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INFERENCE IN HIGH DIMENSIONAL PANEL MODELS WITH AN

APPLICATION TO GUN CONTROL

ALEXANDRE BELLONI, VICTOR CHERNOZHUKOV, CHRISTIAN HANSEN, AND DAMIAN KOZBUR

Abstract. We consider estimation and inference in panel data models with additive unob-

served individual specific heterogeneity in a high dimensional setting. The setting allows the

number of time varying regressors to be larger than the sample size. To make informative

estimation and inference feasible, we require that the overall contribution of the time varying

variables after eliminating the individual specific heterogeneity can be captured by a rela-

tively small number of the available variables whose identities are unknown. This restriction

allows the problem of estimation to proceed as a variable selection problem. Importantly, we

treat the individual specific heterogeneity as fixed effects which allows this heterogeneity to be

related to the observed time varying variables in an unspecified way and allows that this het-

erogeneity may be non-zero for all individuals. Within this framework, we provide procedures

that give uniformly valid inference over a fixed subset of parameters in the canonical linear

fixed effects model and over coefficients on a fixed vector of endogenous variables in panel data

instrumental variables models with fixed effects and many instruments. We present simulation

results in support of the theoretical developments and illustrate the use of the methods in an

application aimed at estimating the effect of gun prevalence on crime rates.

Key Words: panel data, fixed effects, partially linear model, instrumental variables, high

dimensional-sparse regression, inference under imperfect model selection, uniformly valid in-

ference after model selection, clustered standard errors

1. Introduction

The use of panel data is extremely common in empirical economics. Panel data is appealing

because it allows researchers to estimate the effects of variables of interest while accounting for

time invariant individual specific heterogeneity in a flexible manner. For example, the widely

used linear fixed effects model treats individual specific heterogeneity as a set of additive fixed

effects to be estimated jointly with other model parameters and thus allows estimation of
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We thank Stéphane Bonhomme, Elena Manresa, and seminar participants at UIUC, ETH Zurich, Toulouse

School of Economics, Penn. State, Northwestern, UC Santa Barbara, and cemmap conference “Economic and

Econometric Applications of Big Data” for helpful comments. We gratefully acknowledge financial support from

the ETH Postdoctoral Fellowship and the NSF.

1

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
Sa

nt
a 

B
ar

ba
ra

] 
at

 2
3:

36
 2

8 
M

ar
ch

 2
01

6 



2 ALEXANDRE BELLONI, VICTOR CHERNOZHUKOV, CHRISTIAN HANSEN, AND DAMIAN KOZBUR

the common slope parameters of the model without imposing any structure over the additive

individual specific heterogeneity.

Many panel data sets also have a large number of time varying variables available for each

observation; i.e. they are “high dimensional” data. The large number of available variables

may arise because the number of measured characteristics is large. For example, many panel

data analyses in economics make use of county, state, or country level panels where there is a

large set of measured characteristics and aggregates such as output, employment, demographic

characteristics, etc. available for each observation. A large number of time varying variables

may also be present due to a researcher wishing to allow for flexible dependence of an outcome

variable on a small set of observed time varying covariates and thus considering a variety of

transformations and interactions of the underlying set of variables. Identification of effects of

interest in panel data contexts is also often achieved through a strategy where identification

becomes more plausible as one allows for flexible trends that may differ across treatment states.

Allowing for flexible trends that may differ based on observable characteristics may then be

desirable but potentially introduces a large number of control variables.

A difficulty in high dimensional settings is that useful predictive models and informative

inference about model parameters is complicated by the presence of the large number of ex-

planatory variables. For example, the ordinary least squares estimator will fit the data perfectly

if one uses a linear regression model in which there are exactly as many linearly independent

explanatory variables as there are observations. However, the estimated model is likely to

provide very poor out-of-sample predictions because the model estimated by unrestricted least

squares is overfit. The least squares fit captures not just the signal about how the predictor

variables may be used to forecast the outcome but also perfectly captures the noise in the

given sample which is not useful for generating out-of-sample predictions. Constraining the

estimated model to avoid perfectly fitting the sample data, or “regularization,” is necessary

for building a useful predictive model. Similarly, informative inference about parameters in a

linear regression model is clearly impossible if the number of explanatory variables is larger

than the sample size if one is unwilling to impose additional model structure.

A useful structure which has been employed in the recent econometrics literature focusing

on inference in high dimensional settings is approximate sparsity; see, for example, Belloni,

Chernozhukov, and Hansen (2010), Belloni, Chen, Chernozhukov, and Hansen (2012), and Bel-

loni, Chernozhukov, and Hansen (2014). A leading example is the approximately sparse linear

regression model which is characterized by having many covariates of which only a small num-

ber are important for predicting the outcome.Approximately sparse models nest conventional

parametric regression models as well as standard sieve and series based nonparametric regres-

sion models. In addition to nesting standard econometric models, the framework is appealing
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INFERENCE IN HIGH DIMENSIONAL PANEL DATA 3

as it reduces the problem of finding a good predictive model to a variable selection problem.

Estimation methods appropriate for this framework also yield models with a relatively small

set of variables which aids interpretability of the results and corresponds to the usual approach

taken in empirical economics where models are typically estimated using a small number of

control variables.

There are a variety of sensible variable selection estimators that are appropriate for esti-

mating approximately sparse models. For example, `1-penalized methods such as the Lasso

estimator of Frank and Friedman (1993) and Tibshirani (1996) have been proposed for model

selection problems in high dimensional least squares problems in part because they are compu-

tationally efficient. Many `1-penalized methods and related methods have been shown to have

good estimation properties with i.i.d. data even when perfect variable selection is not feasible;

see, e.g., Candès and Tao (2007), Meinshausen and Yu (2009), Bickel, Ritov, and Tsybakov

(2009), Huang, Horowitz, and Wei (2010), Belloni and Chernozhukov (2013) and the references

therein. Such methods have also been shown to extend to nonparametric and non-Gaussian

cases as in Bickel, Ritov, and Tsybakov (2009) and Belloni, Chen, Chernozhukov, and Hansen

(2012), the latter of which also allows for conditional heteroscedasticity.

While the models and methods mentioned above are useful in a variety of contexts, they do

not immediately apply to standard panel data models. There are two key points of departure

between conventional approximately sparse high dimensional models and conventional panel

data models used in empirical economics. The first is that the approximately sparse framework

seems highly inappropriate for usual beliefs about individual specific heterogeneity in fixed

effects models.1 Specifically, the approximately sparse structure would imply that individual

specific heterogeneity differs from some constant level for only a small number of individuals

and may be completely ignored for the vast majority of individuals.

The second key difference is that the assumption of independent observations is inappro-

priate for many panel data sets used in economics. Many economic panels appear to exhibit

substantial correlation between observations within the same cross-sectional unit of observa-

tion. It is well-known that failing to account for this correlation when doing inference about

model parameters in panel data with a small number of covariates may lead to tests with

substantial size distortions. This concern has led to the routine use of “clustered standard

errors” which are robust to within-individual correlation and heterogeneity across individuals

in empirical research; see Arellano (1987), Bertrand, Duflo, and Mullainathan (2004), and

Hansen (2007) among others. In the context of variable selection in high dimensional models,

1There are other natural alternatives to dimension reduction over individual specific heterogeneity. See, e.g.

Altonji and Matzkin (2005), Bester and Hansen (2009), Bester and Hansen (2014), and Bonhomme and Manresa

(2013) for some recent examples.
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4 ALEXANDRE BELLONI, VICTOR CHERNOZHUKOV, CHRISTIAN HANSEN, AND DAMIAN KOZBUR

failing to account for this correlation may result in substantial understatement of sampling

variability. This understatement of sampling variability may then lead to a variable selection

device selecting too many variables, many of which have no true association to the outcome of

interest. The presence of these spuriously selected variables may have a substantial negative

impact on the resulting estimator.

A key contribution of this paper is offering a variant of the Lasso estimator that accommo-

dates a clustered covariance structure (Cluster-Lasso). We provide formal conditions under

which the estimator performs well in the sense of returning a sparse estimate and having good

forecasting and rate of convergence properties. By providing results allowing for a clustered

error structure, we are also able to allow for the presence of unrestricted additive individual

specific heterogeneity which are treated as fixed effects that are partialed out of the model

before variable selection occurs. Accommodating this structure requires partialing out a num-

ber of covariates that is proportional to the sample size under some asymptotic sequences we

consider. In general, partialing out a number of variables proportional to the sample size will

induce a non-standard, potentially highly dependent covariance structure in the partialed-out

data. The structure of the fixed effects model is such that partialing out the fixed effects can-

not induce correlation across individuals, though it may induce strong correlation within the

observations for each individual. Because this structure is already allowed for in the clustered

covariance structure, partialing out the fixed effects poses no additional burden after allowing

for clustering.

The second contribution of this paper is taking the derived performance bounds for the

proposed Lasso variant and using them to provide methods for doing valid inference follow-

ing variable selection in two canonical models with high dimensional components: the linear

instrumental variables (IV) regression with high dimensional instruments and additive fixed

effects and the partially linear treatment model with high dimensional controls and additive

fixed effects. Inference in these settings is complicated due to the fact that variable selection

procedures inevitably make model selection mistakes which may result in invalid inference fol-

lowing model selection; see Pötscher (2009) and Leeb and Pötscher (2008) for examples. It is

thus important to offer procedures that are robust to such model selection mistakes. To ad-

dress this concern, we follow the approach of Belloni, Chen, Chernozhukov, and Hansen (2012)

in the IV model and Belloni, Chernozhukov, and Hansen (2014) in the partially linear model

making use of the Cluster-Lasso to accommodate within-individual dependence and partial-

ing out of fixed effects. We show that standard inference following these procedures results

in inference about model parameters of interest that is uniformly valid within a large class

of approximately sparse regression models as long as a clustered covariance estimator is used

in estimating the parameters’ asymptotic variance. The results of this paper thus allow valid

inference about a prespecified, fixed set of model parameters of interest in canonical panel data
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INFERENCE IN HIGH DIMENSIONAL PANEL DATA 5

models with additive fixed effects in the realistic scenario where a researcher is unsure about

the exact identities of the relevant set of variables to be included in addition to the variables

of interest and the fixed effects.2

In addition to theoretical guarantees, we illustrate the performance of the proposed methods

through simulation examples and an empirical example. In the simulations, we consider a

fixed effects IV model and a conventional linear fixed effects model. The most interesting

feature of the simulation results is that the Cluster-Lasso-based procedures perform markedly

better than variable selection procedures that do not allow for clustering. This difference

in performance suggests that additional modifications of Lasso-type procedures to account for

other dependence structures may be worthwhile. In the empirical example, we use our methods

to reexamine the Cook and Ludwig (2006) study of the effect of guns on crime using a much

broader set of controls than the original paper. Our findings are largely consistent with those

of Cook and Ludwig (2006) despite allowing for a much richer set of conditioning information.

The remainder of this paper is organized as follows. In Section 2, we present a variant of

the Lasso estimator that is appropriate for high-dimensional panel data models with within

group dependence. We present formal results for this Lasso estimator in Section 3. In Section

4, we apply the results from Section 3 to doing inference following variable selection in linear

instrumental variables models with fixed effects and the standard linear fixed effects model.

Section 5 contains the simulation results, and Section 6 contains the empirical example. We

outline a feasible implementation algorithm in the appendix. All proofs of formal results and

additional simulation results are available in a further supplementary appendix.

2. Dimension Reduction and Regularization via Lasso Estimation in Panels

An appealing method for estimating sparse high dimensional linear models is the Lasso.

Lasso estimates regression coefficients by minimizing a least squares objective plus an `1 penalty

term. We begin with an informal discussion of Lasso in linear models with fixed effects before

proceeding with more precise specifications and modeling assumptions. Consider the model

yit = x′itβ + αi + εit, i = 1, ..., n, t = 1, ..., T,

where yit is an outcome of interest, xit are covariates, αi are individual specific effects, and

εit is an idiosyncratic disturbance term which is mean zero conditional on covariates but may

have dependence within an individual. We abstract from issues arising from unbalanced panels

for notational convenience but note that the arguments go through immediately provided that

the missing observations are missing at random.

2In recent complementary work, Ando and Bai (2015a) and Ando and Bai (2015b) consider penalized estima-

tion in panel data models with a rich additive interactive fixed effects structure under fixed model asymptotics.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
Sa

nt
a 

B
ar

ba
ra

] 
at

 2
3:

36
 2

8 
M

ar
ch

 2
01

6 



6 ALEXANDRE BELLONI, VICTOR CHERNOZHUKOV, CHRISTIAN HANSEN, AND DAMIAN KOZBUR

2.1. Cluster-Lasso Estimation in Panel Models. The first step in our estimation strategy

is to eliminate the fixed effect parameters. For simplicity, we will always consider removing

the fixed effects by within individual demeaning but note that removing the fixed effects using

other differencing methods could be accommodated using similar arguments. We define

ẍit = xit −
1

T

T∑
t=1

xit.

We define the quantities ÿit and ε̈it similarly and note that the double dot notation will signify

deviations from within individual means throughout the paper. Eliminating the fixed effects

by substracting individual specific means leads to the “within model”:

ÿit = ẍ′itβ + ε̈it.

The Cluster-Lasso coefficient estimate β̂L is defined by the solution to the following penalized

minimization problem on the within model:

β̂L ∈ arg min
b

1

nT

n∑
i=1

T∑
t=1

(ÿit − ẍ′itb)2 +
λ

nT

p∑
j=1

φ̂j |bj |. (2.1)

Solving the problem (2.1) requires two user-specified tuning parameters: the main penalty level,

λ, and covariate specific penalty loadings, {φ̂j}pj=1. The main penalty parameter dictates

the amount of regularization in the Lasso procedure and serves to balance overfitting and

bias concerns. The covariate specific penalty loadings {φ̂j}pj=1 are introduced to allow us to

handle data which may be dependent within individual, heteroscedastic, and non-Gaussian. We

provide further discussion of the specific choices of penalty parameters in the next subsection.

We will also make use of a post model selection estimator; see for example Belloni and

Chernozhukov (2013). The Post-Cluster-Lasso estimator is defined with respect to the variables

selected by Cluster-Lasso: Î = {j : β̂Lj 6= 0}. The Post-Cluster-Lasso estimator is simply the

least squares estimator subject to the constraint that covariates not selected in the initial

Cluster-Lasso regression must have zero coefficients:

β̂PL = argmin
b: bj=0 ∀ j /∈Î

1

nT

n∑
i=1

T∑
t=1

(ÿit − ẍ′itb)2. (2.2)

As discussed in Section 3, the selected model Î has good properties under regularity conditions

and approximate sparsity of the coefficient β. Just as in Belloni and Chernozhukov (2013),

good properties of the selected set of variables will then translate into good properties for the

Post-Cluster-Lasso estimator.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
Sa

nt
a 

B
ar

ba
ra

] 
at

 2
3:

36
 2

8 
M

ar
ch

 2
01

6 



INFERENCE IN HIGH DIMENSIONAL PANEL DATA 7

2.2. Clustered Penalty Loadings. An important condition used in proving favorable per-

formance of Cluster-Lasso and inference following Cluster-Lasso-based model selection is the

use of penalty loadings and penalty parameters that dominate the score vector in the sense

that

λφ̂j
nT
> 2c

∣∣∣∣∣ 1

nT

n∑
i=1

T∑
t=1

ẍitj ε̈it

∣∣∣∣∣ for each 1 6 j 6 p, (2.3)

for some constant slack parameter c > 1. Belloni, Chernozhukov, and Hansen (2014) refer

to condition (2.3) as the “regularization event”. Note that the term 1
nT

∑n
i=1

∑T
t=1 ẍitj ε̈it

intuitively captures the sampling variability in learning about coefficient βj . The regularization

event thus corresponds to selecting penalty parameters large enough to dominate the noise in

estimating model coefficients. Looking at the structure of the Lasso optimization problem,

(2.1), we can see that (2.3) leads to settings all coefficients whose magnitude is not big enough

relative to sampling noise exactly to zero in the Lasso solution. This property makes Lasso-

based methods appealing for forecasting and variable selection in sparse models where many

of the model parameters can be taken to be zero.

Given the importance of event (2.3) in verifying desirable properties of Lasso-type estimators,

it is key that penalty loadings and the penalty level are chosen so that (2.3) occurs with high

probability. The intuition for suitable choices can be seen by considering φ̂j = φj where

φ2
j =

1

nT

n∑
i=1

(
T∑
t=1

ẍitj ε̈it

)2

=
1

nT

n∑
i=1

T∑
t=1

T∑
t′=1

ẍitj ẍit′j ε̈itε̈it′ .

Note that the quantity φ2
j is a natural measure for the noise in estimating βj that allows

for arbitrary within-individual dependence. With these loadings, we can apply the moderate

deviation theorems for self-normalized sums due to Jing, Shao, and Wang (2003) to conclude

that

P (φ−1
j

1√
nT

∑n
i=1

∑T
t=1 ẍitj ε̈it > m)

P (N(0, 1) > m)
= o(1), uniformly in |m| = o(n1/6), j ∈ 1, ..., p.

It follows from this result and the union bound that setting λ large enough to dominate p

standard Gaussian random variables with high-probability, specifically as in (2.6), will imple-

ment condition (2.3) using φ̂j = φj . This form of loadings is an extension of the loadings

considered in Belloni, Chen, Chernozhukov, and Hansen (2012) which apply in settings with

non-Gaussian and heteroscedastic but independent data to the present setting where we need

to accommodate within-individual dependence.

In practice, the values {φj}pj=1 are infeasible since they depend on the unobservable ε̈it. To

make estimation feasible, we use preliminary estimates of ε̈it, denoted ε̂it, in forming feasible
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8 ALEXANDRE BELLONI, VICTOR CHERNOZHUKOV, CHRISTIAN HANSEN, AND DAMIAN KOZBUR

loadings:

φ̂2
j =

1

nT

n∑
i=1

(
T∑
t=1

ẍitj ε̂it

)2

=
1

nT

n∑
i=1

T∑
t=1

T∑
t′=1

ẍitj ẍit′j ε̂itε̂it′ . (2.4)

The ε̂it can be calculated through an iterative algorithm given in Appendix A which fol-

lows the algorithm given in Belloni, Chen, Chernozhukov, and Hansen (2012) and Belloni,

Chernozhukov, and Hansen (2014). We define the Feasible Cluster-Lasso and Feasible Post-

Cluster-Lasso estimates as the Cluster-Lasso and Post-Cluster-Lasso estimates using the fea-

sible penalty loadings. A key property of the feasible penalty loadings needed for validity of

the approach is that

`φj 6 φ̂j 6 uφj , with probability 1− o(1),

for some `→ 1 and u 6 C <∞, uniformly for j = 1, ..., p.
(2.5)

Under this condition and setting

λ = 2c
√
nTΦ−1(1− γ/2p) (2.6)

with γ = o(1), the regularization event (2.3) holds with probability tending to one.

It is worth noting that failure to use the clustered penalty loadings defined in (2.4) (or their

infeasible version) can lead to an inflated probability of failure of the regularization event.

When this event fails to hold, covariates which are only spuriously related with the outcome

have a non-negligable chance of entering the selected model. In the simulation experiments

provided in Section 5, we demonstrate how inclusion of such variables can be problematic for

post-model-selection inference.

3. Regularity Conditions and Performance Results for Cluster-Lasso Under

Grouped Dependence

This section gives conditions under which Cluster-Lasso and Post-Cluster-Lasso attains fa-

vorable performance bounds. These bounds are useful in their own right and are important

elements in establishing the properties of inference following Lasso variable selection discussed

in Section 4. In establishing our formal results, we consider the additive fixed effects model

yit = f(wit) + ei + εit, E[εit|wi1, ..., wiT ] = 0, i = 1, ..., n, t = 1, ..., T, (3.7)

where ei represents time invariant individual specific heterogeneity that is allowed to depend

on wi = {wit}Tt=1 in an unrestricted manner. Throughout, we will assume that {yit, wit}Tt=1

are i.i.d. across i but do not restrict the within individual dependence. We note that we could

allow for data that are i.n.i.d. across i at the cost of complicating the notation and statement
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INFERENCE IN HIGH DIMENSIONAL PANEL DATA 9

of the regularity conditions. Our results will hold under n → ∞, T fixed asymptotics and

n→∞, T →∞ joint asymptotics.3

A key distinction between the analysis in this paper and previous work on Lasso is allowing

for within-individual dependence. To aid discussion of this feature, we let

ıT := T min
16j6p

E[ 1
T

∑T
t=1 ẍ

2
itj ε̈

2
it]

E[ 1
T (
∑T

t=1 ẍitj ε̈it)
2]

= T min
16j6p

E[ 1
T

∑T
t=1 ẍ

2
itj ε̈

2
it]

E[φ2
j ]

be the index of information induced by the “time” or “within-group” dimension. This time

information index, ıT , is inversely related to the strength of within-individual dependence in

the scores and can vary between two extreme cases:

• ıT = 1, no information, corresponding to perfect dependence within the cluster i,

• ıT = T , maximal information, corresponding to perfect independence within i.

There are many interesting cases between these extremes. A leading case is where ıT ∝ T which

occurs when there is weak dependence within clusters and results in clustering only affecting

the constants in the Lasso performance bounds. The case where ıT ∝ T a for some 0 6 a < 1

corresponds to stronger forms of dependence within clusters. Our results will allow for the two

extreme cases as well as those falling between these two extremes. It should be noted that our

results allow unit-root and other non-stationary behavior of data (xit, εit) across the temporal

dimension t in the large n, fixed T setting. However, unit-root and other processes that may

result in unbounded unconditional moments are formally not covered in our results under the

large n, large T case as we impose boundedness of the first few unconditional moments. We

conjecture that under this scenario our methods for choosing penalty parameters still apply

and that our proofs can be extended to establish rate and inference results.

We begin the presentation of formal conditions by defining approximately sparse models.

Note that the model f as well as the set of covariates wit may depend on the sample size, but

we suppress this dependence for notational convenience.

Condition ASM. (Approximately Sparse Model). The function f(wit) is well-

approximated by a linear combination of a dictionary of transformations, xit = XnT (wit),

where xit is a p × 1 vector with p � n allowed, and XnT is a measurable map. That is, for

each i and t

f(wit) = x′itβ + r(wit),

3To accommodate both n→∞, T fixed asymptotics and n→∞, T →∞ joint asymptotics in a simple and

unified manner, we maintain strict exogeneity of wi throughout and do not consider time effects. We note that

time effects may be included easily under n→∞, T fixed asymptotics.
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10 ALEXANDRE BELLONI, VICTOR CHERNOZHUKOV, CHRISTIAN HANSEN, AND DAMIAN KOZBUR

where the coefficient β and the remainder term r(wit) satisfy

‖β‖0 6 s = o(nıT ) and

[
1

nT

n∑
i=1

T∑
t=1

r(wit)
2

]1/2

6 As = OP(
√
s/nıT ).

We note that the approximation error r(wit) is restricted to be of the same order as or smaller

than sampling uncertainty in β provided that the true model were known. Because we will

mainly be concerned with the within model, we note that it is straightforward to show that

ÿit = f̈(wit) + ε̈it satisfies Condition ASM when the original model does.

The next assumption controls the behavior to the empirical Gram matrix. Let M̈ be the

p× p matrix of the sample covariances between the variables ẍitj . Thus,

M̈ = {Mjk}pj,k=1, Mjk =
1

nT

n∑
i=1

T∑
t=1

ẍitj ẍitk.

In standard regression analysis where the number of covariates is small relative to the sample

size, a conventional assumption used in establishing desirable properties of estimators of β is

that M̈ has full rank. In the high dimensional setting, M̈ will be singular if p > n and may have

an ill-behaved inverse even when p < n. However, good performance of the Lasso estimator only

requires good behavior of certain moduli of continuity of M̈ . There are multiple formalizations

and moduli of continuity that can be considered in establishing the good performance of Lasso;

see Bickel, Ritov, and Tsybakov (2009). We focus our analysis on a simple eigenvalue condition

that is suitable for most econometric applications. It controls the minimal and maximal m-

sparse eigenvalues of M̈ defined as

ϕmin(m)(M̈) = min
δ∈∆(m)

δ′M̈δ and ϕmax(m)(M̈) = max
δ∈∆(m)

δ′M̈δ. (3.8)

where ∆(m) = {δ ∈ Rp : ‖δ‖0 6 m, ‖δ‖2 = 1}, is the m-sparse subset of a unit sphere.

Condition SE. (Sparse Eigenvalues) For any C > 0, there exist constants 0 < κ′ < κ′′ <

∞, which do not depend on n but may depend on C, such that with probability approaching

one, as n→∞, κ′ 6 ϕmin(Cs)(M̈) 6 ϕmax(Cs)(M̈) 6 κ′′.

Condition SE requires only that certain “small” Cs×Cs submatrices of the large p×p empirical

Gram matrix are well-behaved. This condition seems reasonable and will be sufficient for

the results that follow. Note that we prefer to write the eigenvalue conditions in terms of

the demeaned covariates as it is straightforward to show that the conditions continue to hold

under data generating processes where the covariates have nonzero within-individual variation.

Condition SE could be shown to hold under more primitive conditions by adapting arguments

found in Belloni and Chernozhukov (2013) which build upon results in Zhang and Huang (2008)

and Rudelson and Vershynin (2008); see also Rudelson and Zhou (2011).
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INFERENCE IN HIGH DIMENSIONAL PANEL DATA 11

The final condition collects various rate and moment restrictions. The conditions are ex-

pressed in terms of demeaned quantities for convenience and will involve the following third

moment:

$j =

E

∣∣∣∣∣ 1√
T

T∑
t=1

ẍitj ε̈it

∣∣∣∣∣
3
1/3

.

Condition R. (Regularity Conditions) Assume that for data {yit, wit} that are i.i.d. across

i, the following conditions hold with xit defined as in Condition ASM with probability 1− o(1):

(i)
(

1
T

∑T
t=1 E[ẍ2

itj ε̈
2
it]
)

+
(

1
T

∑T
t=1 E[ẍ2

itj ε̈
2
it]
)−1

= O(1),

(ii) 1 6 max16j6p φj/min16j6p φj = O(1),

(iii) 1 6 max16j6p$j/
√

Eφ2
j = O(1),

(iv) log3(p) = o(nT ) and s log(p ∨ nT ) = o(nıT ),

(v) max16j6p |φj −
√

Eφ2
j |/
√

Eφ2
j = o(1).

This condition is sufficient for verifying that Cluster-Lasso and Post-Cluster-Lasso have

good model selection and prediction properties under the high-level assumption (2.5) on the

availability of valid feasible data loadings. In the appendix we provide additional conditions

under which we exhibit validity of data-dependent loadings constructed using an iterative

algorithm.

Theorem 1 (Model Selection Properties of Cluster-Lasso and Post-Cluster-Lasso). Let {Pn,T }
be a sequence of probability laws, such that {(yit, wit, xit)}Tt=1 ∼ Pn,T , i.i.d. across i for which

n, T → ∞ jointly or n → ∞, T fixed. Suppose that Conditions ASM, SE and R hold for

probability measure P = PPn,T induced by Pn,T . Consider a feasible Cluster-Lasso estimator

with penalty level (2.6) and loadings obeying (2.5). Then the data-dependent model Î selected

by a feasible Cluster-Lasso estimator satisfies with probability 1− o(1), ŝ = |Î| ≤ Ks for some

constant K > 0 that does not depend on n. In addition, the following relations hold for the

Cluster-Lasso estimator (β̂ = β̂L) and Post-Cluster-Lasso estimator (β̂ = β̂PL):

1

nT

n∑
i=1

T∑
t=1

(ẍ′itβ̂ − ẍ′itβ)2 = OP (s log(p ∨ nT )/nıT ) ,

‖β̂ − β‖2 = OP

(√
s log(p ∨ nT )/nıT

)
,

‖β̂ − β‖1 = OP

(√
s2 log(p ∨ nT )/nıT

)
.
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12 ALEXANDRE BELLONI, VICTOR CHERNOZHUKOV, CHRISTIAN HANSEN, AND DAMIAN KOZBUR

4. Applications of Cluster-Lasso

The bounds derived in Section 3 allow us to derive the properties of inference methods

following variable selection with the Cluster-Lasso. In this section, we use these results to

provide two different applications of using Cluster-Lasso to select variables for use in causal

inference.

4.1. Selection of Instruments. In this section, we follow Belloni, Chen, Chernozhukov, and

Hansen (2012) who consider using Post-Lasso to estimate optimal instruments. Using Lasso-

based methods to form first-stage predictions in IV estimation provides a practical approach to

obtaining the efficiency gains from using optimal instruments while dampening the problems

associated with many instruments. We prove that Cluster-Lasso-based procedures produce

first-stage predictions that provide good approximations to the optimal instruments when

controlling for individual heterogeneity through fixed effects.

We consider the following model:

yit = αdit + ei + εit (4.9)

dit = h(wit) + fi + uit (4.10)

where E[εituit] 6= 0 but E[εit|wi1, ..., wiT ] = E[uit|wi1, ..., wiT ] = 0. The extension to dit an

r × 1 vector with r � nT fixed is straightforward and omitted for convenience. The results

also carry over immediately to the case with a small number of included exogenous variables

yit = αdit + x′itβ + ei + εit where xit is a k× 1 vector with k � nT fixed that will be partialed

out with the fixed effects.

We consider estimation of the parameter of interest α, the coefficient on the endogenous

regressor, using Cluster-Lasso to select instruments. We assume that the first-stage follows

an approximately sparse model with h(wit) = z′itπ + r(wit) where we let zit = z(wit) denote

a dictionary of transformations of underlying instrument wit and π be a sparse coefficient as

in Condition ASM. After eliminating the fixed effect terms through demeaning, the model

reduces to

ÿit = αd̈it + ε̈it (4.11)

d̈it = ḧ(wit) + üit = D̈it + üit = z̈′itπ + r̈(wit) + üit (4.12)

where we set Dit = h(wit) for notational convenience. By Theorem 1, the Cluster-Lasso

estimate of the coefficients on z̈it when we use z̈it to predict d̈it, π̂, will be sparse with high

probability. Letting Îπ = {j : π̂j 6= 0}, the Cluster-Lasso-based estimator of α may be
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INFERENCE IN HIGH DIMENSIONAL PANEL DATA 13

calculated by standard two stage least squares using only the instruments selected by Cluster-

Lasso: z̈
itÎπ

:= (z̈itj)j∈Îπ . That is, we define the Post-Cluster-Lasso IV estimator for α as

α̂ = Q̂−1 1

nT

n∑
i=1

T∑
t=1

D̂itÿit where Q̂ =
1

nT

n∑
i=1

T∑
t=1

d̈itD̂it, (4.13)

D̂it is the fitted value from the regression of d̈it on (z̈itj)j∈Îπ , and ε̂it = ÿit − α̂d̈it.

We then define an estimator of the asymptotic variance of α̂, which will be used to perform

inference for the parameter α after proper rescaling, as

V̂ = Q̂−1

(
1

nT

n∑
i=1

T∑
t=1

T∑
t′=1

d̈itd̈it′ ε̂itε̂it′

)
Q̂−1. (4.14)

Scaled appropriately, the estimate V̂ will be close to the quantity

V =
ıDT
T
Q−1ΩQ−1, with probability 1− o(1)

where

Q = E[
1

T

T∑
t=1

D̈2
it], Ω =

1

nT

n∑
i=1

T∑
t=1

T∑
t′=1

E[D̈itD̈it′ ε̈itε̈it′ ].

Finally, it is convenient to define the following quantities that are useful in discussing formal

conditions for our estimation procedure. We define appropriate moments and information

indices analogous to those used to derive properties of Cluster-Lasso and Post-Cluster-Lasso.

For any arbitrary random variables, A = {Ait}i6n,t6T , define

φ2(A) =
1

n

n∑
i=1

(
1√
T

T∑
t=1

Ait

)2

, $(A) = E

∣∣∣∣∣ 1√
T

T∑
t=1

Ait

∣∣∣∣∣
3
1/3

, ıT (A) = T
E
[

1
T

∑T
t=1A

2
it

]
E [φ2(A)]

.

For use in the instrumental variables estimation, we let

φ2
j = φ2({z̈itj üit}), $j = $({z̈itj üit}), ıT = min

j6p
ıT ({z̈itj üit})

φ2
D = φ2({D̈itε̈it}), $D = $({D̈itε̈it}), ıDT = ıT ({D̈itε̈it})

φ2
zjd

= φ2({z̈itj d̈it}), $zjd = $({z̈itj d̈it}), ı
zjd
T = ıT ({z̈itj d̈it})

φ2
zjε = φ2({z̈itj ε̈it}), $zjε = $({z̈itj ε̈it}), ı

zjε
T = ıT ({z̈itj ε̈it})

To derive asymptotic properties of these estimators, we will make use of the following con-

dition in addition to those assumed in Section 3.

Condition SMIV

(i) Sufficient conditions for Post-Cluster-Lasso: ASM, SE, R hold for model 4.10.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
Sa

nt
a 

B
ar

ba
ra

] 
at

 2
3:

36
 2

8 
M

ar
ch

 2
01

6 



14 ALEXANDRE BELLONI, VICTOR CHERNOZHUKOV, CHRISTIAN HANSEN, AND DAMIAN KOZBUR

(ii) Sufficient conditions for asymptotic normality of α̂ and consistency of
ıDT
T V̂ :

(a) E
[

1
T

∑T
t=1 D̈

2
it

]
, E
[

1
T

∑T
t=1 ε̈

2
itD̈

2
it

]
, E

[(
1
T

∑T
t=1 d̈

2
it

)2
]

are bounded uniformly from

above and away from zero, uniformly in n, T. Additionally, E
[(

1
T

∑T
t=1 ε̈

2
it

)q]
= O(1) for

some q > 4.

(b) $D/
√

Eφ2
D = O(1), max16j6p$zjε/

√
Eφ2

zjε = O(1),

(c) maxj
ı
zjε

T
T φ2

zjε = OP (1), 1
T φ

2
dD = OP(1), maxj

1
T φ

2
zjd

= OP (1)

(d) s2 log2(p∨nT )
nıT

max{1,max16j6p
ıDT
ı
zjε

T

} = o(1) and
ıDT
ıT
n2/q s log(p∨nT )

n = o(1)

The conditions assumed in Condition SMIV are fairly standard. Outside of moment con-

ditions, the main restriction in Condition SMIV is condition (ii)(a) that guarantees that the

parameter α would be strongly identified if D̈it could be observed. Coupled with the approx-

imately sparse model, this condition implies that using a small number of the variables in zit

is sufficient to strongly identify α which rules out the case of weak-instruments as in Staiger

and Stock (1997) and many-weak-instruments as in Chao, Swanson, Hausman, Newey, and

Woutersen (2012).4

Theorem 2 (Estimation and Inference in IV Models). Uniformly over all sequences {Pn,T }
for which {(yit, xit, zit)}Tt=1 ∼ Pn,T , i.i.d. across i, for which the instrumental variable model

holds, and for which condition SMIV holds,5,√
nıDT V

−1/2(α̂− α)
d−→ N(0, 1) and V −

ıDT
T
V̂

P→ 0.

This theorem verifies that the IV estimator formed with instruments selected by Cluster-

Lasso in a linear IV model with fixed effects is consistent and asymptotically normal. In

addition, one can use the result with V̂ defined in (4.14), which is simply the usual clustered

standard error estimator (Arellano, 1987), to perform valid inference for α following instrument

selection. Note that this inference will be valid uniformly over a large class of data generating

processes which includes cases where perfect instrument selection is impossible.

4.2. Selection of Control Variables. A second strategy for identifying structural effects in

economic research is based on assuming that variables of interest are as good as randomly

assigned conditional on time varying observables and time invariant fixed effects. Since this

approach relies on including the right set of time varying observables, a practical problem

4See also Hansen and Kozbur (2014) who consider many-weak-instruments in a p > n setting.
5More precisely, the convergence holds uniformly over sequences satisfying Condition SMIV, with the same

implied constants with n, T →∞ jointly or n→∞, T fixed.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
Sa

nt
a 

B
ar

ba
ra

] 
at

 2
3:

36
 2

8 
M

ar
ch

 2
01

6 



INFERENCE IN HIGH DIMENSIONAL PANEL DATA 15

researchers face is the choice of which control variables to include in the model. The high

dimensional framework provides a convenient setting for exploring data-dependent selection

of control variables. In this section, we consider the problem of selecting a set of variables

to include in a linear model from a large set of possible control variables in the presence of

unrestricted individual specific heterogeneity.

The structure of the Lasso optimization problem ensures that any estimated coefficient that

is not set to zero can be reliably differentiated from zero relative to estimation noise when (2.3)

holds while any coefficient that can not be distinguished reliably from zero will be estimated

to be exactly zero. This property complicates inference after model selection in approximately

sparse models which may have a set of variables with small but non-zero coefficients in addition

to strong predictors. In this case, satisfaction of condition (2.3) will result in excluding variables

with small but non-zero coefficients which may lead to non-negligible omitted variables bias and

irregular sampling behavior of estimates of parameters of interest. This intuition is formally

developed in Pötscher (2009) and Leeb and Pötscher (2008). Offering solutions to this problem

with fully independent data is the focus of a number of recent papers; see, for example, Belloni,

Chernozhukov, and Hansen (2010); Belloni, Chen, Chernozhukov, and Hansen (2012); Zhang

and Zhang (2014); Belloni, Chernozhukov, and Hansen (2013); Belloni, Chernozhukov, and

Hansen (2014); van de Geer, Bühlmann, Ritov, and Dezeure (2014); Javanmard and Montanari

(2014); Farrell (2013); and Belloni, Chernozhukov, Fernández-Val, and Hansen (2014). In this

section, we focus on extending the approach of Belloni, Chernozhukov, and Hansen (2014) to

the panel setting with dependence within individuals.

To be precise, we consider estimation of the parameter α in the partially linear additive

fixed effects panel model:

yit = ditα+ g(zit) + ei + ζit, E[ζit | zi1, ..., ziT , di1, ..., diT , ei] = 0, (4.15)

dit = m(zit) + fi + uit, E[uit | zi1, ..., ziT , fi] = 0, (4.16)

where yit is the outcome variable, dit is the policy/treatment variable whose impact α we

would like to infer. The analysis extends easily to the case where dit is an r × 1 vector where

r is fixed and is omitted for convenience. zit represents confounding factors on which we need

to condition, ei and fi are fixed effects which are invariant across time, and ζit and uit are

disturbances that are independent of each other. Data are assumed independent across i, and

dependence over time within individual is largely unrestricted.

The confounding factors zit affect the policy variable via the function m(zit) and the

outcome variable via the function g(zit). Both of these functions are unknown and poten-

tially complicated. We use linear combinations of control terms xit = P (zit) to approximate
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16 ALEXANDRE BELLONI, VICTOR CHERNOZHUKOV, CHRISTIAN HANSEN, AND DAMIAN KOZBUR

g(zit) = x′itβg + rg(zit) and m(zit) = x′itβm + rm(zit) with rg(zit) and rm(zit) being approx-

imation errors. In order to allow for a flexible specification and incorporation of pertinent

confounding factors, we allow the dimension, p, of the vector of controls, xit = P (zit), to be

large relative to the sample size. Upon substituting these approximation into (4.15) and (4.16)

and removing fixed effects, we are essentially left with a conventional linear fixed effects model

with a high dimensional set of potential confounding variables:

ÿit = d̈itα+ ẍ′itβg + r̈g(zit) + ζ̈it, (4.17)

d̈it = ẍ′itβm + r̈m(zit) + üit. (4.18)

Informative inference about α is not possible in this model without imposing further struc-

ture since we allow for p > n elements in xit. The additional structure is added by assuming

that condition ASM applies to both g(zit) and m(zit) which implies that exogeneity of dit may

be taken as given once one controls linearly for a relatively small number, s < n, of the vari-

ables in xit whose identities are a priori unknown. Under this condition, estimation of α may

then proceed by using variable selection methods to choose a set of relevant control variables

from among the set ẍit to use in estimating (4.17).

To estimate α in this environment, we adopt the post-double-selection method of Belloni,

Chernozhukov, and Hansen (2014). This method proceeds by first substituting (4.18) into

(4.17) to obtain predictive relationships for the outcome ÿit and the treatment d̈it in terms of

only control variables:

ÿit = ẍ′itπ + r̈RF (zit) + v̈it, (4.19)

d̈it = ẍ′itβm + r̈m(zit) + üit. (4.20)

We then use two variable selection steps. Cluster-Lasso is applied to equation (4.19) to select

a set of variables that are useful for predicting ÿit; we collect the controls xitj for which π̂j 6= 0

in the set ÎRF . Cluster-Lasso is then applied to equation (4.20) to select a set of variables that

are useful for predicting d̈it; we again collect the controls xitj for which β̂m,j 6= 0 in the set ÎFS .

The set of controls that will be used is then defined by the union Î = ÎFS ∪ ÎRF . Estimation

and inference for α may then proceed by ordinary least squares estimation of ÿit on d̈it and

the set of controls in Î using conventional clustered standard errors (Arellano, 1987).

We present additional moment and rate conditions before stating a result which can be used

for performing inference about α. We again define several moments using the same notation

introduced before condition SMIV:

φ2
xju = φ2

j,FS = φ2({ẍitj üit}), $xju = $j,FS = $({ẍitj üit}), ı
xju
T = ıT ({ẍitj üit}), ıFST = min

j6p
ı
xju
T

φ2
xjv = φ2

j,RF = φ2({ẍitj v̈it}), $xjv = $j,RF = $({ẍitj v̈it}), ı
xjv
T = ıT ({ẍitj v̈it}), ıRFT = min

j6p
ı
xjv
T
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INFERENCE IN HIGH DIMENSIONAL PANEL DATA 17

φ2
uζ = φ2({üitζ̈it}), $uζ = $({üitζ̈it}), ıuζT = ıT ({üitζ̈it})

φ2
xjζ

= φ2({ẍitj ζ̈it}), $xjζ = $({ẍitj ζ̈it}), ı
xjζ
T = ıT ({ẍitj ζ̈it})

φ2
ud = φ2({üitd̈it}), $ud = $({üitd̈it}), ıudT = ıT ({üitd̈it})

Condition SMPLM

(i) Sufficient conditions for Post-Cluster-Lasso: ASM, SE, R hold for models 4.19 and 4.20.

(ii) Sufficient conditions for asymptotic normality of α̂ and consistency of
ıDT
T V̂ :

(a) Q = E
[

1
T

∑T
t=1 ü

2
it

]
, E

[
1
T

∑T
t=1 ü

2
itζ̈

2
it

]
, E

[(
1
T

∑T
t=1 ü

2
it

)2
]

are bounded uniformly

from above and away from zero, uniformly in n, T . Additionally, E
[(

1
T

∑T
t=1 ζ̈

2
it

)q]
=

O(1), E
[(

1
T

∑T
t=1 ü

2
it

)q]
= O(1) and E

[(
1
T

∑T
t=1 d̈

2
it

)q]
= O(1) for some q > 4. |α| 6 B <∞.

(b) $uζ/
√

Eφ2
uζ = O(1), max

16j6p
$xjζ/

√
Eφ2

xjζ
= O(1), max

16j6p
$xju/

√
Eφ2

xju = O(1).

(c) maxj
ı
xjζ

T
T φ2

xjζ
= OP (1),

ıuζT
T φ

2
uζ = OP(1), maxj

ı
xju

T
T φ2

xju = OP (1), 1
T φ

2
ud = OP(1).

(d)
ıuζT

min{ıRFT ,ıFST ,minj{ı
xjζ

T }}

(
s+ n2/q

) (
maxi,t,j ẍ

2
itj

)
s log2(p∨nT )

n = oP(1).

Finally, we define the following variance estimators for the post double selection procedure:

V̂n = Q̂−1Ω̂Q̂−1 with Q̂ =
1

nT

n∑
i=1

T∑
t=1

û2
it, Ω̂ =

1

nT

n∑
i=1

T∑
t=1

T∑
t′=1

ûitûit′ ζ̂itζ̂it′ ,

and ûit = d̈it − ẍ′itβ̂m, ζ̂it = ÿit − α̂d̈it − ẍ′itβ̂g, β̂m = argmin
b: bj=0 ∀ j /∈Î

∑n
i=1

∑T
t=1(d̈it − ẍ′itb)

2,

(α̂, β̂′g)
′ = argmin

(a,b): bj=0 ∀ j /∈Î

∑n
i=1

∑T
t=1(ÿit − ad̈it − ẍ′itb)2.

Theorem 3 (Estimation and Inference on Treatment Effects). Uniformly over all sequences

{Pn} for which {(yit, dit, xit)}Tt=1 ∼ Pn, i.i.d. across i, for which Condition SMPLM holds,6

the Post-Double-Cluster-Lasso estimator α̂ satisfies√
nıuζT V

−1/2(α̂− α)
d−→ N(0, 1) and V −

ıuζT
T
V̂

P→ 0.

This theorem verifies that the OLS estimator which regresses ÿit on d̈it and the union of

variables selected by Cluster-Lasso from (4.19) and (4.20) is consistent and asymptotically nor-

mal with asymptotic variance that can be estimated with the conventional clustered standard

6More precisely, the convergence holds uniformly over sequences satisfying Condition SMPLM, with the same

implied constants with n, T →∞ jointly or n→∞, T fixed.
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18 ALEXANDRE BELLONI, VICTOR CHERNOZHUKOV, CHRISTIAN HANSEN, AND DAMIAN KOZBUR

error estimator. Inference based on this result will be valid uniformly over a large class of data

generating processes which includes cases where perfect variable selection is impossible.

5. Simulation Examples

The results in the previous sections suggest that Cluster-Lasso based estimates should have

good estimation and inference properties in panel models with individual specific heterogeneity

provided the sample size n is large. In this section, we provide simulation evidence about the

performance of our asymptotic approximation for inference about structural parameters in IV

models with fixed effects and many instruments and linear fixed effects models when Cluster-

Lasso is used for variable selection.

5.1. Simulation 1: IV. The first simulation illustrates the performance of the Cluster-Lasso

based IV estimator in a simple instrumental variables model with fixed effects and many

instruments. In our simulation experiments, we generate data from the linear IV model

yit = αdit + ei + εit

dit = z′itπ + fi + uit.

We generate disturbances according to

εit = ρεεit−1 + ν1,it

uit = ρuuit−1 + ν2,it

where

(
ν1,it

ν2,it

)
∼ N

((
0

0

)
,

(
1 ρν

ρν 1

))
iid

with initial conditions for εit and uit drawn from their stationary distribution. We generate

the individual heterogeneity ei for i = 1, ..., n as correlated normal random variables with

E[ei] = 0, Var(ei) = 4
T , and Corr(ei, ej) = .5|i−j| for all i and j. We set fi = ei. We draw the

instruments conditional on the fixed effects from

zitj = ei + ρzzi(t−1)j + ϕitj for t > 1 and zi1j =
ei

1− ρz
+

√
1

1− ρ2
z

ϕi1j

where ϕitj are normal random variables with E[ϕitj ] = 0, Var(ϕitj) = 1, and Corr(ϕitj , ϕitk) =

.5|j−k| that are independent across i and t. In all of our simulations, we set ρε = ρu = ρz = .8,

and we set ρν = .5. We also set α = .5. We redraw the disturbances ε and u at each simulation

replication but condition on one realization of the fixed effects and instruments. We consider

different sample sizes set to n = 50, 100, 150, 200 all with T = 10. Note that the instruments

are not valid without conditioning on the fixed effects within this structure. The fixed effects

are also dense in the sense that most of the generated effects will be small but non-zero.
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INFERENCE IN HIGH DIMENSIONAL PANEL DATA 19

The final features of the design are the number of instruments and the structure of the

coefficients on the instruments, π. We define the coefficient vector π as

πj = (−1)j−1

(
1√
s

1{j6s} +
1

j2
1{j>s}

)
, s = b1

2
n1/3c

for 1 6 j 6 p where bac returns the integer part of a.7 This design is not exactly sparse due

to the presence of the variables with coefficients 1
j2

but is approximately sparse as required by

condition ASM. Finally, we consider two different numbers of instruments, p = n × (T − 2)

and p = n× (T + 2), for each sample size and design of first-stage coefficients.

We report results from five different estimators. We consider IV estimates based on variables

selected using the clustered penalty loadings developed in this paper (Clustered Loadings). As

a comparison, we also consider IV estimates based on variables selected using the loadings that

are valid with heteroscedastic and independent data from Belloni, Chen, Chernozhukov, and

Hansen (2012) (Heteroscedastic Loadings). In cases with p < nT , we report estimates using

2SLS on the full set of instruments (All). Finally, we consider two different infeasible oracle

estimators. The first oracle knows the value of the coefficients π (Oracle) while the second also

knows the exact values of the fixed effects (FE Oracle). Thus, both oracle estimators use a

single instrument that uses the true values of the first stage coefficients, z′itπ. The difference

between the two is that the fixed effects are removed by taking differences of all variables

from within-individual means in the Oracle results while the true values of the FE are directly

subtracted from yit and dit in the FE Oracle results.

The results are based on 1000 simulations for each setting described above. For results based

on All, Heteroscedastic Loadings, Clustered Loadings, and Oracle, the fixed effects are treated

as unknown parameters and eliminated by taking deviations from within-individual means.

For each estimator, we report mean bias, root mean squared error, and rejection rates for a

5%-level test of H0 : α = .5 using both clustered standard errors and heteroscedastic standard

errors.8 In some of the simulation replications, the IV estimator using variables selected by

Lasso is undefined as Lasso sets all coefficients to zero. In such a case, we record a failure to

reject the null which is a conservative alternative to applying the Sup-score statistic described

in Belloni, Chen, Chernozhukov, and Hansen (2012). Mean bias and root-mean-square-error

for Lasso-based estimates are calculated conditional on Lasso selecting at least one instrument.

7In the supplementary appendix, we report further simulation results based on two additional structures

for the coefficients on the instruments. In these simulations, our procedure continues to perform well even in

somewhat adversarial conditions.
8Since moments of IV estimators may not exist, we calculate truncated bias and truncated RMSE, truncating

at ±10, 000.
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20 ALEXANDRE BELLONI, VICTOR CHERNOZHUKOV, CHRISTIAN HANSEN, AND DAMIAN KOZBUR

The results for estimation of α are reported in Table 1. The two oracle estimators provide

infeasible benchmarks. Looking at these results, we see that IV based on the infeasible instru-

ments formed using the true values of the first-stage coefficients perform well in the designs

considered. As expected given the well-known properties of 2SLS, the 2SLS estimates using

the full set of instruments when p < nT exhibit large bias relative to standard error, large

RMSE, and produce tests that suffer from large size distortions.

The Lasso-based results where we do variable selection using loadings that are appropriate

under independence but ignore within-individual dependence are quite interesting. This ap-

proach performs relatively well compared to naive 2SLS using all of the instruments. However,

using instruments selected by Lasso with loadings that ignore the dependence produces an IV

estimator of α that has a substantial bias and results in tests that have large size distortions

even when clustered standard errors are applied. The presence of this bias illustrates the point

that care must be taken when selecting instruments for a post model selection analysis. In

general, E[zitjεit| j selected] 6= 0 though the difference from zero is ignorable when (2.3)

occurs. However, in the absence of the regularization event (2.3), this conditional expectation

can be large which introduces a type of “endogeneity” bias as the selected instruments are

effectively invalid. We see this behavior when using the heteroscedastic loadings in the designs

we consider as these loadings produce smaller penalty levels than the appropriate clustered

loadings which results in the spurious inclusion of instruments.

Finally, we see that IV based on instruments selected by Cluster-Lasso clearly dominates the

other feasible procedures in the simulation designs considered. Using this procedure produces

tests that have approximately correct size that is comparable to size of tests based on both

oracle models considered. We also see that the performance for Bias, RMSE, and size of tests

is similar to the infeasible Oracle benchmark. Overall, these results are favorable in that using

Cluster-Lasso to select instruments outperforms the other methods explored here.

5.2. Simulation 2: Linear Model. In this simulation, we consider estimation of a coefficient

on a variable of interest in a standard linear fixed effects model. Specifically, we generate data

according to the model

yit = αdit + z′itβ + ei + εit

dit = z′itγ + fi + uit.

We generate disturbances according to

εit = ρεεit−1 + ν1,it

uit = ρuuit−1 + ν2,it

where

(
ν1,it

ν2,it

)
∼ N

((
0

0

)
,

(
1 0

0 1

))
iid

with initial conditions for εit and uit drawn from their stationary distribution. We generate

ei, fi, and zit exactly as in Section 5.1, so we omit the details for brevity. We again set
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INFERENCE IN HIGH DIMENSIONAL PANEL DATA 21

ρε = ρu = .8 and set α = .5. We redraw the disturbances ε and u at each simulation replication

but condition on one realization of the fixed effects and controls. We use sample sizes set to

n = 50, 100, 150, 200 with T = 10. As in Section 5.1, we we specify the coefficient vectors β

and γ as

γj = βj = (−1)j−1

(
1√
s

1{j6s} +
1

j2
1{j>2}

)
, s = b1

2
n1/3c

for 1 6 j 6 p where bac returns the integer part of a.9 Again, we consider p = n× (T − 2) and

p = n× (T + 2).

For this simulation, we consider six estimators of α. When p 6 nT , we use the conventional

fixed effects estimator including all the variables in zit (All). We use the post-double-selection

method with penalty loadings appropriate for independent, heteroscedastic data in each Lasso

stage (Heteroscedastic Loadings) and with our clustered loadings in each Lasso stage (Clustered

Loadings). We also consider a post-double-selection estimator which includes the fixed effects

in the set of variables over which selection occurs (Select over FE) using the approach of

Kock (2014). We also consider two oracle estimators. The first oracle knows the values of the

coefficients β and γ (Oracle) while the second also knows the exact values of the fixed effects

(FE Oracle). The Oracle estimate of α is thus obtained by regressing ÿit − z̈′itβ onto d̈it − z̈′itγ
while the FE Oracle estimate of α is obtained by regressing yit − z′itβ − ei onto dit − z′itγ − fi.
As before, the results are based on 1000 simulation replications for each setting; and we report

mean bias, root mean squared error, and rejection rates for a 5%-level test of H0 : α = .5 using

both clustered standard errors and heteroscedastic standard errors for each estimator.

The results for the partially linear model simulations are reported in Table 2. The two

oracle estimators provide infeasible benchmarks and unsurprisingly produce estimators with

small bias and RMSE and tests with reasonable size as long as clustered standard errors are

used as is conventional in the literature, e.g. Bertrand, Duflo, and Mullainathan (2004). In

all simulations, estimates using the full set of controls when feasible have small bias but large

variability leading to large RMSE relative to oracle estimates. Tests based on estimators

using the full set of controls are also badly size distorted regardless of whether heteroscedastic

or clustered standard errors are used. This distortion results from the difficulty in robustly

estimating standard errors when many variables are included; see, e.g., Cattaneo, Jansson, and

Newey (2010). This feature suggests that one may not wish to simply include many controls

without regularization even when possible.

Estimates based on the double selection method using Lasso with penalty loading appro-

priate under heteroscedasticity and independence or using Lasso to also select over the fixed

9In the supplementary appendix, we report further simulation results based on two additional structures

for the coefficients β and γ. In these simulations, our procedure continues to perform well even in somewhat

adversarial conditions.
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22 ALEXANDRE BELLONI, VICTOR CHERNOZHUKOV, CHRISTIAN HANSEN, AND DAMIAN KOZBUR

effects perform better than simply including all controls in the p < nT case but tend to perform

poorly in terms of bias and coverage probabilities. The bias and poor coverage properties of

the estimator that attempts to select over the fixed effects is due to the difficulties in per-

forming selection over the dense part of the model and shows the importance of eliminating

fixed effect parameters via demeaning or differencing. These difficulties arise because sparsity

provides a poor approximation to the true fixed effects structure. Note that a dense model over

unobserved heterogeneity where heterogeneity matters differentially for each individual seems

quite reasonable in many economic applications and suggests that attempting to select over

fixed effects may result in undesirable features at least when inference about model parameters

is the goal of the empirical analysis.

We find it more surprising that using heteroscedastic penalty loadings also leads to noticeable

bias and a distortion in statistical size. The heteroscedastic loadings lead to less penalization

in our designs which result in inclusion of a few spurious variables. Usual intuition for linear

models suggests that including a few extra variables has little impact on say ordinary least

squares estimates of parameters of interest. The difficulty arises because the spuriously in-

cluded variables are not included at random but are exactly those variables with little to no

impact that are most highly correlated to the noise and are not properly screened out because

the penalty is too low for (2.3) to be a reliable guide. Choosing the variables most highly

correlated to the noise then yields that E[xitjεit| j selected] is not negligible due to the use

of incorrect penalty loadings leading to biased estimation just as in the instrumental variables

case.

Finally, we again see that basing estimation and inference for α on the post-double-selection

method using clustered penalty loadings clearly dominates the other feasible procedures in the

simulation designs considered. This procedure yields an estimator with RMSE comparable

to the oracles across all designs considered. We also see that feasible inference based on this

procedure does a relatively good job controlling size across all designs considered. Overall,

these results are favorable to Lasso-based variable selection using clustered penalty loadings

after partialing out fixed effects and suggests that these methods may offer useful tools to

empirical researchers faced with high dimensional panel data.

6. Empirical Example: The Social Cost of Gun Ownership

In the earlier sections, we provided results on the performance of Lasso as a model selection

device for panel data models with fixed effects and discussed how to apply Lasso to problems

of economic interest in such settings. In this section, we demonstrate the use of Cluster-Lasso

by reexamining the Cook and Ludwig (2006) study of the impact of gun ownership on crime.
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INFERENCE IN HIGH DIMENSIONAL PANEL DATA 23

We briefly review Cook and Ludwig (2006) before presenting the results using the methods

described in this paper.

Cook and Ludwig (2006) give several arguments suggesting that gun ownership levels may

impose externalities on a community. On the one hand, widespread prevelance of guns can

act a deterrent to criminal activity. On the other hand, higher gun prevelance in the general

population can lead to higher gun ownership among dangerous people, perhaps through theft

or illegal sales, which may lead to an increase in crime. Thus, it is unclear whether the net effect

of guns is positive or negative. To investigate the impact of guns, Cook and Ludwig (2006)

estimate the effect of gun prevelance on several measures of crime rates. In this example, we

revisit their estimation of the effect of gun prevelance on homicide rates.

A major contribution of Cook and Ludwig (2006) is to provide an improved measure of

gun ownership in order to get more accurate estimates of the social costs of gun prevalence.

Previously, several authors had obtained conflicting estimates for the effect of interest; see,

e.g., Lott (2000) and Duggan (2001). Because exact gun-ownership numbers in the U.S. are

difficult to obtain, Cook and Ludwig (2006) instead use the fraction of suicides committed with

a firearm (abbreviated FSS) within a county as a proxy for county-level gun ownership rates.

Cook and Ludwig (2006) argue that if guns are prevalent within a county, then they should

be more accessible for the purpose of suicide. They show that their proxy for gun prevelance,

FSS, matches up with survey data directly measuring gun ownership from the General Social

Survey better than previously used measures. In our analysis, we take it as given that FSS

provides a useful measure of gun ownership and that learning the causal effect of FSS is an

interesting goal. We thus abstract from any further measurement issues in order to give a clear

illustration of our methods.

The main strategy employed by Cook and Ludwig (2006) to estimate causal effects of gun

prevalence is to exploit differences in gun ownership across counties and over time. Cook and

Ludwig (2006) construct a panel of 195 large United States counties between the years 1980

through 1999 and use this data to estimate linear fixed effects models of the form

log Yit = β0 + β1log FSSit−1 +X ′itβX + αi + δt + εit (6.21)

where αi and δt are respectively unobserved county and year effects that will be treated as

parameters to be estimated, Xit are additional covariates meant to control for any factors

related to both gun ownership rates and crime rates that vary across counties and over time,

and Yit is one of three dependent variables: the overall homicide rate within county i in

year t, the firearm homicide rate within county i in year t, or the non-firearm homicide rate

within county i in year t. Cook and Ludwig (2006) consider controls, Xit, for percent African

American, percent of households with female head, nonviolent crime rates, and percent of the

population that lived in the same house five years earlier.
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Interpreting the estimated effect of gun prevelance as measured by FSS as causal relies on the

belief that there are no variables associated both to crime rates and FSS that are not included in

(6.21). The inclusion of county and time fixed effects accounts for any aggregate macroeconomic

conditions that affect all counties uniformly and any county-level characteristics that do not

vary over time. The additional variables used by Cook and Ludwig (2006) in Xit are then

meant to capture all other sources of variation that are correlated to both FSS and the log of

of the homicide rate. Of course, one might worry that the set of controls included in Xit does

not adequately capture remaining confounds after controlling for time and county effects.

We extend the analysis performed in Cook and Ludwig (2006) by allowing for a much larger

set of potential control variables which may strengthen the plausibility of the claim that all

sources of confounding variation have been captured. Specifically, we consider an essentially

identical model

log Yit = β0 + β1log FSSit−1 +W ′itβW + αi + δt + εit

which differs from (6.21) by our consideration of a large set of variables in Wit. We form

Wit by taking variables compiled by the US Census Bureau. Basic variables include county-

level measures of demographics, the age distribution, the income distribution, crime rates,

federal spending, home ownership rates, house prices, educational attainment, voting paterns,

employment statistics, and migration rates.10 We note that Wit includes measures meant to

capture all the variables controlled for in Cook and Ludwig (2006) in their Xit, though with

our data and construction we do not reproduce their results exactly. However, we show below

that we obtain similar results with both sets of variables. A key concern with the fixed effects

model is that there is some feature of the counties that is correlated not just to the level of

crime rates and gun ownership but also to the evolution of these variables. To flexibly allow for

this possibility, we also include interactions of the initial (1980) values of all control variables

with a linear, quadratic, and cubic term in time. With the main effects and interactions of

initial conditions with a cubic trend, we end up with 978 total control variables.

While controlling for a large set of variables may make the assumption that all relevant

confounds have been included in the model more plausible, including too many covariates may

lower estimation precision and also complicates estimation of the variance of estimators as

illustrated in Section 5.2. Using variable selection as outlined in this paper offers one potential

resolution to this tension by allowing consideration of a large set of controls while maintaining

parsimony and producing valid inferential statements under the assumption that the set of

confounds that needs to be included after accounting for the full set of fixed effects is small

relative to the sample size.

10The exact identities of the variables are available upon request. The entire dataset

is taken from the U.S. Census Bureau USA Counties Database and can be downloaded at

http://www.census.gov/support/USACdataDownloads.html.
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INFERENCE IN HIGH DIMENSIONAL PANEL DATA 25

We present estimation results in Table 3 with results for each dependent variable presented

across the columns and each row corresponding to a different specification. As a baseline,

we report numbers taken directly from the first row of Table 3 in Cook and Ludwig (2006)

in the first row of Table 1 (“Cook and Ludwig (2006) Baseline”). Cook and Ludwig (2006)

obtained these results by regressing log homicide rates on lagged log FSS, county and time

fixed effects, and the baseline set of controls mentioned above and use these numbers as their

baseline results.

We report results obtained from our data in Rows 2-4 (labeled “FSS + Census Baseline”,

“ Full Set of Controls”, and “Cluster Post-Double Selection”).11 In Row 2 of Table 3 (“FSS

+ Census Baseline”), we attempt to replicate the result from Row 1 using control variables

gathered from the census that correspond to the variables indicated as being used in Cook and

Ludwig (2006) Table 3, Row 1. Despite using slightly different data, we produce results that

are fairly similar to those reported in Cook and Ludwig (2006). Specifically, Cook and Ludwig

(2006) give point estimates (standard errors) of the coefficient on lagged log FSS of .086 (.038)

for overall homicide rates and .173 (.049) for gun homicide rates; and we obtain estimated

effects (standard errors) of .070 (.035) for overall homicide rates and of .178 (.046) for gun

homicide rates. The discrepancy between the results is somewhat larger for non-gun homicide

rates, though the results are still broadly consistent with each other. Cook and Ludwig (2006)

report an estimated effect (standard error) of -.033 (.040) while we estimate the effect to be

-.071 with a standard error of .038.

We provide the results based on the large set of controls in Rows 3 and 4 of Table 3. In Row

3, we present the results based on using all 978 potential controls in addition to the full set of

county and time effects. Using all of the controls, the estimated effect of lagged suicide rates

is small for each dependent variable. The estimated coefficients (standard errors) are only

-.010 (.033) for overall homicide rates, .00004 (.044) for gun homicide rates, and -.033 (.042)

for non-gun homicide rates. These results are relatively imprecise, and one could not rule out

moderate sized positive or negative effects for any of the dependent variables. In addition, the

simulation results illustrate that the estimated standard errors with a large number of controls

may be inaccurate, suggesting that one should be hesitant in trusting these results as accurate

standard errors may be even larger. Of course, it is not obvious that one would believe that all

978 controls are necessary though one may not be sure of the exact identities of the variables

that should be included.

In Row 4, we present estimates of the effect of gun prevalence on homicide rates based on

the post-double-selection method using Cluster-Lasso to select controls after partialing out the

11All results are based on weighted regression where we weight by the within-county average population over

1980-1999.
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fixed effects. We also provide the identities of the selected controls in Table 4. For both overall

homicide rates and gun homicide rates, the estimates based on Cluster-Lasso selected controls

are very similar to those obtained with the baseline set of controls in our data though standard

errors are slightly larger. For overall homicide results, the Cluster-Lasso estimate (standard

error) is .079 (.043) compared to .070 (.035) with the baseline controls; and the Cluster-Lasso

estimate (standard error) is .171 (.047) compared to .178 (.046) with the baseline controls

when gun homicide is the dependent variable. This similarity is interesting given that the

set of variables selected by Lasso differs substantively from the set of baseline controls. For

the overall homicide rate, we would fail to reject the null hypothesis that gun prevalence as

measured by suicide rates is not associated to homicide rates after controlling for a broad set

of variables at the 5% level in the Cluster-Lasso results, though we would reject the hypothesis

of no effect of gun prevalence on overall homicide rates at the 10% level. The result is stronger

when the gun homicide rate is the dependent variable. In this case, one would draw the

conclusion that more guns, as measured by the firearm suicide rate, is strongly positively

associated with more homicides committed with firearms. Under the assumption that the set

of controls considered is sufficient to account for relevant confounds, one could also take these

estimated effects as causal. This assumption seems more plausible in the Cluster-Lasso results

which allow for consideration of a richer set of controls than the baseline results.

Finally, we turn to the results with non-gun homicide as the dependent variable. In this case,

there is a larger discrepancy between the baseline results and the results using controls selected

by Cluster-Lasso, though one would draw the same qualitative conclusion in either case. With

the baseline intuitively selected set of controls, the estimated effect of gun prevalence is -.071

with an estimated standard error of .038; and the estimated effect is smaller in magntitude,

at -.019, with an estimated standard error of .040 using the Cluster-Lasso selected controls.

In both cases, we would fail to reject the null hypothesis that gun prevalence as measured

by suicide rates is not associated to non-gun homicide rates after controlling for a broad set

of variables at conventional levels, and one could not rule out moderate positive or negative

effects of gun prevalence on non-gun homicide at conventional levels using the Cluster-Lasso

based results.

Overall, our Cluster-Lasso based results are broadly consistent with the claims of Cook and

Ludwig (2006). We find a strong positive effect of gun prevalence on the firearm homicide

rate after allowing for a large set of confounds and including a full set of county and time

effects. We also find some evidence of a positive effect of gun prevalence on overall homicide

rates, but produce an imprecise estimate of the effect on non-gun homicides which could be

consistent with moderate positive or negative effects. The similarity to the Cook and Ludwig

(2006) results adds further credibility to their claims as we allow for a richer set of confounding

variables. We also note that the similarity between results following selection and results based
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on an intuitively selected initital set of controls is not mechanical as evidenced, for example,

in the empirical example in Belloni, Chernozhukov, and Hansen (2014).

Appendix A. Cluster-Lasso Penalty Loadings Implementation

We organize implementation details for Cluster-Lasso and establish the asymptotic validity

of the proposed algorithm in this appendix. Feasible options for setting the penalty level and

the loadings for j = 1, . . . , p are

Initial: φ̂j =
√

1
nT

∑n
i=1

∑T
t=1

∑T
t′=1 ẍitj ẍit′j ÿitj ÿit′j ,

λ = 2c
√
nTΦ−1(1− γ/(2p)),

Refined: φ̂j =
√

1
nT

∑n
i=1

∑T
t=1

∑T
t′=1 ẍitj ẍit′j ε̂itε̂it′ ,

λ = 2c
√
nTΦ−1(1− γ/(2p)),

(A.22)

where c > 1 is a constant, γ ∈ (0, 1), and ε̂it is an estimate of ε̈it. Let K > 1 denote

a bounded number of iterations. We use c = 1.1, γ = 0.1/ log(p ∨ nT ), and K = 15 in our

empirical and simulation examples. In what follows, Lasso/Post-Lasso estimator indicates that

the practitioner can apply either the Lasso or Post-Lasso estimator. Our preferred approach

uses Post-Lasso at each step.

Algorithm of Cluster-Lasso penalty loadings

(1) Specify penalty loadings according to the initial option in (A.22). Use these penalty loadings

in computing the Lasso/Post-Lasso estimator β̂ via equations (2.1) or (2.2). Then compute

residuals ε̂it = ÿit − ẍ′itβ̂ for i = 1, ..., n and t = 1, ..., T .

(2) If K > 1, update the penalty loadings according to the refined option in (A.22) and update

the Lasso/Post-Lasso estimator β̂. Then compute a new set of residuals using the updated

Lasso/Post-Lasso coefficients ε̂it = ÿit − ẍ′itβ̂ for i = 1, ..., n and t = 1, ..., T .

(3) If K > 2, repeat step (2) K − 2 times. �

The algorithm above yields asymptotically valid penalty loadings in the sense that `φj 6

φ̂j 6 uφj for every j with probability 1−o(1), `
P→ 1, and u 6 C <∞. This fact is summarized

in the following proposition. The proposition proceeds under an extended regularity condition:

Condition R′. (Extended Regularity)

(i) max16j6p

∣∣∣∣ 1
n

∑n
i=1

1
T

(∑T
t=1 ẍitj ÿit

)2
− E

[
1
T

(∑T
t=1 ẍitj ÿit

)2
]∣∣∣∣ /Eφ2

j = oP(1).
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(ii) max16j6p

∣∣∣∣ 1
n

∑n
i=1

1
T

(∑T
t=1 ẍitj ε̈it

)2
∣∣∣∣ /Eφ2

j = OP(1).

(iii)
(

maxi,j,t ẍ
2
itj/E

[
φ2
j

])
s log(p∨nT )

nıT
= oP(1)

Proposition 1 (Feasible Penalty Loadings). Under the conditions of Theorem 1 and Condition

R’, the penalty loadings φ̂j constructed by the above algorithm are asymptotically valid. If

K > 2, then u
P→ 1.

A.1. Comments on Condition R’. Condition R’ imposes a set of high level conditions

which could be verified under lower level primitive conditions. Condition R’(i) will generally

be the most stringent as it may require convergence of a 1
nT normalized sum over nT 2 random

elements which do not have mean zero. In the following two examples, we provide simple

sample sets of sufficient primitive conditions under which Condition R’ can be established.

The first example covers a T fixed case as well as a case when T → ∞ and data are strongly

dependent in the sense that ıT ∝ 1. The second case covers a scenario where T → ∞ and

ıT ∝ T which would be appropriate with weakly dependent data.

Example 1. Suppose that T is fixed or that ıT ∝ 1 and that 0 < m 6 ıT
T E[φ2

j ] 6 M < ∞
for 1 6 j 6 p. Further, assume that the sequences of random variables {ÿit, ẍit}Tt=1 are

iid across i, that regressors are uniformly bounded with supi,t,j |ẍitj | 6 B < ∞, and that

supt E[ÿ4
it] 6M <∞. Then Condition R’(i) is satisfied if log(p∨n)3

n → 0.

The T fixed and T → ∞ with ıT ∝ 1 are similar in that essentially no information is

accumulating in the time series dimension. In this case, rates of convergence are completely

governed by the cross-sectional dimension and we see that Condition R’(i) may be satisfied

when n grows quickly enough relative to log(p) under moment and boundedness conditions

similar to those employed elsewhere in the literature, e.g. Example 3 in Belloni, Chernozhukov,

and Hansen (2014).

Example 2. Suppose that T →∞ with ıT ∝ T and that 0 < m 6 ıT
T E[φ2

j ] 6M <∞ for 1 6

j 6 p. Suppose that {yit, xit} is a strictly stationary strongly mixing (α-mixing) process with

mixing coefficients satisfying θ(j) 6 exp{−2cj}.Further, suppose that the sequences of random

variables {{yit, xit}Tt=1, αi} where αi denotes unobserved individual specific heterogeneity are iid

across i. Assume that observed random variables are uniformly bounded with supi,t,j |xitj | 6 B
and supi,t |yit| 6 B. Then Condition R’(i) is satisfied if T log(max{n,T,p})3

n → 0.

Example 2 differs interestingly from Example 1 in requiring that T
n → 0. The need for

having n large relative to T in satisfying Condition R’(i) comes from the use of clustering even

though the data is weakly dependent and the fact that E[xitjyit] will not generally be zero. The

clustering estimator in the numerator then behaves like the variance of a strongly dependent
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process while the term in the denominator E[φ2
j ] depends only on the xitjεit process which is

weakly dependent. Keeping the numerator from exploding relative to the denominator then

requires a stronger condition on the rate of growth of T relative to n. Without this condition,

one could not guarantee that ` and u (2.5) would remain bounded; specifically, one could

produce u→∞ which could result in inflated initial penalty loadings and the failure to select

any variables even when there are strong predictors among the set of variables considered. This

feature suggests that there may be a price to pay in ability to select variables in this context in

using the clustered variance estimator which is agnostic about dependence structures relative

to a covariance estimator more tailored to a weakly dependent setting.
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Table 1. Panel IV Simulations

p = n× (T − 2) p = n× (T + 2)

n = 50 n = 100 n = 150 n = 200 n = 50 n = 100 n = 150 n = 200

Replications with No Instruments Selected

Heteroscedastic Loadings 0 0 0 0 0 0 0 0

Clustered Loading 0 0 0 0 0 1 0 0

A. Bias

Oracle -0.001 -0.007 0.000 -0.005 0.000 -0.008 0.000 -0.003

FE Oracle -0.001 -0.010 -0.004 -0.004 0.000 -0.009 -0.004 -0.003

All 0.382 0.517 0.508 0.522

Heteroscedastic Loadings 0.087 0.121 0.099 0.093 0.114 0.164 0.129 0.123

Clustered Loading 0.004 0.000 -0.001 -0.001 0.005 0.002 0.000 0.001

B. RMSE

Oracle 0.043 0.075 0.065 0.057 0.043 0.075 0.064 0.055

FE Oracle 0.077 0.078 0.060 0.053 0.076 0.076 0.060 0.053

All 0.384 0.518 0.508 0.522

Heteroscedastic Loadings 0.120 0.151 0.120 0.111 0.143 0.186 0.146 0.140

Clustered Loading 0.081 0.078 0.062 0.053 0.081 0.075 0.061 0.054

C. Size (Cluster s.e.)

Oracle 0.067 0.048 0.057 0.052 0.064 0.048 0.053 0.048

FE Oracle 0.062 0.065 0.053 0.056 0.060 0.059 0.051 0.062

All 1.000 1.000 1.000 1.000

Heteroscedastic Loadings 0.328 0.526 0.504 0.519 0.473 0.706 0.662 0.690

Clustered Loading 0.079 0.065 0.059 0.057 0.079 0.067 0.056 0.060

D. Size (Heteroscedastic s.e.)

Oracle 0.421 0.289 0.329 0.320 0.414 0.292 0.324 0.307

FE Oracle 0.249 0.240 0.234 0.214 0.246 0.222 0.238 0.214

All 1.000 1.000 1.000 1.000

Heteroscedastic Loadings 0.586 0.710 0.709 0.715 0.680 0.848 0.824 0.836

Clustered Loading 0.275 0.247 0.236 0.221 0.274 0.227 0.234 0.221

This table presents simulation results for the high dimensional instrumental variables model with fixed effects.

Estimators include our proposed Cluster-Lasso estimator (Clustered Loadings) and alternative estimators:

heteroscedastic-Lasso (Heteroscedastic Loadings), 2SLS with all instruments (All), an oracle estimator that

knows the values of the first-stage coefficients (Oracle), and an oracle estimator that knows the values of the

first-stage coefficients and the fixed effects (FE Oracle). Bias, RMSE, and statistical size for 5% level tests

using clustered standard errors and heteroscedastic standard errors are reported based on 1000 simulation

replications.
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Table 2. Panel Linear Model Simulations

p = n× (T − 2) p = n× (T + 2)

n = 50 n = 100 n = 150 n = 200 n = 50 n = 100 n = 150 n = 200

A. Bias

Oracle 0.003 0.002 0.001 0.000 -0.002 -0.002 0.000 0.001

FE Oracle 0.004 -0.002 0.001 0.001 0.000 -0.001 0.003 0.000

All 0.005 -0.001 -0.005 0.000

Select over FE 0.070 0.014 -0.021 -0.020 0.075 0.011 -0.020 -0.019

Heteroscedastic Loadings 0.007 -0.023 -0.015 -0.012 -0.006 -0.034 -0.022 -0.020

Clustered Loading 0.040 0.006 0.010 0.009 0.035 0.007 0.011 0.008

B. RMSE

Oracle 0.089 0.058 0.051 0.042 0.084 0.060 0.050 0.042

FE Oracle 0.074 0.051 0.042 0.037 0.074 0.053 0.042 0.037

All 0.150 0.099 0.085 0.073

Select over FE 0.108 0.087 0.052 0.046 0.109 0.089 0.054 0.045

Heteroscedastic Loadings 0.074 0.057 0.045 0.038 0.074 0.061 0.047 0.042

Clustered Loading 0.084 0.051 0.043 0.038 0.081 0.053 0.043 0.038

C. Size (Cluster s.e.)

Oracle 0.075 0.056 0.067 0.050 0.061 0.060 0.071 0.049

FE Oracle 0.060 0.052 0.047 0.057 0.060 0.062 0.046 0.058

All 0.514 0.467 0.494 0.458

Select over FE 0.194 0.174 0.085 0.092 0.210 0.180 0.096 0.091

Heteroscedastic Loadings 0.085 0.101 0.076 0.081 0.088 0.151 0.119 0.127

Clustered Loading 0.093 0.062 0.059 0.057 0.093 0.071 0.066 0.062

D. Size (Heteroscedastic s.e.)

Oracle 0.330 0.289 0.329 0.297 0.311 0.316 0.322 0.301

FE Oracle 0.236 0.213 0.230 0.216 0.218 0.223 0.212 0.215

All 0.562 0.532 0.554 0.519

Select over FE 0.414 0.328 0.310 0.313 0.448 0.355 0.303 0.290

Heteroscedastic Loadings 0.227 0.262 0.259 0.235 0.216 0.301 0.257 0.281

Clustered Loading 0.294 0.212 0.226 0.236 0.277 0.228 0.230 0.229

This table presents simulation results from a linear fixed effects model. Estimators include our proposed

Cluster-Lasso estimator (Clustered Loadings), heteroscedastic-Lasso (Heteroscedastic Loadings), a

double-selection estimator that includes the fixed effects in the set of variables to be selected over (Select over

FE), fixed effects using all controls (All), an oracle estimator that knows the values of the coefficients on the

control variables (Oracle), and an oracle estimator that knows the values of the coefficients on the controls

variables and the fixed effects (FE Oracle). Bias, RMSE, and statistical size for 5% level tests using clustered

standard errors and heteroscedastic standard errors are reported based on 1000 simulation replications.
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Table 3. Estimates of the Effect of Gun Prevalence on Homicide Rates

Overall Gun non-Gun

Cook and Ludwig (2006) Baseline 0.086 (0.038) 0.173 (0.049) -0.033 (0.040)

FSS + Census Baseline 0.070 (0.035) 0.178 (0.046) -0.071 (0.038)

Full Set of Controls -0.010 (0.033) 0.000 (0.044) -0.033 (0.042)

Cluster Post-Double Selection 0.079 (0.043) 0.171 (0.047) -0.019 (0.040)

This table presents estimates of the effect of gun ownership on homicide rates for a panel of 195 US Counties

over the years 1980-1999. The columns “Overall”, “Gun”, and “non-Gun” respectively report the estimated

effect of gun prevalence on the log of the overall homicide rate, the log of the gun homicide rate, and the log of

the non-gun homicide rate. Each row corresponds to a different specficiation as described in the text. In each

specification, the outcome corresponding to the column label is regressed on lagged log(FSS) (a proxy for gun

ownership) and additional covariates as described in the text. Each specification includes a full set of year and

county fixed effects. Standard errors clustered by county are provided in parentheses.

Table 4. Variables Selected

A. log(FSS)

Owner occupied housing units

Renter occupied housing units

Males 15 yrs widowed

Institutionalized population

t× (Total bank deposits)0

t× (% Change in households)0

B. Overall homicide

Persons 5 yrs and over by residence - Same house for last 5 yrs

Vote cast for president, third party candidate

t3× (Valuation of new housing by building permits)0

C. Gun homicide

Resident population age 50 - 54 years

Vote cast for president, third party candidate

Owner occupied housing units

Families with income 15,000 - 19,999

D. non-Gun homicide

Resident population median age

Persons per household

t× (Hispanic persons 25 years and over)0

The table presents selected variables by Cluster-Lasso in the gun example using our extended list of controls

variables. Variables selected with lagged log(FSS), the log of the overall homicide rate, the log of the gun

homicide rate, and the log of the non-gun homicide rate are given in Panels A, B, C, and D respectively.
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