβ̂ gives the estimated regression line, with Ŷi =X ′iβ̂ being the fitted (or predicted)
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value of Yi, and êi = Yi −X ′iβ̂ being the sample residual,

ê = Y −Xβ̂ =


ê1

ê2
...
ên

 .

The vector ê is a function of the estimator of β. In the case of the MM estimator, the sample residuals
have to satisfy the sample normal equation:

0 = X ′ê (7)

=

n∑
i=1

êiXi

=


∑n

i=1 êiXi,1∑n
i=1 êiXi,2

...∑n
i=1 êiXi,k

 .

If the model contains an intercept, i.e. Xi,1 = 1 for all i, then the normal equation implies that∑n
i=1 êi = 0.

In order to estimate σ2, write:

σ2 = Ee2i
= E

(
Yi −X ′iβ

)2
.

Since β is unknown, we must replace it by its MM estimator:

σ̂2 = n−1
n∑

i=1

(
Yi −X ′iβ̂

)2
.

Least Squares

Let b be an estimator of β. The the ordinary least squares (OLS) estimator is an estimator of β that
minimizes the sum-of-squared errors function:

S(b) =

n∑
i=1

(
Yi −X ′ib

)2
= (Y −Xb)′ (Y −Xb) .

It turns out that β̂, the MM estimator presented in the previous section, is the OLS estimator as
well. In order to show that, write

S(b) = (Y −Xb)′ (Y −Xb)

=
(
Y −Xβ̂ +Xβ̂ −Xb

)′ (
Y −Xβ̂ +Xβ̂ −Xb

)
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=
(
Y −Xβ̂

)′ (
Y −Xβ̂

)
+
(
Xβ̂ −Xb

)′ (
Xβ̂ −Xb

)
+2
(
Y −Xβ̂

)′ (
Xβ̂ −Xb

)
=

(
Y −Xβ̂

)′ (
Y −Xβ̂

)
+
(
β̂ − b

)′
X ′X

(
β̂ − b

)
+2ê′X

(
β̂ − b

)
(equals zero because of the normal equations)

=
(
Y −Xβ̂

)′ (
Y −Xβ̂

)
+
(
β̂ − b

)′
X ′X

(
β̂ − b

)
.

Minimization of S(b) is equivalent to minimization of
(
β̂ − b

)′
X ′X

(
β̂ − b

)
, because

(
Y −Xβ̂

)′ (
Y −Xβ̂

)
is not a function of b. If X is of full column rank, X ′X is a positive definite matrix, and therefore(

β̂ − b
)′
X ′X

(
β̂ − b

)
≥ 0,

where
(
β̂ − b

)′
X ′X

(
β̂ − b

)
= 0 if and only if β̂ − b = 0.

Alternatively, one can show that β̂ as defined in (6) is the OLS estimator, by taking the derivative

of S(b) with respect to b, and solving the first order condition ∂S(β̂)
∂b = 0. Write

S(b) = Y ′Y − 2b′X ′Y + b′X ′Xb.

Using the fact that for a symmetric matrix A we have that

∂x′Ax

∂x
= 2Ax,

the first order condition is
∂S
(
β̂
)

∂b
= −2X ′Y + 2X ′Xβ̂ = 0. (8)

Solving for β̂, one obtains:
β̂ =

(
X ′X

)−1
X ′Y . (9)

Note also that the first order condition (8) can be written asX ′
(
Y −Xβ̂

)
= 0, which gives us normal

equation (7).
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