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High-dimensional data

I In data sets with with more regressors than the number of
observations, for the = × : matrix X collecting = observations on
: variables, we have : > = and therefore rank (X) ≤ = < : .

I The OLS (V̂ = (X>X)−1 X>Y) cannot be computed since X>X is
non-singular.

I Perfect multicolinearity: there will be exact linear combinations
among the regressors.

I In this lecture, still assume = > : (classical environment).
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Ridge regression
I Ridge regression estimator:

V̂'_ = argmin
1∈R:

‖Y −X1‖2 + _ ‖1‖2 ,

where 1 = (11, ..., 1:)> and ‖1‖ =
√∑:

9=1 1
2
9
.

I The first-order conditions:

−X>
(
Y −XV̂'_

)
+ _V̂'_ = 0 =⇒ V̂'_ =

(
X>X + _I:

)−1 X>Y.

I Ridge regression is biased:

E
[
V̂'_ | X

]
=

(
X>X + _I:

)−1 X>XV ≠ V.

I While Ridge is biased, regularization reduces the variance of
out-of-sample prediction.

I Larger values of _ would shrink the Ridge estimates more toward
zero and prevent from overfitting. =⇒More bias, less variance.

I By balancing between the variance and bias, it is possible to
improve out-of-sample prediction over OLS.

I Every regressor is assigned a non-zero regression coefficient.
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LASSO
I Suppose that the causal model

.8 = V0 + V1-8,1 + · · · + V:-8,: +*8
is sparse: only a few explanatory variables are relevant variables
with non-zero coefficients.

I It is desirable to have an estimation procedure that can
automatically in data-dependent manner shrink the coefficients
on irrelevant regressors to zero.

I Neither OLS nor ridge can produce exactly zero regression
coefficients.

I The LASSO estimator:

V̂!_ = argmin
1∈R:

‖Y −X1‖2 + _ ‖1‖1 ,

where 1 = (11, ..., 1:)> and ‖1‖1 =
∑:
9=1

��1 9 ��.
I In general, the LASSO problem does not have an analytical

solution, and therefore the LASSO estimates must be computed
numerically.
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I Ridge regression: for every _, there exists B > 0 such that V̂'
_

solves

V̂'_ = argmin
1∈R:

‖Y −X1‖2

subject to ‖1‖2 ≤ B.

I LASSO: for every _, there exists B > 0 such that V̂!
_
solves

V̂!_ = argmin
1∈R:

‖Y −X1‖2

subject to ‖1‖1 ≤ B.
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I An exceptional case with an analytical solution is when the
regressors are orthogonal and normalized: X>X = I: . We use it
to illustrate the LASSO mechanism.

I Suppose that X>X = I: and let V̂_ =
(
V̂_,1, ..., V̂_,:

)>
denote the

LASSO estimator

V̂_ = argmin
1∈R:

1
2
‖Y −X1‖2 + _ ‖1‖1 .

I Note that the sum of squares is scaled by 1/2. This is without
loss of generality since we can adjust _ accordingly.

I Assume that : < =. Let Ṽ =

(
Ṽ1, ..., Ṽ:

)>
denote the OLS.

I The LASSO estimator satisfies

V̂_, 9 = sgn
(
Ṽ 9

) (���Ṽ 9 ��� − _)
+

,

where (G)+ = max {G, 0} and sgn (G) denotes the sign of G:
sgn (G) = (−1) 1 (G < 0) + 1 (G > 0).

I LASSO detects near-zero coefficients and shrink them to zero,
which is equivalent to dropping such variables from the model.
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I Similarly to the Ridge regression, LASSO estimates are biased
due to shrinkage.

I Post-LASSO estimation: after LASSO, use OLS to regress the
explained variable only on explanatory variables that survived
LASSO selection.

I The motivation of Post-LASSO is to avoid the shrinkage bias. In
such a case, LASSO is used only as a selection method.
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Cross validation for LASSO
I _ ↓ 0: V̂_ → OLS; _ ↑ ∞: V̂_ → 0.
I Randomly split the sample into a training set and a validation set:

Y =

(
Y)
Y+

)
and X =

(
X)
X+

)
,

where Y) is =) × 1, Y+ is =+ × 1, X) is =) × : , X+ is =+ × :
and =+ + =) = =.

I Fix any _ > 0, compute V̂_,) using only observations in the
training set:

V̂_,) = argmin
1∈R:

‖Y) −X) 1‖2 + _ ‖1‖1 .

I The cross-validation (CV) estimate of the test MSE:

'((�+ (_) =



Y+ −X+ V̂_,)




2
.

I Repeat the procedure  times with different training and
validation sets. The resulting procedure is the  -fold cross
validation.
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I Randomly divide the data into  (approximately equal-sized)
parts: �1, �2,..., � with ∪ 

9=1� 9 = {1, 2, ..., =}, where � 9 denote
the indices of observations in part 9 . Let = 9 denote the number of
indices in � 9 .

I For the = × : matrix X, X� 9 denotes the = 9 × : sub-matrix of X
with observations in � 9 . Similarly, Y� 9 denotes the = 9 × 1
sub-vector of Y with observations in � 9 .

I Split

Y =
©­­«

Y�1
...

Y� 

ª®®¬ and X =
©­­«

X�1
...

X� 

ª®®¬ .
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I Denote �− 9 = ∪;≠ 9�; and

V̂_,− 9 = argmin
1∈R:



Y�− 9 −X�− 9 1


2 + _ ‖1‖1

'(( 9 (_) =




Y� 9 −X� 9 V̂_,− 9




2
.

I Average to get the  -fold cross validation estimate of the test
MSE:

'((�+ (_) =
1
 

 ∑
9=1

'(( 9 (_) .

I The standard error:

(��+ (_) =

√
V̂ar�+ (_)

 
, where

V̂ar�+ (_) =
1

 − 1

 ∑
9=1

(
'(( 9 (_) − '((�+ (_)

)2 .

I Cross-validated choice of tuning parameter:

_̂�+ = argmin
_>0

'((�+ (_) .
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Inference-optimal choice of _
I Choice of the tuning parameter _ that is optimal for inference

should be such that all relevant regressors are included (non-zero
coefficients) while all irrelevant regressors are excluded
(coefficients shrunken to zero).

I Optimal prediction and inference can not be achieved
simultaneously: the best _ from the prediction perspective is
different from the best _ when the goal is to accurately find the
relevant regressors.

I Suppose that the true model is

.8 = V1-8,1 +*8
with E

[
*8 | -8,1, -8,2

]
= 0 and E

[
*2
8
| -8,1, -8,2

]
= f2 > 0.

Assume that E
[
-8,1-8,2

]
= 0.

I Let(
V̂_,1
V̂_,2

)
= argmin

11,12

=∑
8=1

(
.8 − 11-8,1 − 12-8,2

)2 + _ ( |11 | + |12 |) .
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I Let
(
-0,1, -0,2,.0

)
be an (independent) unseen observation.

Denote .̂0 = -0,1 V̂_,1 + -0,2 V̂_,2. Note that

.0 − .̂0 = *0 −
(
V̂_,1 − V1

)
-0,1 − V̂_,2-0,2.

I The test MSE:

E
[(
.0 − .̂0

)2
]

= f2 + E
[(
V̂_,1 − V1

)2
]

E
[
-2

0,1
]

+E
[
V̂2
_,2

]
E

[
-2

0,2
]

.

I Ideally, we would like E
[(
V̂_,1 − V1

)2
]
to be as small as possible

and shrink V̂_,2 = 0. The second condition requires heavy
penalty (large _). However, this results in large bias of V̂_,1.
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Optimal rate for _
I Suppose that

Y = XV +U

U | X ∼ N
(
0,f2I=

)
1
=

X>X = I: .

I The OLS:

Ṽ =
(
X>X

)−1 X>Y = V + 1
=

X>U = V + 1
=

=∑
8=1

-8*8 .

I Define the LASSO:

V̂_ = argmin
1∈R:

1
=
‖Y −X1‖2 + _ ‖1‖1 .

Note that the RSS is scaled by 1/=. Then,

V̂_, 9 = sgn
(
Ṽ 9

) (���Ṽ 9 ��� − _)
+

.
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I To reduce the bias for the LASSO estimators of relevant
regressors, we want to keep _ as small as possible.

I At the same time, we need _ to be large enough so that it can
shrink to zero the coefficients on irrelevant regressors.

I If V 9 = 0, then Ṽ 9 ∼ N
(
0,f2/=

)
and
√
=Ṽ 9 ∼ N

(
0,f2) .

I _ = _= should converge to zero at a rate that is slightly slower
than =−1/2: _= = � · log (=) /

√
=, where � > 0 is a constant.

Then,

Pr
[���Ṽ 9 ��� ≤ _=] = Pr

[���√=Ṽ 9 ��� ≤ � · log (=)
]

= Pr
[
−� · log (=) ≤ N

(
0,f2

)
≤ � · log (=)

]
→ 1

and therefore, Pr
[
V̂_=, 9 = 0

]
→ 1.
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I If V; ≠ 0, then Ṽ; ∼ N
(
V;,f2/=

)
and

Pr
[���Ṽ; ��� ≤ _=] = Pr

[���√= (
Ṽ; − V;

)
+
√
=V;

��� ≤ � · log (=)
]

= Pr
[
−� · log (=) −

√
=V; ≤ N

(
0,f2

)
≤ � · log (=) −

√
=V;

]
→ 0

and therefore, Pr
[
V̂_=,; ≠ 0

]
→ 1.

I If ‖Y −X1‖2 is not standardized by 1/=, the optimal rate for _
should be

√
= · log (=) .
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Weighted LASSO
I LASSO solves:

min
11,...,1:

=∑
8=1

(
.8 − 11-8,1 − · · · − 1:-8,:

)2 + _
:∑
9=1

��1 9 �� .
I Weighted LASSO applies different weights to different

coefficients. Let F1, ...,F= be some (possibly data-dependent)
non-negative weights. The weighted LASSO solves

min
11,...,1:

=∑
8=1

(
.8 − 11-8,1 − · · · − 1:-8,:

)2 + _
:∑
9=1
F 9

��1 9 �� .
I The weighted LASSO allows for different amount of shrinkage

and penalization for different coefficients.
I For example, by setting F1 = 0, no shrinkage would be applied to

the coefficient of the first regressor. This is useful for regressors
that always should be included in the model.

I No penalty is typically applied to the intercept.
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Adaptive LASSO (Zou, 2006)

I Let Ṽ1, ..., Ṽ: denote the OLS estimates. The adaptive LASSO
uses the weights

F 9 =
1���Ṽ 9 ��� , 9 = 1, ..., : .

I Since Ṽ 9 →? V 9 , Ṽ 9 is a good initial guess for V 9 .
I The shrinkage is tuned by these weights: when V 9 is far away

from zero, we expect that
���Ṽ 9 ��� is large, the weight is small and less

shrinkage is imposed on the 9-th coefficient; when V 9 is indeed
zero, we expect that

���Ṽ 9 ��� is small and heavy shrinkage is imposed.
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Oracle procedure
I We call the smallest sub-model consisting of only explanatory

variables with non-zero coefficients the “correct” model.
I A statistical procedure is an oracle procedure if with probability

approaching one it selects the correct model and the estimator of
the selected coefficients are asymptotically normal with no zero
bias and an asymptotic variance you would get if you knew the
correct model.

I For the linear model, denoteA =
{
9 : V 9 ≠ 0

}
(the indices of the

relevant regressors), which characterizes the correct model.
I Suppose an estimation procedure produced a vector of estimates
V̂ =

(
V̂1, ..., V̂:

)>
. It is an oracle procedure if the following two

conditions hold as = ↑ ∞:
I Pr

[
Â = A

]
→ 1, where Â =

{
9 : V̂ 9 ≠ 0

}
.

I
√
=

(
V̂A − VA

)
→3 N (0,+A), where +A is the asymptotic

variance matrix when the correct model A is known.
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I The first condition requires that with the probability approaching
one, the procedure selects the right regressors.

I The second condition states that the asymptotic distribution of
the estimator for V’s on the true regressors is the same as one
would have obtain by regressing .8 only on the regressors in A.

I OLS is not an oracle procedure, as the probability that an OLS
estimator is exactly equal to zero is zero. Similarly, the ridge
regression is not an oracle procedure.

I Zou (2006) shows that LASSO in its original form is not an
oracle procedure.
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The oracle properties of the adaptive LASSO
I We assume the classical model with : < = and i.i.d. observations
(-8 ,.8), 8 = 1, 2, ..., = generated from the model:

. = ->V +*
E [* | -] = 0

E
[
*2 | -

]
= f2.

I The homoskedasticity assumption E
[
*2 | -

]
= f2 can be

dropped.
I Denote V = E [-->]. The OLS estimator Ṽ is asymptotically

normal: √
=

(
Ṽ − V

)
→3 N

(
0,f2V−1

)
.

I The adaptive LASSO:

V̂_ = argmin
11,...,1:

1
2=

=∑
8=1

(
.8 − 11-8,1 − · · · − 1:-8,:

)2 + _
:∑
9=1

��1 9 �����Ṽ 9 ��� .
I The second oracle property rules out asymptotic bias and requires

a small _, while the first oracle property requires a large _. 20 / 23



I Assume that
√
=_= ↓ 0 and =_= ↑ ∞ as = ↑ ∞. Let

Â =

{
9 : V̂_=, 9 ≠ 0

}
.

I Then, the adaptive LASSO is an oracle procedure: as = ↑ ∞,
I Pr

[
Â = A

]
→ 1;

I
√
=

(
V̂_= ,A − VA

)
→3 N

(
0,f2V−1

A

)
, where VA = E

[
-A->A

]
.

I As a model selection procedure, the adaptive LASSO does not
need to assume homoskedasticity.

I The adaptive LASSO estimator for VA is as good as the OLS
with perfect knowledge of A.
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Choice of _ for adaptive LASSO

I The theorem requires a large penalty =_= ↑ ∞ to detect the zero
coefficients. To have smaller bias, we would like _= to be not too
large.

I Typically, we choose

_= = � ·
log (=)
=

.

I Here, � > 0 is a constant. We select � by cross validation.
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Confidence intervals

I Run OLS with the regressors in Â and get the standard errors.
I The confidence intervals for the non-zero coefficients can be

centered around the post-LASSO OLS from the previous step or
the adaptive LASSO estimator. Asymptotically, both are correct.
Modified procedures are available and will be introduced later.
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